Oriental motor

ブラシレスモーターユニット BLEシリーズ GEET RS-485 通信タイプ

ユーザーズマニュアル

(モーター部) (ドライバ部)

お買い上げいただきありがとうございます。

このマニュアルには、製品の取り扱いかたや安全上の注意事項を示しています。

マニュアルをよくお読みになり、製品を安全にお使いください。

お読みになったあとは、いつでも見られるところに必ず保管してください。

1 導入

1	取扱	取扱説明書の構成		
2	はじ	めに	7	
3	安全	上のご注意	8	
4	使用上のお願い10			
5	システム構成11			
6	準備	# #	12	
	6.1	製品の確認		
	6.2	品名の見方		
	63	組み合わせ一覧	13	
	0.5			
	6.4	各部の名称と機能		

2 設置と接続

1	設置	1 	.18
	1.1	設置場所	18
	1.2	設置の概要	18
	1.3	コンビタイプ・平行軸ギヤヘッドの設置	20
	1.4	丸シャフトタイプの設置	21
	1.5	コンビタイプ・中空軸フラットギヤヘッド	の
		設置	21
	1.6	コンビタイプ・平行軸ギヤヘッド、	
		丸シャフトタイプの負荷の取り付け	23
	1.7	コンビタイプ・中空軸フラットギヤヘッド	の
		負荷の取り付け	24
	1.8	許容ラジアル荷重と許容アキシアル荷重	26
	1.9	ドライバの設置	27
	1.10	外部速度設定器(付属)の取り付け	28
	1.11	回生抵抗(別売)の取り付け	28
2	接 続	j	.29
	2.1	接続例	29
	2.2	電源の接続	30
	2.3	接 地	30
	2.4	モーターとドライバの接続	31
	2.5	DC24 V電源の接続	32
	2.6	入力信号用電源の選択	32
	2.7	入出力信号の接続	32
	2.8	アナログ速度設定器の接続	35
	2.9	データ設定器の接続	36
	2.10	RS-485 通信ケーブルの接続	36
	2.11	試運転	37
	2.12	回生抵抗の接続	37
	2.13	接続図(例)	38

3	入出	力信号の説明	41
	3.1	ダイレクト I/Oの割り付け	
		■ 入力端子への割り付け	
		■ 入力信号の接点設定の切り替え	
		■ 出力端子への割り付け	
	3.2	ネットワーク I/Oの割り付け	
		■ 入力信号の割り付け	
		■ 出力信号の割り付け	
	3.3	入力信号	
	3.4	出力信号	
	3.5	汎用信号(R0~R15)	

3 I/O制御

1	ガイ	ダンス	
2	運転	データ、パラメータ	54
	2.1	運転データ	
	2.2	パラメータ	
		■ パラメーター覧	
		■ 機能設定パラメータ	
		■ I/O機能パラメータ	
		■ I/O機能[RS-485]パラメータ	
		■ アナログ調整パラメータ	
		■ アラーム・ワーニングパラメータ	
		■ テスト運転・表示パラメータ	
		■ 動作設定パラメータ	
		■ 通信パラメータ	60
3	I/O制	削御による運転	61
	3.1	運転に必要なデータ	61
	3.2	回転速度の設定	61
		■ アナログ設定	61
		■ デジタル設定	63
	3.3	加速時間、減速時間の設定	63
		■ 回転速度をアナログ設定する場合	63
		■ 回転速度をデジタル設定する場合	63
	3.4	トルク制限の設定	64
	3.5	運転·停止方法	
		■ 運 転	
		■ 回転方向	
	3.6	運転パターン例	
	3.7	並列運転	
		■ 外部速度設定器を使用する場合	
		■ 外部直流電圧を使用する場合	
		■ 速度差を調整する方法	
	3.8	多段速運転	

4 Modbus RTU制御 (RS-485 通信)

1	ガイダンス70			
2	通信	仕様	73	
3	スイ	ッチの設定	74	
4	RS-4	485 通信の設定		
5	通信	方式と通信タイミング	77	
	5.1 5.2	通信方式 通信タイミング	77 77	
6	メッ	セージ	78	
	6.1 6.2	クエリ レスポンス		
7	ファ	ンクションコード		
	7.1 7.2 7.3 7.4	保持レジスタの読み出し 保持レジスタへの書き込み 診 断 複数の保持レジスタへの書き込み		
8	レジ	スタアドレス一覧		
	8.1 8.2 8.3 8.4	 動作コマンド		
9	グル・	ープ送信		
10	通信	異常の検出		
	10.1 10.2	通信エラー アラームとワーニング		
11	タイ	ミングチャート		

5 FAネットワーク制御

1	CC-	Link通信で制御する場合	
	1.1	ガイダンス	
	1.2	スイッチの設定	
	1.3	リモートレジスター覧	
	1.4	6 軸接続モードのリモート I/Oの	
		割り付け	
		■ リモート I/O割り付け一覧	
		■ リモート I/Oの入出力	
		■ リモート I/O割り付けの詳細	

	1.5	12 軸接続モードのリモート I/Oの	
		割り付け	109
		■ リモート I/O割り付け一覧	109
		■ リモート I/Oの入出力	109
		■ リモート I/O割り付けの詳細	
2	MEC	CHATROLINK通信で制御する場合.	112
	2.1	ガイダンス	112
	2.2	スイッチの設定	115
	2.3	NETC01-M2の I/Oフィールドマップ	116
	2.4	NETC01-M3の I/Oフィールドマップ	117
	2.5	通信フォーマット	118
		■ リモート I/O入力	
		■ リモート I/O出力	
		■ リモートレジスタ入力	
		■ リモートレジスタ出力	
3	リモ	ート I/Oの詳細	120
	3.1	ドライバへの入力	120
	3.2	ドライバからの出力	121
4	命令	コード一覧	122
	4.1	グループ機能	122
	4.2	メンテナンスコマンド	123
	4.3	モニタコマンド	124
	4.4	運転データ	125
	4.5	ユーザーパラメータ	125
		■ 機能設定パラメータ	126
		■ I/O機能パラメータ	126
		■ I/O機能[RS-485]パラメータ	
		■ アナログ調整パラメータ	128
		■ アラーム・ワーニングパラメータ	
		■ テスト運転・表示パラメータ	
		■動作設定パラメータ	
		■ 通信パラメータ	129

6 点検とトラブルの処置

1	点 検	È	132
2	アラ	ーム、ワーニング、通信エラー…	
	2.1	アラーム	
		■ アラームの解除	
		■ アラーム履歴	
		■ アラーム一覧	
	2.2	ワーニング	
		■ ワーニング一覧	
		■ ワーニング履歴	
	2.3	通信エラー	
		■ 通信エラー一覧	
		■ 通信エラー履歴	
3	故障	の診断と処置	

7 資料

1	仕様	14C
	1.1	仕様140
	1.2	一般仕様142
	1.3	外形図142
2	法令	·規格143
	2.1	UL規格、CSA規格143
	2.2	EU指令143
	2.3	韓国電波法144
	2.4	RoHS指令144
3	EMC	指令に適合させる設置・配線方法145

8 付録

1	ケーブル /周辺機器	148
2	関連商品(別売)	150

取扱説明書の構成、製品の概要、規格、各部の名称と機能などについて説明しています。

もくじ

7
8
10
11
12

1 取扱説明書の構成

BLEシリーズ FLEX RS-485 通信タイプに関する取扱説明書には、次のものがあります。

ユーザーズマニュアルは製品には添付していません。詳細は支店・営業所にお問合せいただくか、当社の WEB サイトからダウンロードしてください。

https://www.orientalmotor.co.jp/

お読みになったあとは、いつでも見られるところに必ず保管してください。

	·		
対象製品	取扱説明書の種類	品番	取扱説明書の概要
	取扱説明書(製品に添付)	HM-5133	モーター、ドライバの機能や設置方法などについて説明しています。
RS485 通信タイプ	ユーザーズマニュアル(本書)	HM-5134	モーター、ドライバの機能、設置・接続方 法、データの設定方法、運転の方法など について説明しています。
データ設定器 OPX-2A	取扱説明書	HP-5056	データ設定器 OPX-2A(別売)の機能、設置・接続、データの設定方法などについて 説明しています。
サポートソフト MEXE02	取扱説明書	HM-60130	サポートソフト MEXE02 によるデータの編 集方法やモニタ機能について説明してい ます。
	CC-Link Ver.1.1 対応 NETC01-CC ユーザーズマニュアル	HM-40090	
	CC-Link Ver.2 対応 NETC02-CC ユーザーズマニュアル	HM-60286	
ネットワークコンバータ	MECHATROLINK- II 対応 NETC01-M2 ユーザーズマニュアル	HM-40148	ネットコンバータの機能、設置・接続方法、 運転の方法などについて説明しています。
	MECHATROLINK-亜対応 NETC01-M3 ユーザーズマニュアル	HM-40147	
	EtherCAT対応 NETC01-ECT ユーザーズマニュアル	HM-60251	

はじめに 2

■ お使いになる前に

製品の取り扱いは、電気・機械工学の専門知識を持つ有資格者が行なってください。 お使いになる前に、8ページ「3安全上のご注意」をよくお読みのうえ、正しくお使いください。また、本文中の 警告・注意・重要に記載されている内容は、必ずお守りください。 この製品は、一般的な産業機器への組み込み用として設計・製造されています。その他の用途には使用しないで ください。この警告を無視した結果生じた損害の補償については、当社は一切その責任を負いませんので、あら かじめご了承ください。

■ 製品の概要

この製品は、小型・高トルクのブラシレスモーターと、I/O制御やRS-485 通信に対応したドライバのユニットです。 運転データやパラメータは、サポートソフト MEXE02、データ設定器 OPX-2A(別売)、および RS-485 通信のど れかで設定します。

■ 周辺機器

運転データやパラメータは、データ設定器 OPX-2A、サポートソフト MEXE02、および RS-485 通信のどれかで設 定します。必要に応じて、次の周辺機器をご用意ください。

- OPX-2A(別売)

• MEXE02(WEBサイトからダウンロード).....MEXE02を使用する場合は、パソコンとドライバを接続するため のサポートソフト用通信ケーブル CC05IF-USB(別売)が必要 です。必ずお買い求めください。

■ 関連商品

ネットワークコンバータを介して接続すると、さまざまなネットワークで使用できるようになります。

ネットワークコンバータ品名	対応可能なネットワーク
NETC01-CC	CC-Link通信(Ver.1.1 対応)
NETC02-CC	CC-Link通信(Ver.2 対応)
NETC01-M2	MECHATROLINK- II 通信
NETC01-M3	MECHATROLINK-皿通信
NETC01-ECT	EtherCAT通信

■ 用語について

このマニュアルの説明では、次のような用語を使用しています。

	内容	
上位システム	プログラマブルコントローラと、マスタ機器、	PLCなどの総称です。

3 安全上のご注意

ここに示した注意事項は、製品を安全に正しくお使いいただき、お客様や他の人々への危害や損傷を未然に防止するためのものです。内容をよく理解してから製品をお使いください。

▲警告

- 爆発性雰囲気、引火性ガスの雰囲気、腐食性の雰囲気、水のかかる場所、可燃物のそばでは使用しないでください。火災・感電・けがの原因になります。
- 設置、接続、運転・操作、点検・故障診断の作業は、適切な資格、知識を有する人が行なってください。火災・ 感電・けが・装置破損の原因になります。
- 通電状態で移動、設置、接続、点検の作業をしないでください。電源を切ってから作業してください。感電の 原因になります。
- ・ドライバフロントパネルの ▲ ▲ マークは、高電圧がかかる端子を表わしています。通電中は触れないでください。火災・感電の原因になります。
- 標準タイプを昇降装置に使用しないでください。ドライバの保護機能がはたらくと、モーターが停止し、可動部 が落下してけが・装置破損の原因になります。
- 電磁ブレーキ付モーターのブレーキ機構を安全ブレーキとして使用しないでください。電磁ブレーキは、可動 部とモーターの位置保持用です。けが・装置破損の原因になります。
- ドライバの保護機能がはたらいたときは、原因を取り除いた後で保護機能を解除してください。原因を取り除か ずに運転を続けると、モーター、ドライバが誤動作して、けが・装置破損の原因になります。
- モーター(ギャヘッド)、ドライバは、指定された組み合わせで使用してください。火災・感電・装置破損の原因 になります。
- モーター、ドライバはクラス I 機器です。
 設置するときは、モーター、ドライバの保護接地端子を接地してください。感電の原因になります。
- モーター、ドライバは筐体内に設置してください。感電・けがの原因になります。
- 接続例にもとづき、確実に接続、接地してください。火災・感電の原因になります。
- ケーブルを無理に曲げたり、引っ張ったり、挟み込まないでください。火災・感電の原因になります。
- モーターケーブルや接続ケーブルを加工・改造しないでください。火災・感電の原因になります。
- 指定されたケーブルサイズを守ってください。火災の原因になります。
- 端子台のねじの締付トルクを守ってください。感電・装置破損の原因になります。
- •ドライバの電源入力電圧は、定格範囲を必ず守ってください。火災・感電の原因になります。
- 電磁ブレーキ付タイプの運転時、上下方向での位置保持中は、MB-FREE入力を ONにしないでください。電磁ブレーキの保持力がなくなり、けが・装置破損の原因になります。
- 電磁ブレーキ付タイプを昇降装置に使用する場合、負荷の状況を十分確認してから操作してください。定格を 超える負荷をかけたり、OPX-2A、MEXEO2、および RS-485 通信でトルク制限値を小さくすると、負荷が下降 することがあります。けが・装置破損の原因になります。
- 保守・点検は、必ず電源を切ってから行なってください。感電の原因になります。
- 絶縁抵抗測定、絶縁耐圧試験を行なうときは、モーター・ドライバに触れないでください。感電の原因になります。
- 電源を切った後(CHARGE LEDが消灯するまで)は、ドライバの接続端子に触れないでください。残留電圧によって、感電の原因になります。
- ドライバの開口部に埃がたまっていないか、定期的に点検してください。火災の原因になります。
- モーター(ギャヘッド)、ドライバを分解・改造しないでください。感電・けが・装置破損の原因になります。内部 の点検や修理は、お買い上げになった支店または営業所に連絡してください。

1導入

▲ 注意

- モーター(ギャヘッド)やドライバの仕様値を超えて使用しないでください。火災・感電・けが・装置破損の原因になります。
- ドライバの開口部に物を入れないでください。火災・感電・けがの原因になります。
- 運転中および停止後しばらくの間は、モーター(ギャヘッド)やドライバに触れないでください。モーター(ギャヘッド)、ドライバの表面が高温のため、やけどの原因になります。
- モーター(ギャヘッド)の出力軸やケーブルを持たないでください。けがの原因になります。
- モーター、ドライバの周囲には、通風を妨げる障害物を置かないでください。装置破損の原因になります。
- •素手でモーター出力軸(先端、歯切り部)に触らないでください。けがの原因になります。
- モーター(歯切りシャフト)とギヤヘッドを組み付けるときは、モーターとギヤヘッドの間に指などを挟まないようにしてください。けがの原因になります。
- モーター(ギャヘッド)、ドライバは、取付板へ確実に固定してください。落下によって、けが・装置破損の原因 になります。
- •モーター(ギヤヘッド)の回転部(出力軸)に、カバーを設けてください。けがの原因になります。
- モーター(ギャヘッド)を装置に設置するときは、装置とモーター、または装置とギャヘッドの間に指などを挟まないようにしてください。けがの原因になります。
- 負荷はモーター出力軸へ確実に取り付けてください。けがの原因になります。
- 静電気による製品の破損を防ぐため、モーター、ドライバは必ず接地してください。火災・装置破損の原因になります。
- DC24 V電源には、一次側が強化絶縁された電源を使用してください。感電の原因になります。
- 装置の故障や動作の異常が発生したときは、装置全体が安全な方向へはたらくよう非常停止装置、または非常 停止回路を外部に設置してください。けがの原因になります。
- 異常が発生したときは、ただちに運転を停止して、ドライバの電源を切ってください。火災・感電・けがの原因になります。
- 運転中は回転部(出力軸)に触れないでください。けがの原因になります。
- モーターは、正常な運転状態でも、表面温度が70℃を超えることがあります。運転中のモーター に接近できるときは、図の警告ラベルをはっきり見える位置に貼ってください。やけどの原因になり ます。

- •ドライバのスイッチは、絶縁ドライバで設定してください。感電の原因になります。
- 製品は、法令または自治体の指示に従って、正しく処分してください。

■ 警告表示

取り扱い上の警告をドライバに表示しています。ドライバを取り扱うときは、必ず警告に表示された内容を守ってください。

4 使用上のお願い

製品をお使いいただくうえでの制限やお願いについて説明します。

• 保護装置を電源側の配線に接続してください

ー次側の配線を保護するため、配線用遮断器または漏電ブレーカをドライバの電源側の配線に接続してください。 漏電ブレーカを設置する場合は、高周波対策品を使用してください。保護装置の選定については下記の「漏れ電 流対策」をご覧ください。

•昇降装置には、電磁ブレーキ付タイプを使用してください

モーターを昇降装置に使用するときは、負荷を保持するため、電磁ブレーキ付タイプを使用してください。

• ソリッドステートリレー(SSR)で電源を ON/OFFしないでください

ソリッドステートリレー(SSR)で電源を入れる、または切ると、モーター、ドライバが破損する原因になります。

- モーターとドライバを接続した状態で、絶縁抵抗測定、絶縁耐圧試験を行なわないでください
 モーターとドライバを接続した状態で、絶縁抵抗測定、絶縁耐圧試験を行なうと、製品が破損する原因になります。
- グリース対策

ギヤヘッドからまれにグリースがにじみ出ることがあります。グリース漏れによる周囲環境の汚染が問題となる場合 には、定期点検時にグリースのにじみをチェックしてください。または、油受けなどの損害防止装置を取り付けてく ださい。グリース漏れでお客様の装置や製品などに不具合を発生させる原因になります。

• 中空軸フラットギヤヘッドの出力軸には、グリースを塗布してください

中空軸フラットギャヘッドでは、焼き付きを防ぐため、グリース(二硫化モリブデングリースなど)を負荷軸表面と中 空出力軸の内面に塗布してください。

漏れ電流対策

ドライバの動力線と他の動力線間、大地間、およびモーター間には浮遊容量が存在し、これを通して高周波漏れ 電流が流れ、周辺機器に悪影響を与えることがあります。これは、ドライバのスイッチング周波数、ドライバとモーター 間の配線長などに左右されます。漏電ブレーカを接続するときは、次のような高周波対策品を使用してください。 三菱電機株式会社 NVシリーズ

ノイズ対策

外部からのノイズによる、モーター、ドライバの誤動作を防ぐため、ノイズ対策を行なってください。 入出力信号ケーブルにはシールドケーブルを使用するか、非シールドケーブルの場合にはフェライトコアを取り付 けると効果的です。ノイズ対策については145ページ「3 EMC指令に適合させる設置・配線方法」をご覧ください。

• プラス側を接地した電源を接続するときの注意

ドライバのデータ設定器コネクタ(CN3)、入出力信号コネクタ(CN5/CN6)、および RS-485 通信コネクタ(CN7/CN8) は絶縁されていません。電源のプラス側を接地するときは、マイナス側を接地した機器(パソコンなど)を接続しな いでください。これらの機器とドライバが短絡して、破損するおそれがあります。

ドライバは半導体素子を使用しているため、取り扱いには十分注意してください

静電気などによってドライバが破損する原因になります。 感電や静電気による製品の破損を防ぐため、モーター、ドライバは必ず接地してください。

- モーターとドライバ間を延長するときは、接続ケーブル(付属または別売)を使用してください
- 巻き下げ運転や大慣性の駆動には、回生抵抗 EPRC-400P(別売)を使用してください

巻き下げ運転時や大慣性の急激な運転・停止時に発生する回生エネルギーが、ドライバが吸収できる上限を超えると、ドライバが破損する原因になります。回生抵抗 **EPRC-400P**を使用すると、回生エネルギーが放出されてドライバを保護します。

• NVメモリへのデータ保存

データをNVメモリに書き込んでいる間、および書き込み後5秒以内は、DC24V電源を切らないでください。 書き込みが正常に終了せず、EEPROMエラーのアラームが発生する原因になります。 NVメモリの書き換え可能回数は、約10万回です。

5 システム構成

6 準備

確認していただきたい内容や、各部の名称と機能について説明します。

6.1 製品の確認

次のものがすべて揃っていることを確認してください。不足したり破損している場合は、お買い求めの支店または 営業所までご連絡ください。

お買い求めの製品のユニット品名は、パッケージのラベルに記載された品名で確認してください。

モーターとドライバの品名は、それぞれ製品の銘板に記載された品名で確認してください。

ユニット品名に対するモーターとドライバの組み合わせは、13ページ「6.3組み合わせ一覧」をご覧ください。

- モーター(コンビタイプはギヤヘッド付).....1台
- ドライバ.....1台
- 接続ケーブル ……………………………………………………………1本 (接続ケーブルが付属しているタイプのみ)
- CN5 用コネクタ(10 ピン)1 個
- CN6 用コネクタ(8ピン)1 個
- 外部速度設定器......1 個
- 外部速度設定器 接続用信号線(1 m)1 本
- 取扱説明書......1部

コンビタイプ・平行軸ギヤヘッド用付属品

- 六角穴付ボルトセット.....1セット(六角穴付ボルト、平座金、ばね座金、ナット各4個)
- 平行キー.....1 個

コンビタイプ・中空軸フラットギヤヘッド用付属品

- 六角穴付ボルトセット.....1セット(六角穴付ボルト、平座金、ばね座金、ナット各4個)
- 安全カバー.....1個
- 安全カバー取付ねじ......2本
- 平行キー.....1個

6.2 品名の見方

6.3 組み合わせ一覧

- 品名の□には、減速比を表わす数字が入ります。
- 品名の■には、接続ケーブルの長さを表わす数字が入ります。
- コンビタイプは、モーターとギヤヘッドがあらかじめ組み付けてあります。

■ 標準タイプ

タイプ	ユニット品名	モーター品名	ギヤヘッド品名	ドライバ品名
	BLE23AR□S-■			BLED3AM-R
	BLE23CR□S-■	BLEM23-GFS	GF32GL	BLED3CM-R
コンビタイプ・	BLE46AR□S-■			BLED6AM-R
平行軸ギヤヘッド	BLE46CR□S-■	DLEM40-GF3	GF34GL	BLED6CM-R
	BLE512AR□S-■			BLED12AM-R
	BLE512CR□S-■	DLEMS12-GF5	GF35GL	BLED12CM-R
	BLE23AR□F-■	RI EMADO CES		BLED3AM-R
	BLE23CR□F-■	DLEM23-GF3	GF3ZGLIFK	BLED3CM-R
コンビタイプ・	BLE46AR□F-■			BLED6AM-R
中空軸フラットギヤヘッド	BLE46CR□F-■	DLEM40-GF3	GF34GLIFK	BLED6CM-R
	BLE512AR□F-■			BLED12AM-R
	BLE512CR□F-■	DLEMST2-GF5	GF33GLIFK	BLED12CM-R
	BLE23ARA-			BLED3AM-R
	BLE23CRA-■	DLEM23-A		BLED3CM-R
丸シャフトタイプ	BLE46ARA-■		_	BLED6AM-R
	BLE46CRA-■	DLE/W40-A		BLED6CM-R
	BLE512ARA-■			BLED12AM-R
	BLE512CRA-			BLED12CM-R

■ 電磁ブレーキ付タイプ

94기고ニット品名モーター品名ギヤヘッド品名ドライバ品名888					
BLE23AMR□S-■ BLE23CMR□S-■ 平行軸ギヤヘッドBLE23AMR□S-■ BLE46AMR□S-■ BLE46AMR□S-■ BLE46CMR□S-■ BLE512AMR□S-■ BLE512CMR□S-■ BLE512CMR□S-■ BLE32AMR□F-■ BLE23AMR□F-■ BLE23AMR□F-■ BLE46AMR□F-■ BLE46AMR□F-■ BLE46AMR□F-■ BLE46AMR□F-■ BLE46AMR□F-■ BLE46AMR□F-■ BLE46AMR□F-■ BLE46AMR□F-■ BLE46AMR□F-■ BLE46AMR□F-■ BLE46AMR□F-■ BLE46AMR□F-■ BLE46AMR□F-■ BLE46AMR□F-■ BLE46AMR□F-■ BLE46AMR□F-■ BLE46AMR□F-■ BLE46AMR□F-■ BLE46CMR□F-■ BLE46CMR□F-■ BLE46AMR□F-■ BLE46AMR□F-■ BLE46CMR□F-■ BLE46AMR□F-■ BLE46AMR□F-■ BLE46AMR□F-■ BLE46AMR□F-■ BLEM32M2-GFS BLEM32M2-GFS BLEM32M2-GFS BLEM32M2-GFS BLE40AMRA-R BLED3AM-R BLED3AM-R BLED3AM-R BLED3AMRA-R BLEM32M2-ABLEM33M2-GFS GFS3G□FR BLED6AM-R BLED3CM-R BLED3AM-R BLED3AM-R BLED3AM-R BLED3AM-R BLED3AM-R BLEM32M2-ABLEM33M2-GFS GFS3G□FR BLED3AM-R BLE0AAM-R <br< td=""><td>タイプ</td><td>ユニット品名</td><td>モーター品名</td><td>ギヤヘッド品名</td><td>ドライバ品名</td></br<>	タイプ	ユニット品名	モーター品名	ギヤヘッド品名	ドライバ品名
BLE23CMR□S-■ BLEM23M2-GFS GF3ZGL BLED3CM-R BLE46AMR□S-■ BLE46AMR□S-■ BLEM46M2-GFS GF34G□ BLED6AM-R BLE512AMR□S-■ BLEM512M2-GFS GF35G□ BLED12AM-R BLE512CMR□S-■ BLEM512M2-GFS GF32G□FR BLED3AM-R BLE23AMR□F-■ BLEM23M2-GFS GF32G□FR BLED3AM-R BLE23CMR□F-■ BLEM23M2-GFS GF32G□FR BLED3AM-R BLE46AMR□F-■ BLEM46M2-GFS GF32G□FR BLED3AM-R BLE46CMR□F-■ BLEM46M2-GFS GF34G□FR BLED3AM-R BLE46CMR□F-■ BLEM46M2-GFS GF34G□FR BLED6AM-R BLE004MR□F-■ BLEM512M2-GFS GF35G□FR BLED12AM-R BLE012CMR□F-■ BLEM512M2-GFS GF35G□FR BLED12AM-R BLE012CMR□F-■ BLEM23M2-A BLED3AM-R BLED3AM-R BLE23AMRA-■ BLEM23M2-A BLED3CM-R BLED3AM-R BLE03CMRA-■ BLEM46M2-A BLED3AM-R BLED3AM-R BLE06AMRA-■ BLEM46M2-A BLED6AM-R BLED6AM-R BLE06AMRA-■ </td <td></td> <td>BLE23AMR□S-■</td> <td></td> <td></td> <td>BLED3AM-R</td>		BLE23AMR□S-■			BLED3AM-R
BLE46AMRCIS-IIBLEM46M2-GFSGFS4GUBLED6AM-RBLE46CMRCIS-IIBLE46CMRCIS-IIBLEM512M2-GFSGFS5GUBLED12AM-RBLE512CMRCIS-IIBLEM512M2-GFSGFS5GUBLED12AM-RBLE23AMRCIF-IIBLEM23M2-GFSGFS2GUFRBLED3AM-RBLE23CMRCIF-IIBLEM23M2-GFSGFS4GUFRBLED3AM-RBLE46AMRCIF-IIBLEM46M2-GFSGFS4GUFRBLED6AM-RBLE512AMRCIF-IIBLEM46M2-GFSGFS4GUFRBLED6AM-RBLE512AMRCIF-IIBLEM46M2-GFSGFS5GUFRBLED6AM-RBLE512AMRCIF-IIBLEM46M2-GFSGFS5GUFRBLED6AM-RBLE512CMRCIF-IIBLEM46M2-GFSGFS5GUFRBLED12AM-RBLE512CMRCIF-IIBLEM46M2-GFSGFS5GUFRBLED12AM-RBLE512CMRCIF-IIBLEM46M2-GFSGFS5GUFRBLED12AM-RBLED12CM-RBLEM512M2-GFSGFS5GUFRBLED3AM-RBLED12CM-RBLEM23M2-ABLED3AM-RBLED3AM-RBLE512CMRA-IIBLEM46M2-ABLED3CM-RBLED3CM-RBLE03CMRA-IIBLEM46M2-ABLED3CM-RBLED3CM-RBLE06AMRA-IIIBLEM46M2-ABLED6AM-RBLED6AM-RBLED6AMRA-IIIBLEM46M2-ABLED6AM-RBLED6AM-RBLE06AMRA-IIIBLEM46M2-ABLED6AM-RBLED6AM-RBLE06AMRA-IIIBLEM46M2-ABLED6AM-RBLED6AM-RBLE06AMRA-IIIBLEM46M2-ABLED6AM-RBLED6AM-RBLE06AMRA-IIIBLEM46MRA-IIBLED6AM-RBLED6AM-RBLE012AMRA-IIBLEM46MRA-IIBLED6AM-RBLED12AM-R <tr< td=""><td></td><td>BLE23CMR□S-■</td><td>BLEM23M2-GF5</td><td>GF3ZGL</td><td>BLED3CM-R</td></tr<>		BLE23CMR□S-■	BLEM23M2-GF5	GF3ZGL	BLED3CM-R
平行軸ギヤヘッド BLE46CMR□S-■ BLE512AMR□S-■ BLE512CMR□S-■ BLE512CMR□S-■ BLE512CMR□S-■ BLE312CMR□S-■ BLE312CMR□F-■ P空軸フラットギヤヘッド BLE46CMR□F-■ BLE32CMR□F-■ BLE46AMR□F-■ BLE46CMR□F-■ BLEM46M2-GFS GFS2G□FR GFS4G□FR BLED3AM-R BLED3AM-R BLED3CM-R BLE46CMR□F-■ 中空軸フラットギヤヘッド BLE46CMR□F-■ BLE46CMR□F-■ BLE512CMR□F-■ BLEM312M2-GFS GFS4G□FR GFS5G□FR BLED6AM-R BLED6AM-R BLE512CMR□F-■ 中空軸フラットギヤヘッド BLE46CMR□F-■ BLE46CMR□F-■ BLE512CMR□F-■ BLEM312M2-GFS GFS4G□FR GFS5G□FR BLED6AM-R BLED12AM-R BLE312AMR□F-■ BLE32CMRA-■ BLE46AMRA-■ BLE46AMRA-■ BLE46AMRA-■ BLEM46M2-A BLEM23M2-A BLEM312M2-A BLED3AM-R BLED3CM-R BLE46AMRA-■ BLE312AMRA-■ BLE312AMRA-■ BLE512CMRA-■ BLE512CMRA-■ BLEM512M2-A BLEM312M2-A BLEM312M2-A BLED6AM-R BLED3CM-R BLED12AM-R	コンビタイプ・	BLE46AMR□S-■			BLED6AM-R
BLE512AMR□S-■ BLE512CMR□S-■BLEM512M2-GFS BLE32AMR□F-■GFS5G□BLED12AM-R BLED12CM-RBLE23AMR□F-■ P空軸フラットギヤヘッドBLE23CMR□F-■ BLE46AMR□F-■BLEM23M2-GFS BLE46CMR□F-■GFS2G□FR BLEM3M2-GFS BLEM60M2-GFSBLED3AM-R BLED3CM-RBLE512AMR□F-■ BLE512CMR□F-■BLEM46M2-GFS BLE46CMR□F-■GFS4G□FR BLED6CM-RBLED6AM-R BLED12AM-RBLE512CMR□F-■ BLE512CMR□F-■BLEM512M2-GFS BLEM3M2-AGFS5G□FR BLED12CM-RBLED12AM-R BLED12CM-RBLE23AMRA-■ BLE23CMRA-■BLEM23M2-A BLEM3M2-ABLED3AM-R BLED3AM-RBLED3AM-R BLED3CM-RBLE46CMRA-■ BLE46CMRA-■BLEM46M2-ABLED3CM-R BLED6CM-RBLED6CM-R BLED6CM-RBLE46CMRA-■ BLE46CMRA-■BLEM46M2-ABLED3CM-R BLED6CM-RBLED6CM-R BLED6CM-RBLE122CMRA-■BLEM46M2-ABLEM46M2-ABLED6CM-R BLED6CM-RBLE12CMRA-■BLEM46M2-ABLED12CM-RBLE12CMRA-■BLEM12M2-ABLED12CM-R	平行軸ギヤヘッド	BLE46CMR□S-■	DLEM40M2-GF3	GF34GL	BLED6CM-R
BLE BLE BLEM312/M2-GFS GFS3GL BLED12CM-R BLE23AMR□F-■ BLE23CMR□F-■ BLEM23M2-GFS GFS2G□FR BLED3AM-R BLE23CMR□F-■ BLEM23M2-GFS GFS2G□FR BLED3AM-R BLE46AMR□F-■ BLEM46M2-GFS GFS4G□FR BLED6AM-R BLE512AMR□F-■ BLEM512M2-GFS GFS5G□FR BLED12AM-R BLE512CMR□F-■ BLEM512M2-GFS GFS5G□FR BLED12AM-R BLE512CMR□F-■ BLEM23M2-A BLED12CM-R BLED12CM-R BLE23AMRA-■ BLEM23M2-A BLED3AM-R BLED3AM-R BLE46AMRA-■ BLEM23M2-A BLED3AM-R BLED3AM-R BLE03CMRA-■ BLEM23M2-A BLED3AM-R BLED3AM-R BLE03CMRA-■ BLEM23M2-A BLED3AM-R BLED3AM-R BLE03CMRA-■ BLEM46M2-A BLED3AM-R BLED6AM-R BLE06AMRA-■ BLEM46M2-A BLED6AM-R BLED12AM-R BLE06CMRA-■ BLEM512M2-A BLED12AM-R BLED12AM-R		BLE512AMR□S-■			BLED12AM-R
BLE23AMR□F-10 BLE23CMR□F-10BLEM23M2-GFS BLEM23M2-GFSGFS2G□FRBLED3AM.R BLED3CM.RBLE46AMR□F-10 BLE46CMR□F-10BLEM46M2-GFS BLE512AMR□F-10GFS4G□FRBLED6AM.R BLED3CM.RBLE512AMR□F-10 BLE512CMR□F-10BLEM512M2-GFS BLEM512M2-GFSGFS5G□FRBLED12AM.R BLED12CM.RBLE23AMRA-10 BLE23CMRA-10BLEM23M2-ABLED3AM.R BLEM23M2-ABLED3AM.R BLEM3M2-ABLE46AMRA-10 BLE46AMRA-10BLEM46M2-ABLED3CM.R BLEM46M2-ABLE46AMRA-10 BLE512AMRA-10BLEM46M2-ABLED3CM.R BLEM32M2-ABLE512AMRA-10 BLEM46M2-ABLEM46M2-ABLED3CM.R BLEM32M2-ABLE312AMRA-10 BLEM32MAR-10BLEM32M2-ABLEM32M-R BLEM32M2-A		BLE512CMR□S-■	BLEMO I ZMZ-GF3	GF35GL	BLED12CM-R
BLE23CMR□F-■ BLEM23M2-GF3 GF32GLIFK BLED3CM-R BLE46AMR□F-■ BLEM46M2-GF3 GF32GLIFK BLED3CM-R BLE46CMR□F-■ BLEM46M2-GF3 GF32GLIFK BLED3CM-R BLE512AMR□F-■ BLEM46M2-GF3 GF32G□FR BLED6AM-R BLE512AMR□F-■ BLEM512M2-GF3 GF35G□FR BLED12AM-R BLE512CMR□F-■ BLEM512M2-GF3 GF35G□FR BLED12AM-R BLE23AMRA-■ BLEM23M2-A BLED3AM-R BLED3AM-R BLE23CMRA-■ BLEM23M2-A BLED3CM-R BLED3CM-R BLE03CMRA-■ BLEM46M2-A BLED3CM-R BLED3CM-R BLE06AMRA-■ BLEM46M2-A BLED6CM-R BLED6CM-R BLE06CMRA-■ BLEM46M2-A BLED6CM-R BLED6CM-R BLED6CM-R BLED12AMRA-■ BLED12AM-R BLED12AM-R BLED12AMRA-■ BLEM512M2-A BLED12AM-R BLED12AM-R	コンビタイプ・	BLE23AMR□F-■			BLED3AM-R
BLE46AMRDF- 中空軸フラットギャヘッドBLE46AMRDF- BLE46CMRDF- BLE46CMRDF- BLE512AMRDF- BLE512CMRDF- BLE512CMRDF- BLE512CMRDF- BLEM23MRA- BLEM23MRA- BLEM23M2-ABLEM46M2-GFS BLEM23M2-ABLED12AM-R BLED12CM-RBLE23AMRA- BLE23CMRA- BLE46AMRA- BLE46CMRA- BLE46CMRA- BLE512CMRA- BLEM23MRA- BLEM23MRA- BLEM23M2-ABLEM23M2-ABLED3AM-R BLEM23M2-ABLE46AMRA- BLE46CMRA- BLE512AMRA- BLEM23MRA- BLEM23MRA- BLEM23M2-ABLEM23M2-ABLED3AM-R BLEM23M2-ABLE46CMRA- BLE46CMRA- BLE512CMRA- BLEM312M2-ABLEM23M2-ABLED3AM-R BLEM312M2-ABLE46CMRA- BLEM23MRA- BLEM312M2-ABLEM46M2-ABLED6AM-R BLED6AM-R BLED12AM-R		BLE23CMR□F-■	DLEM23M2-GF3	GF3ZGLIFK	BLED3CM-R
中空軸フラットギヤヘッド BLE46CMR□F-■ BLEM40M2-GFS GFS4GLTR BLED6CM-R BLE512AMR□F-■ BLE512CMR□F-■ BLEM512M2-GFS GFS5G□FR BLED12AM-R BLE23AMRA-■ BLEM23M2-A BLEM23M2-A BLED3AM-R BLE46AMRA-■ BLEM46M2-A BLED3CM-R BLE46CMRA-■ BLEM46M2-A BLED6CM-R BLE512AMRA-■ BLEM46M2-A BLED6CM-R BLE512AMRA-■ BLEM46M2-A BLED6CM-R BLE512AMRA-■ BLEM512M2-A BLED12AM-R		BLE46AMR□F-■			BLED6AM-R
BLE512AMR□F-■ BLEM512M2-GFS GFS5G□FR BLED12AM-R BLE512CMR□F-■ BLEM512M2-GFS GFS5G□FR BLED12AM-R BLE23AMRA-■ BLEM23M2-A BLED3AM-R BLED3AM-R BLE46AMRA-■ BLEM23M2-A BLED3CM-R BLED3CM-R BLE46AMRA-■ BLEM46M2-A BLED6AM-R BLED6AM-R BLE512AMRA-■ BLEM512M2-A BLED12AM-R BLED12AM-R BLE512AMRA-■ BLEM512M2-A BLED12AM-R BLED12AM-R	中空軸フラットギヤヘッド	BLE46CMR□F-■	DLEM40M2-GF3	GF34GLIFK	BLED6CM-R
BLE512CMRロF-■ BLEM512/M2-GFS GFS5GLIFK BLED12CM-R BLE23AMRA-■ BLE23CMRA-■ BLEM23M2-A BLED3AM-R BLE46AMRA-■ BLEM46M2-A BLED3CM-R BLE512AMRA-■ BLEM46M2-A BLED6AM-R BLE512AMRA-■ BLEM512M2-A BLED12CM-R BLE512AMRA-■ BLEM512M2-A BLED12CM-R		BLE512AMR□F-■			BLED12AM-R
BLE23AMRA-■ BLEM23M2-A BLED3AM-R BLE23CMRA-■ BLEM23M2-A BLED3CM-R BLE46AMRA-■ BLEM46M2-A BLED6AM-R BLE512AMRA-■ BLEM512M2-A BLED12AM-R BLE512CMRA-■ BLEM512M2-A BLED12AM-R		BLE512CMR□F-■	DLEMST2M2-GF5	GF35GLIFK	BLED12CM-R
BLE23CMRA-■ BLEM23M2-A BLED3CM-R BLE46AMRA-■ BLEM46M2-A BLED6AM-R BLE512AMRA-■ BLEM512M2-A BLED12AM-R BLE512CMRA-■ BLEM512M2-A BLED12CM-R		BLE23AMRA-■			BLED3AM-R
丸シャフトタイプ BLE46AMRA-■ BLEM46M2-A BLED6AM-R BLE512AMRA-■ BLEM512M2-A BLED12AM-R BLE512CMRA-■ BLEM512M2-A BLED12CM-R		BLE23CMRA-■	DLEM23M2-A		BLED3CM-R
BLE46CMRA-■ BLEM40/M2-A BLED6CM-R BLE512AMRA-■ BLEM512M2-A BLED12AM-R BLE512CMRA-■ BLEM512M2-A BLED12CM-R	ホシャフトタイプ	BLE46AMRA-■		_	BLED6AM-R
BLE512AMRA-■BLEM512M2-ABLED12AM-RBLE512CMRA-■BLED12CM-R	メンヤノ ト ダイノ	BLE46CMRA-■	DLE/V140/V1Z-A	_	BLED6CM-R
BLE512CMRA-■ BLED12CM-R		BLE512AMRA-■			BLED12AM-R
		BLE512CMRA-■			BLED12CM-R

6.4 各部の名称と機能

■ モーター

図は電磁ブレーキ付タイプです。

■ ドライバ

1導入

名 称	説 明	参照先
	 ● PWR(緑): DC24 V電源が投入されているときに点灯します。 	_
PWR/ALM LED	 ● ALM(赤):アラーム(保護機能)が発生すると点滅します。点滅回数を数えると、 アラーム内容を確認できます。 	P.133
C-DAT/C-ERR LED	 C-DAT(緑):RS-485 通信によるマスタ局との通信が正常に行なわれているときに、 点滅または点灯します。 	
	• C-ERR(赤):RS-485 通信によるマスタ局との通信に異常が発生すると点灯します。	—
CHARGE LED(赤)	主電源が投入されているときに点灯します。主電源を切った後、内部の残留電圧が 安全なレベルまで低下すると消灯します。	
号機設定スイッチ(SW1)	RS-485 通信で制御するときに使用してください。 機能設定スイッチ 2(SW5-No.1)と併用して、RS-485 通信の号機番号を設定します。 出荷時設定:0	P.74 P.105 P.115
試運転モードスイッチ(SW2)	 SW2-No.1:通信を確立する前に、モーターとドライバ間の接続を確認できます。 接続に問題がない場合は、SW2-No.1をONにすると、モーターが低速でFWD方向へ回転します。 出荷時設定:OFF 	P.37
	• SW2-No.2:使用しません。(OFFにしておいてください。)	
	• SW3-No.1:使用しません。(OFFにしておいてください。)	-
	• SW3-No.2:使用しません。(OFFにしておいてください。)	
機能設定スイッチ 1(SW3)	 SW3-No.3:入出力信号用電源(内蔵または外部)を選択します。リレーやスイッチで 制御するときは、スイッチをONにして内蔵電源を選択してください。 出荷時設定:OFF 	P.32
	 SW3-No.4:RS-485 通信で制御するときに使用してください。 RS-485 通信の終端抵抗(120 Ω)を設定します。 出荷時設定:OFF 	
通信速度設定スイッチ(SW4)	RS-485 通信で制御するときに使用してください。 RS-485 通信の通信速度を設定します。 出荷時設定:7	P.74 P.105
	RS-485 通信で制御するときに使用してください。	
機能設定スイッチ 2(SW5)	 SW5-No.1:号機設定スイッチ(SW1)と併用して、号機番号を設定します。 出荷時設定:OFF 	
	 ● SW5-No.2:RS-485 通信のプロトコルを設定します。 出荷時設定:OFF 	
電磁ブレーキ用コネクタ(CN1)	電磁ブレーキ用コネクタを接続します。(電磁ブレーキ付タイプのみ)	D 31
モーターコネクタ(CN2)	モーター動力用コネクタを接続します。	F.51
データ設定器コネクタ(CN3)	MEXE02をインストールしたパソコン、または OPX-2Aを接続します。	P.36
モーター信号コネクタ(CN4)	モーター信号用コネクタを接続します。	P.31
入力信号コネクタ(CN5)	入力信号を接続します。	P.32
DC24 V電源入力(CN5)	ドライバの制御用電源を接続します。 + :+DC24 V電源入力 - :電源 GND[入力信号コモン(0 V)と共用]	P.32
入出力信号コネクタ(CN6)	 外部速度設定器(付属)や外部直流電源を接続します。 出力信号を接続します。 	P.32
RS-485 通信コネクタ(CN7/CN8)	RS-485 通信ケーブルを接続します。	P.36
回生抵抗接続端子(TB1)	回生抵抗 EPRC-400P(別売)を接続します。	P.37
主電源入力端子(TB1)	 主電源を接続します。 単相 100-120 V: AC100-120 Vを Lと Nに接続します。NCは使用しません。 単相 200-240 V: AC200-240 Vを L1 と L2 に接続します。L3 は使用しません。 三相 200-240 V: 三相 200-240 Vを L1、L2、L3 に接続します。 	P.30
保護接地端子	AWG18 ~ 14(0.75 ~ 2.0 mm ²)の接地線で接地してください。	
取付穴(背面2か所)	ねじ(M4)でドライバを固定します。	P.27

2 設置と接続

製品の設置方法、負荷の取付方法、接続方法、および入出力信号について説明しています。

もくじ

1	設置		18
	1.1	設置場所	.18
	1.2	設置の概要	.18
	1.3	コンビタイプ・平行軸ギヤヘッドの設置	20
	1.4	丸シャフトタイプの設置	21
	1.5	コンビタイプ・中空軸フラットギヤヘッドの	D
		設置	.21
	1.6	コンビタイプ・平行軸ギヤヘッド、	
		丸シャフトタイプの負荷の取り付け	23
	1.7	コンビタイプ・中空軸フラットギヤヘッドの	D
		負荷の取り付け	.24
	1.8	許容ラジアル荷重と許容アキシアル荷重	26
	1.9	ドライバの設置	.27
	1.10	外部速度設定器(付属)の取り付け	28
	1.11	回生抵抗(別売)の取り付け	28
2	接 続		29
	2.1	接続例	.29
	2.2	電源の接続	.30
	2.3	接 地	.30
	2.4	モーターとドライバの接続	31
	2.5	DC24 V電源の接続	32

	2.6	入力信号用電源の選択	
	2.7	入出力信号の接続	
	2.8	アナログ速度設定器の接続	
	2.9	データ設定器の接続	
	2.10	RS-485 通信ケーブルの接続	
	2.11	試運転	
	2.12	回生抵抗の接続	
	2.13	接続図(例)	
3	入出	力信号の説明	41
	3.1	ダイレクト I/Oの割り付け	41
		■ 入力端子への割り付け	41
		■ 入力信号の接点設定の切り替え	42
		■ 出力端子への割り付け	13
			43
	3.2	ネットワーク I/Oの割り付け	43
	3.2	ネットワーク I/Oの割り付け	43 44 44
	3.2	ネットワーク I/Oの割り付け ■ 入力信号の割り付け ■ 出力信号の割り付け	43 44 44 45
	3.2 3.3	 ネットワーク I/Oの割り付け ■ 入力信号の割り付け ■ 出力信号の割り付け 入力信号 	43 44 44 45 46
	3.2 3.3 3.4	 ネットワーク I/Oの割り付け 入力信号の割り付け 出力信号の割り付け 入力信号 出力信号 	43 44 44 45 46 48
	3.2 3.3 3.4 3.5	ネットワーク I/Oの割り付け ■ 入力信号の割り付け ■ 出力信号の割り付け 入力信号 出力信号 汎用信号(R0 ~ R15)	43 44 44 45 46 48 49

1 設置

モーター、ドライバの設置場所と設置方法、負荷の取り付け、および外部速度設定器の取り付け方法について説 明します。

1.1 設置場所

モーターとドライバは、機器組み込み用に設計・製造されています。 風通しがよく、点検が容易な次の場所に設置してください。

- 屋内に設置された筐体内(換気口を設けてください)
- 使用周囲温度 0 ~ +50 °C(凍結しないこと)
- 使用周囲湿度 85%以下(結露しないこと)
- 直射日光が当たらないところ
- 塵埃や鉄粉などの少ないところ
- 塩分の少ないところ
- •爆発性雰囲気、有害なガス(硫化ガスなど)、および液体のないところ
- •水(雨や水滴)、油(油滴)、およびその他の液体がかからないところ
- 連続的な振動や過度の衝撃が加わらないところ
- 電磁ノイズ(溶接機、動力機器など)が少ないところ
- 放射性物質や磁場がなく、真空でないところ
- 標高 海抜 1000 m以下

1.2 設置の概要

モーター、ドライバの設置方法の概要を説明します。詳しい説明は各節をご覧ください。

■ コンビタイプ・平行軸ギヤヘッド、丸シャフトタイプの設置

六角穴付ボルトで4か所の取付穴を固定します。取付板との間にすき間がないように設置してください。 コンビタイプ・平行軸ギヤヘッドには六角穴付ボルトセットが付属しています。丸シャフトタイプには六角穴付ボルト が付属していません。お客様でご用意ください。

取付板の加工寸法やギヤヘッドの取り外し・組み付け方法は、コンビタイプ・平行軸ギヤヘッドの場合は20ページ、 丸シャフトタイプの場合は21ページをご覧ください。

コンビタイプ・平行軸ギヤヘッド

丸シャフトタイプ

六角穴付ボルトセット(コンビタイプ・平行軸ギヤヘッドに付属)

品名	ボルトの呼び	締付トルク(N·m)	適用最大板厚(mm)*
BLE23	M4	1.8	5
BLE46	M6	6.4	8
BLE512	M8	15.5	12

* 付属の六角穴付ボルトセットを使用した場合。

■ コンビタイプ・中空軸フラットギヤヘッドの設置

ギヤヘッドは、前面または後面のどちらでも設置できます。 付属の六角穴付ボルトで4か所の取付穴を固定します。取付板との間にす き間がないように設置してください。また、負荷軸を取り付ける中空出力軸と 反対側の中空出力軸部に、付属の安全カバーを取り付けてください。 設置方法やギヤヘッドの取り外し・組み付け方法は20ページをご覧ください。

六角穴付ボルトセット(付属)

品名	ボルトの呼び	締付トルク(N·m)	適用最大板厚(mm)*
BLE23	M5	3.8	5
BLE46	M6	6.4	8
BLE512	M8	15.5	12

* 付属の六角穴付ボルトセットを使用した場合。

■ ドライバの設置

ドライバの設置方法には2種類あります。具体的な設置方法は27ページをご覧ください。

• ねじ(M4:付属していません)で、ドライバ背面にある取付穴(2か所)を固定する。

• DINレール取付プレート(別売)で DINレールに固定する。

1.3 コンビタイプ・平行軸ギヤヘッドの設置

■ 取付穴加工寸法 [単位:mm]

品名	ØA	ØB	С	ØD
BLE23	70	24	10	4.5
BLE46	94	34	13	6.5
BLE512	104	40	18	8.5

ØBは製品の外形寸法です。

穴あけは ØB+1 mm以上の寸法で加工してください。

■ ギヤヘッドの取り外し・組み付け

ギヤヘッドを交換したり、ケーブル引出口を変更するときは、ギヤヘッドを組み付けているねじを取り外してください。 ギヤヘッドを取り外し、モーターケーブルの位置を90°単位で変えられます。

1. モーターとギヤヘッドを組み付けている六角穴付ボルト(2本)を外し、モーターをギヤヘッドから取り外します。 六角穴付ボルト

組付用ねじ				
品名	ボルトの呼び	締付トルク(N·m)		
BLE23、BLE46	M2.6	0.4		
BLE512	M3	0.6		

Ø

ØP

Ø

OB Ø

4רD

2. モーターとギヤヘッドのインローをガイドにして、ギヤヘッドをモーターに取り付け、六角穴付ボルトを締め付けます。

このとき、モーターケーブルの位置を90°単位で変えられ ます。モーター出力軸の歯切り部分がギヤヘッドの側板や ギヤに当たらないよう、ギヤヘッドをゆっくり左右に回しな がら取り付けてください。また、モーターのフランジ面と ギヤヘッドのインロー端面に、すき間がないことを確認して ください。

- **重要** モーターとギヤヘッドを無理に組み付けないでください。また、金属片などの異物をギヤヘッド内部に 入れないでください。モーター出力軸の歯切りやギヤに傷が付いて、異常音や寿命低下などの原因 になります。
 - モーターとギヤヘッドのインローにゴミなどを付着させないでください。また、モーターのインローにあるのリングを噛み込まないようにしてください。ギヤヘッド内部からグリースが漏れる原因になります。
 - モーターとギヤヘッドを組み付けている六角穴付ボルトは、モーターとギヤヘッドを固定するためのものです。設置には必ず付属の六角穴付ボルト(4本)を使用してください。

1.4 丸シャフトタイプの設置

■ 取付板寸法

モーターケースの温度が90℃以下になるよう、次の寸法の取付板に取り付けてください。

品名	放熱板の大きさ(mm)	厚さ(mm)	材質
BLE23	115×115*		
BLE46	135×135	5	アルミニウム合金
BLE512	165×165		

* 電磁ブレーキ付タイプは 135×135 mmです。

■ 取付穴加工寸法 [単位:mm]

品名	ØA	В	ØCH7	ØD	
BLE23	70	49.5	54 ^{+0.030}	4.5	
BLE46	94	66.47	73 ^{+0.030}	6.5	
BLE512	104	73.54	83 ^{+0.035}	8.5	
ØCはフランジのインロー径です。					

重要 モーター取付面にあるインローは、インロー受けにはめ込んでください。

1.5 コンビタイプ・中空軸フラットギヤヘッドの設置

■ 前面で設置する場合

前面で設置するときは、出力軸のボス部を用いて心出し設置ができます。

取付穴加工寸法 [単位:mm]

品名	ØA	ØBH8	ØC
BLE23	70	34 ^{+0.039}	5.5
BLE46	94	38 ^{+0.039}	6.5
BLE512	104	50 ^{+0.039}	8.5

■ 後面で設置する場合

取付穴加工寸法 [単位:mm]

品名	ØA	ØC	ØD	E
BLE23	70	5.5	25	29
BLE46	94	6.5	30	39
BLE512	104	8.5	35	44

重要 後面で設置するときは、取付板とモーターが干渉しないように、E部の寸法を超えないでください。

■ ギヤヘッドの取り外し・組み付け

ギヤヘッドを交換したり、ケーブル引出口を変更するときは、ギヤヘッドを組み付けているねじを取り外してください。 ギヤヘッドを取り外し、モーターケーブルの位置を90°単位で3方向に変えられます。ただし、モーターケーブル がギヤヘッド出力軸側に向く方向には取り付けられません。

1. ギヤヘッドとモーターを取り付けている六角穴付ボルト(4本)を外し、モーターをギヤヘッドから取り外します。

組付用わじ

100 101 101	121111100				
品名	ボルトの呼び	締付トルク(N·m)			
BLE23	M4	1.8			
BLE46	M6	6.4			
BLE512	M8	15.5			

 モーターとギヤヘッドのインローをガイドにして、モーターをギヤ ヘッドに取り付け、六角穴付ボルトを締め付けます。
 このとき、モーターケーブルの位置を 90°単位で 3 方向に変えられます。モーター出力軸の歯切りが、ギヤヘッドのケーシング部や歯車に当たらないよう取り付けてください。
 また、モーターのフランジ面と、ギヤヘッドのインロー端面に、すき間がないことを確認してください。

2 設置と接続

- 重要
 - モーターとギヤヘッドを無理に組み付けないでください。また、金属片などの異物をギヤヘッド内部に入れないでください。モーター出力軸の歯切りやギヤに傷が付いて、異常音や寿命低下などの原因になります。
 - モーターとギヤヘッドのインローにゴミなどを付着させないでください。また、モーターのインローにある Oリングを噛み込まないようにしてください。ギヤヘッド内部からグリースが漏れる原因になります。
 - モーターケーブルの位置を変更する場合、ケーブルが中空軸
 に向く方向へは取り付けられません。ケーブルがギヤヘッドの
 ケースにぶつかり、配線できません。

1.6 コンビタイプ・平行軸ギヤヘッド、丸シャフトタイプの負荷の取り付け

モーター(ギヤヘッド)に負荷を取り付けるときは、モーター出力軸(ギヤヘッド出力軸)と負荷の軸中心を揃えてください。

- **重要** モーター(ギヤヘッド)と負荷を連結するときは、心出し、ベルトのテンション、プーリーの平行度など に注意してください。また、カップリングやプーリーの締付ねじは、確実に固定してください。
 - 負荷を取り付けるときは、モーター出力軸(ギヤヘッド出力軸)や軸受に損傷を与えないでください。
 ハンマーなどで負荷を挿入すると、軸受が破損する原因になります。また、出力軸に無理な力を加えないでください。
 - モーター(ギヤヘッド)出力軸を改造したり、機械加工しないでください。ベアリングが損傷して、モーター (ギヤヘッド)が破損する原因になります。

出力軸の形状

コンビタイプ・平行軸ギヤヘッド

ギヤヘッドの出力軸には、キーみぞ加工が施されています。負荷側にもキーみぞ加工を施して、付属の平行キー で固定してください。

丸シャフトタイプ

丸シャフトタイプのモーター出力軸には、フライスカット加工が施されています。ダブルポイントねじなどをフライスカット部に使用し、負荷が空転しないよう確実に固定してください。

負荷の取付方法

カップリング連結

モーター(ギヤヘッド)出力軸と負荷の軸中心線を一直線にしてください。

ベルト連結

モーター(ギヤヘッド)出力軸と負荷の軸を平行にし、両プーリーの中心を結ぶ線と軸を直角にしてください。

ギヤ連結

モーター(ギヤヘッド)出力軸とギヤ軸を平行にし、ギヤ歯面の中心に正しくかみ合わせてください。

ギヤヘッドの出力軸先端ねじ穴を使用する場合

出力軸先端ねじ穴は、伝達部品の抜け防止の補助として使用して 伝達部品 ください。(GFS2Gには、出力軸先端ねじ穴はありません。)

ギヤヘッド品名	出力軸先端ねじ穴
GFS4G	M5 有効深さ 10 mm
GFS5G	M6 有効深さ 12 mm

1.7 コンビタイプ・中空軸フラットギヤヘッドの負荷の取り付け

瞬時停止による衝撃が大きいときや、ラジアル荷重が大きいときは、段付きの負荷軸を使用してください。

- **重要** 焼き付きを防ぐため、負荷軸表面と中空出力軸の内面にグリース(二硫化モリブデングリースなど)を 塗布してください。
 - 負荷を取り付けるときは、モーター出力軸(ギャヘッド出力軸)や軸受に損傷を与えないでください。
 ハンマーなどで負荷を挿入すると、軸受が破損する原因になります。また、出力軸に無理な力を加えないでください。
 - モーター(ギヤヘッド)出力軸を改造したり、機械加工しないでください。ベアリングが損傷して、モーター (ギヤヘッド)が破損する原因になります。

■ 負荷軸が段付きの場合

• 穴用止め輪を使用した固定方法

スペーサ、平座金、およびばね座金を使用して、六角穴付ボルトで穴用止め輪を締め付けてください。

• エンドプレートを使用した固定方法

平座金とばね座金を使用して、六角穴付ボルトでエンドプレートを締め付けてください。

重要 付属の安全カバーは六角穴付ボルトに干渉するため装着できません。お客様側で回転部の保護対策を 施してください。

負荷軸の推奨取付寸法 [単位:mm]

品名	中空軸内径 (H8)	負荷軸推奨値 (h7)	穴用止め輪 呼び径	適合ボルト	スペーサ厚	段付軸の外径 (ØD)
BLE23	Ø12 +0.027	Ø12 _0.018	Ø12	M4	3	20
BLE46	Ø15 ^{+0.027}	Ø15 _0.018	Ø15	M5	4	25
BLE512	Ø20 +0.033	Ø20 _0.021	Ø20	M6	5	30

■ 負荷軸が段なしの場合

負荷軸側にもスペーサを入れ、スペーサ、平座金、およびばね座金を使用して、六角穴付ボルトで穴用止め輪 を締め付けてください。

負荷軸の推奨取付寸法 [単位:mm]

品名	中空軸内径 (H8)	負荷軸推奨値 (h7)	穴用止め輪 呼び径	適合ボルト	スペーサ厚
BLE23	Ø12 +0.027	Ø12 _0.018	Ø12	M4	3
BLE46	Ø15 ^{+0.027}	Ø15 _0.018	Ø15	M5	4
BLE512	Ø20 +0.033	Ø20 _0.021	Ø20	M6	5

1.8 許容ラジアル荷重と許容アキシアル荷重

モーター(ギヤヘッド)出力軸にかかるラジアル荷重とアキシアル荷重は、下表の値以下にしてください。

重要 ラジアル荷重やアキシアル荷重が許容値を超えると、繰り返し荷重によってモーター(ギヤヘッド)の軸 受や出力軸が疲労破損するおそれがあります。

コンビタイプ・平行軸ギヤヘッド

品名		ギヤヘッド出力軸外 容ラジアル	許容アキシアル	
	減速比	10 mm	20 mm	1可里(IN)
	5	100[90]	150[110]	
BLE23	10 ~ 20	150[130]	200[170]	40
	30 ~ 200	200[180]	300[230]	
	5	200[180]	250[220]	
BLE46	10 ~ 20	300[270]	350[330]	100
	30 ~ 200	450[420]	550[500]	
	5	300[230]	400[300]	
BLE512	10 ~ 20	400[370]	500[430]	150
	30 ~ 200	500[450]	650[550]	

* 定格回転速度 3000 r/minまでの値です。[]は 4000 r/min時の値です。

コンビタイプ・中空軸フラットギヤヘッド

品名		ギヤヘッド取付面からの距離と 許容ラジアル荷重(N)*		許容アキシアル
	減速比	10 mm	20 mm	1可里(IN)
DI E22	5、10	450[410]	370[330]	200
15 ~ 200		500[460]	400[370]	200
	5、10	800[730]	660[600]	400
DLE40	15 ~ 200	1200[1100]	1000[910]	400
	5、10	900[820]	770[700]	
BLE512	15、20	1300[1200]	1110[1020]	500
	30 ~ 200	1500[1400]	1280[1200]	

* 定格回転速度 3000 r/minまでの値です。[]は 4000 r/min時の値です。

丸シャフトタイプ

品名	モーター出力軸5 許容ラジア	許容アキシアル	
10 mm		20 mm	11月里(11)
BLE23	80	100	二 4 白毛の
BLE46	110	130	七一ター目里の 半分以下 *
BLE512	150	170	

* アキシアル荷重はできるだけかけないようにしてください。やむを得ずかける場合は、モーター自重の半分以下としてください。

1.9 ドライバの設置

ドライバは、空気の対流による放熱、および筐体への熱伝導による放熱を前提と して設計されています。耐振動性にすぐれた平滑な金属板に設置してください。 ドライバを2台以上並べて設置するときは、水平方向へ20mm以上、垂直方向 へ25mm以上離してください。

重要 • ドライバは汚損度2または IP54 以上の筐体内に設置してください。

- ドライバは、図のように必ず垂直(縦位置)に設置してください。
 また、放熱口をふさがないでください。
- 発熱量やノイズが大きい機器をドライバの周囲に設置しないでください。
- ドライバの周囲温度が使用周囲温度の上限を超えるときは、使用 周囲温度内になるように、換気条件を見直すかファンで強制冷却し てください。

■ ねじによる取り付け

ドライバを垂直(縦位置)に設置し、2本のねじ(M4:付属していません) でドライバの取付穴を固定してください。

■ DINレールへの取り付け

ドライバを DINレールに取り付けるときは DINレール取付プレート PADP03 (別売)を使用して、レール幅が 35 mm の DINレールに取り付けてください。

- 付属の取付ねじを使用して、DINレール取付プレートをドライバ背面に固定します。
 締付トルク:0.3 ~ 0.4 N·m
- 2. DINレバーを引き下げ、DINレール取付プレートのツメをDINレールにかけて、DINレバーがロックされるまで ドライバを押し込みます。
- 3. エンドプレート(付属していません)で、ドライバを固定します。

、 取付ねじ(付属)

• DINレール取付プレート用の取付穴を他の目的に使用しないでください。

• DINレール取付プレートは、必ず付属のねじで取り付けてください。ドライバ表面から3 mm以上内側 に入るねじを使用すると、ドライバが破損する原因になります。

DINレールからの取り外し

マイナスドライバで DINレバーを引き下げ、ドライバを下側から持ち上げて取り外してください。 DINレバーを引き下げるときは、10~20N程度の力で引いてください。 さい。力をかけすぎると DINレバーが破損するおそれがあります。

1.10 外部速度設定器(付属)の取り付け

可変抵抗器の端子とリード線のはんだ付け

リード線をはんだ付けしたあとは、必ず絶縁処理してください。(はんだ条件:235℃、5秒以下)

1.11 回生抵抗(別売)の取り付け

回生抵抗 **EPRC-400P**は、放熱板(350×350×3 mm、アルミ ニウム合金)と同程度の放熱能力を持つ場所に設置してくだ さい。

2本のねじ(M4:付属していません)で、熱伝導効果が高い 平滑な金属板に固定してください。

2 接続

ドライバとモーター、入出力信号、電源の接続方法、および接地方法について説明します。

2.1 接続例

電磁ブレーキ付モーターの接続例を示します。

- **重要** コネクタは確実に接続してください。コネクタの接続が不完全な場合、動作不良を起こしたり、モーターやドライバが 破損するおそれがあります。
 - DC24 V電源を接続するときは、ドライバの表示を確認し、極性を合わせてください。極性を間違えて接続すると、ド ライバが破損するおそれがあります。
 - モーターケーブルのコネクタを抜くときは、指でコネクタのラッチ部分を押しながら、引き抜いてください。
 - 電源を再投入したり、コネクタを抜き差しするときは、電源を切り、CHARGE LEDが消灯してから行なってください。
 残留電圧によって感電するおそれがあります。
 - ドライバの電源ケーブルは、他の電源ラインやモーターケーブルと同一の配管内に配線しないでください。ノイズによって誤動作するおそれがあります。
 - モーターを可動部分に取り付けるときは、耐屈曲性に優れた可動ケーブルを使用してください。詳細は148ページをご覧 ください。

2.2 電源の接続

電源ケーブルを主電源入力端子(TB1)に接続します。 電源ケーブルは付属していません。お客様でご用意ください。

電源入力	接続方法
単相 100-120 V	ライブ(相線)側を L端子、ニュートラル(中性線)側を N端子に接続します。
単相 200-240 V	ライブ(相線)側を L1 端子、ニュートラル(中性線)側を L2 端子に接続します。
三相 200-240 V	電源の R、S、T相を、それぞれ L1、L2、L3 端子に接続します。

電源接続端子、ケーブル

- 適用圧着端子:絶縁被覆付き丸形圧着端子
- 端子ねじサイズ:M3.5
- 締付トルク:1.0 N·m
- 適用リード線:AWG18 ~ 14(0.75 ~ 2.0 mm²)
- 導体材料:銅線だけを使用してください。

■ 配線用遮断器

ー次側の配線を保護するため、配線用遮断器をドライバの電源側の配線に必ず接続してください。 保護装置の定格電流:単相入力10A、三相入力5A 配線用遮断器:三菱電機株式会社NF30形

2.3 接地

モーターの保護接地端子の、ドライバの保護接地端子のを使って接地します。

重要 モーター、ドライバは必ず接地してください。感電・製品破損の原因になります。 接地しない場合、静電気によって製品が破損する原因になります。

■ モーター

モーターの保護接地端子④をモーターの近くに接地します。最短距離で配線してください。

接地用端子

- 適用圧着端子:絶縁被覆付き丸形圧着端子
- 端子ねじサイズ:M4
- 締付トルク:0.8 ~ 1.0 N·m
- 適用リード線:AWG18 ~ 14(0.75 ~ 2.0 mm²)

Ø4.1 mm以上

保護接地端子企

■ ドライバ

ドライバには保護接地端子④が2か所あります。どちらか片方を ドライバの近くに接地してください。どちらの保護接地端子④を 接地しても構いません。

接地しない端子はサービス端子です。モーターと接続して モーターを接地させるなど、必要に応じてお使いください。 接地線は溶接機や動力機器などと共用しないでください。

接地用端子

- 適用圧着端子:絶縁被覆付き丸形圧着端子
- 端子ねじサイズ:M4
- 締付トルク:1.2 N·m
- 適用リード線:AWG18 ~ 14(0.75 ~ 2.0 mm²)

■ 静電気についての注意事項

接地

静電気によって、ドライバが誤動作したり破損することがあります。 静電気による製品の破損を防ぐため、モーター、ドライバは必ず接地してください。

03.6 mm以上 要要 3.8 mm以上 2.2 3.8 mm以上 2.5 3.8 mm以上 2.5

2.4 モーターとドライバの接続

モーターケーブルのモーター動力用コネクタを CN2、モーター信号用コネクタを CN4 に接続します。 電磁ブレーキ付タイプは、電磁ブレーキ用コネクタを CN1 に接続してください。 モーターとドライバの間を延長するときは、付属または別売の接続ケーブルを使用してください。最長 20.4 mまで 延長できます。

*電磁ブレーキ付タイプのみ

■ 重要 ■ コネクタは確実に差し込んでください。コネクタの接続が不完全な場合、動作不良やモーター、ドライバ が破損する原因になります。

■ コネクタ接続時のご注意

重要 コネクタを挿抜するときは、必ずコネクタを持って行なってください。 ケーブルを持って行なうと接続不良の原因になります。

П

∞ コネクタを持つ位置

●コネクタを挿入するとき

コネクタ本体を持って、確実にまっすぐ挿入してください。 コネクタが傾いたまま挿入すると、端子が破損したり接続不良の原因になります。

●コネクタを抜くとき

コネクタのロック部分を解除しながら、まっすぐ抜いてください。 ケーブル(リード線)を持って抜くと、コネクタが破損する原因になります。

• モーター動力用コネクタのピンアサイン

ピン No.	線色	線 径	
1	青	AWG18	
2	-	-	2 5
3	_	ドレイン(AWG24 相当)	
4	紫		_
5	灰	AWGIO	ハウジング:5557-06R-210(molex)
6	_	_	— 姤 丁:55501(III0leX)

モーター信号用コネクタのピンアサイン

ピン No.	線 色	線 径	
1	—	—	
2	緑		
3	黄		
4	茶	AWG26	
5	赤		
6	橙		

ハウジング:43025-0600(molex) 端子:43030-0004(molex)

電磁ブレーキ用コネクタのピンアサイン

ピン No.	線色	線 径	
1	黒	AVA/C 24	
2	白	AVVG24	

12

ハウジング:5557-02R-210(molex) 端子:5556T(molex)

2.5 DC24 V電源の接続

DC24 V電源はドライバの制御回路用電源です。 DC24 V – 15% ~ +20%、1 A以上の電源を必ず CN5 に接続してください。

- BC24 V電源を接続するときは、ドライバの表示を確認し、極性を合わせてください。極性を間違えて 接続すると、ドライバが破損するおそれがあります。
 - DC24 V電源を再投入するときは、電源を切り、PWR/ALM LEDが消灯してから行なってください。

2.6 入力信号用電源の選択

入力信号用電源(内蔵または外部)を選択します。 ドライバは内蔵電源を搭載しています。リレーやスイッチ で制御するときは、機能設定スイッチ1(SW3)の No.3 を ONにして、内蔵電源を選択してください。 出荷時設定 OFF(外部電源を使用)

重要 ソースロジックでは、内蔵電源を使用できません。外部電圧選択スイッチを ONにしないでください。

2.7 入出力信号の接続

入力信号を CN5、アナログ入力信号と出力信号を CN6 に接続します。

- 適用リード線:AWG26 $\sim 20(0.14 \sim 0.5 \text{ mm}^2)$
- リード線の皮むき長さ:8 mm

2 設置と接続

■ CN5 ピンアサイン

ピンNo	名 称	内容*	
1	INO	入力端子 0[FWD]	
2	IN1	入力端子 1[REV]	
3	IN2	入力端子 2[STOP-MODE]	
4	IN3	入力端子 3[M0]	
5	IN4	入力端子 4[ALARM-RESET]	
6	IN5	入力端子 5[MB-FREE]	
7	IN6	入力端子 6[TH]	
8	IN-COM0	入力信号コモン	<u>q</u> mc ,
_	—	電源 GND/入力信号コモン(0 V)	
+	—	DC24 V電源	

* []内は出荷時に割り付けられている機能です。 OPX-2A、MEXE02、および RS-485 通信で変更できます。

— 1

:

- 8 - -+

■ CN6 ピンアサイン

ピンNo	名 称	内容*2	
1	VH		
2	VM	アナログ外部速度設定入力	₫ ЩႳ— 1
3	VL*1		
4	IN-COM1	入力信号コモン(0 V)	
5	OUT0+	出力端子 0(+) [SPEED-OUT]	
6	OUT0-	出力端子 0(一) [SPEED-OUT]	a 🛄 🔂 — 8
7	OUT1+	出力端子 1(+) [ALARM-OUT1]	
8	OUT1-	出力端子 1(一) [ALARM-OUT1]	

*1 VL入力は内部で IN-COM1 に接続しています。

*2 []内は出荷時に割り付けられている機能です。OPX-2A、MEXEO2、および RS-485 通信で変更できます。

■ 入力信号回路

ドライバの入力信号はフォトカプラ入力です。 CN5 外部電源を使用する場合:DC24 V-15~+20%、100 mA以上 ピンNo.

■ 出力信号回路

ドライバの出力信号はフォトカプラ・オープンコレクタ出力です。 出力回路の ON電圧は最大 1.6 Vです。出力信号回路を使って 各素子を駆動するときは、ON電圧を考慮してください。 DC4.5 ~ 30 V、40 mA以下(SPEED-OUT出力は 5 mA以上の 電流を流してください。)

 田力回路に流れる電流は、必ず 40 mA以下に抑えてください。この電流値を超える場合は、外部に 電流制限抵抗を接続してださい。電流制限抵抗を接続しないで使用した場合、ドライバが破損します。

 アラームの検出用としてリレー(誘導負荷)を接続するときは、

ダイオードを接続して、リレーに対するフライバック電圧の制御 対策を行なってください。またはフライホイールダイオードを内 蔵したリレーを使用してください。

■ クランプダイオードを内蔵したコントローラを接続する場合

クランプダイオードを内蔵したコントローラを接続した場合、ドラ 外部制御機器 イバの電源が投入された状態でコントローラの電源を切ると、 電流が回り込んでモーターが回転することがあります。また、ド ライバとコントローラの電流容量が異なるため、電源を同時に ON/OFFしてもモーターが回転することがあります。 電源を切るときはドライバからコントローラの順、電源を入れる ときはコントローラからドライバの順に行なってください。

■ 入出力信号回路との接続例

シンクロジック回路

重要 • 出力信号は DC30 V以下でお使いください。

• 出力信号の電流値は、必ず 40 mA以下に抑えてください。この電流値を超える場合は、外部に電流 制限抵抗 Roを接続してください。

• ソースロジック回路

重要

- 出力信号は DC30 V以下でお使いください。
- 出力信号の電流値は、必ず40mA以下に抑えてください。この電流値を超える場合は、外部に電流 制限抵抗Roを接続してください。

2.8 アナログ速度設定器の接続

外部速度設定器(付属)または外部直流電圧を接続すると、回転速度をアナログ設定できます。 設定方法は61ページをご覧ください。

• 外部速度設定器(付属)の場合

付属の信号線を使用して、CN6のピン No.1 ~3 に接続してください。信号線のシールド線は VL入力端子に接続し、他の端子と接触しないように処理してください。

外部直流電圧の場合

外部電圧には、一次側と二次側が強化絶縁された直流電圧 (DC0 ~ 10 V)を使用し、CN6 のピン No.2 と3 に接続してください。 VM入力とVL入力間の入力インピーダンスは約 30 k Ω です。 VL入力はドライバ内部で IN-COM1 に接続されています。

重要 外部直流電圧は 10 V以下にしてください。また、外部直流電圧を接続するときは極性を間違えないでく ださい。ドライバが破損するおそれがあります。

2.9 データ設定器の接続

OPX-2Aのケーブル、またはサポートソフト用通信ケーブルを CN3 に接続します。

ドライバのデータ設定器コネクタ(CN3)、入出力信号コネクタ(CN5/CN6)、および RS-485 通信コネクタ(CN7/CN8)は絶縁されていません。電源のプラス側を接地するときは、マイナ ス側を接地した機器(パソコンなど)を接続しないでください。これらの機器とドライバが短絡し て、破損するおそれがあります。

2.10 RS-485 通信ケーブルの接続

製品を RS-485 通信で制御するときに接続します。 RS-485 通信ケーブルを CN7 または CN8 に接続してください。 空いた方のコネクタで、別のドライバと接続できます。

ドライバ間接続用のケーブル(別売)を用意しています。148ページをご覧ください。また、市販のLANケーブル(ストレート結線)でもドライバ同士を接続できます。

8

^{*} DC24 V電源入力端子(CN5)の GNDと共通です。

CN7/CN8	のピンアサイン
---------	---------

ピン No.	信号名	内容	
1	N.C.	未使用	
2	GND	GND	
3	TR+	RS-485 通信用信号(+)	나
4	N.C.	土体田	
5	N.C.	不使用	Γ
6	TR-	RS-485 通信用信号(一)	
7	N.C.		
8	N.C.		
2.11 試運転

主電源とDC24 V電源を接続するだけで、データを設定しなくてもモーターを簡易的に動かして、接続の状態を確認できます。

- 1. 配線の終了後、主電源とDC24 V電源を投入します。
- 2. 試運転モードスイッチ(SW2-No.1)を ONにします。
- モーターが低速(100 r/min)で FWD方向へ回転する ことを確認します。
 モーターが回転しなかったり、動作に異常があるときは 電源を切ってから配線を確認してください。

(OPX-2A、MEXE02、RS-485 通信で回転方向を変更しているときは、その設定に従って回転します。)

4. 試運転モードスイッチを OFFにします。 モーターが停止します。

重要 試運転でモーターが回転しているときに、FWD入力または REV入力が ONになると、モーターが停止 します。(ワーニングやアラームは出力されません。)この状態を解除するには、試運転モードスイッチ、 FWD入力、および REV入力のすべてを OFFにしてください。すべてを OFFにしてからでないと、モーター を動かすことができません。

2.12 回生抵抗の接続

巻き下げ運転などの上下駆動や大慣性の急激な起動・停止が頻繁に繰り返されるときは、回生抵抗 EPRC-400P を使用してください。

回生抵抗は、放熱板(材質:アルミニウム合金、350×350×3 mm)と同程度の放熱能力を持つ場所に設置してください。

■ 接続方法

入出力端子への接続は、接続方法によって異なりま す。

接続方法は38~40ページをご覧ください。

回生抵抗は、主電源とDC24 V電源を投入する前に 接続してください。主電源とDC24 V電源の投入後 に接続しても、回生抵抗による制御は行なわれませ ん。

- 回生抵抗の太いリード線(AWG18:0.75 mm²)には
 回生電流が流れます。TB1のRG1、RG2端子
 に接続してください。適用圧着端子は電源を接続 するものと同じです。30ページをご覧ください。
- 回生抵抗の細いリード線(AWG22:0.3 mm²)は サーモスタット出力です。CN5とCN6に接続して ください。接続方法は32ページをご覧ください。

- 重要 回生抵抗の許容消費電力を超えたときは、サーモスタットがはたらいて、回生抵抗器過熱のアラームが発生します。回生抵抗器過熱のアラームが発生したときは、電源を切り、異常の内容を確認してください。
 - 入力信号用の電源に外部電源を使用する場合、ドライバの主電源を投入する前に外部電源を投入してください。

■ 回生抵抗の仕様

品名	EPRC-400P
連続回生電力	100 W
抵抗值	400 Ω
サーモスタット動作温度	動作:150 ± 7 ℃で開 復帰:145 ± 12 ℃で閉(ノーマルクローズ)
サーモスタット電気定格	AC120 V 4 A、DC30 V 4 A(最小電流 5 mA)

2.13 接続図(例)

各接続図(例)は、電磁ブレーキ付タイプの場合です。標準タイプは、電磁ブレーキの接続、MB-FREE入力の接続・入力はありません。

内蔵電源で使用する場合は、機能設定スイッチ1 (SW3)の No.3 を ONに切り替えてください。 出荷時は OFF(外部電源を使用)に設定されています。 外部電源を使用する場合は、出荷時設定のままで構い ません。

■ シンクロジック

内蔵電源を使用する場合

単相 100-120 V、外部速度設定器または外部直流電圧で速度を設定し、リレーやスイッチなどの有接点スイッチ でモーターを運転する接続例です。SPEED-OUT出力は、5 mA以上の電流を流してください。

重要 モーター、ドライバは必ず接地してください。感電・製品破損の原因になります。 接地しない場合、静電気によって製品が破損する原因になります。

• 外部電源を使用する場合

単相 100-120 V、外部速度設定器または外部直流電圧で速度を設定し、トランジスタによるシーケンス接続でモーターを運転する接続例です。SPEED-OUT出力は、5 mA以上の電流を流してください。

*1ドライバの主電源を投入する前に外部電源を投入してください。

重要 モーター、ドライバは必ず接地してください。感電・製品破損の原因になります。 接地しない場合、静電気によって製品が破損する原因になります。

■ ソースロジック

単相 100-120 V、外部速度設定器または外部直流電圧で速度を設定し、トランジスタによるシーケンス接続でモーターを運転する接続例です。SPEED-OUT出力は、5 mA以上の電流を流してください。

*1ドライバの主電源を投入する前に外部電源を投入してください。

重要 モーター、ドライバは必ず接地してください。感電・製品破損の原因になります。 接地しない場合、静電気によって製品が破損する原因になります。

3 入出力信号の説明

このマニュアルでは、I/O信号を次のように記載しています。

- ダイレクト I/O:入力信号コネクタ(CN5)および入出力信号コネクタ(CN6)からアクセスする I/O
- ネットワーク I/O:RS-485 通信でアクセスする I/O

紹介するパラメータは、OPX-2A、MEXEO2、および RS-485 通信のどれかで設定してください。

3.1 ダイレクト I/Oの割り付け

■ 入力端子への割り付け

パラメータで、下表の入力信号を CN5 の入力端子 IN0 ~ IN6 に割り付けることができます。 入力信号の詳細は 46 ページをご覧ください。

入力端子	<u>,</u>	初期値			入力端子	初期値
IN0		1:FWD			IN4	24: ALARM-RESET
IN1		2:REV			IN5	20:MB-FREE
IN2		19:STOP-M	ODE		IN6	22:TH
IN3		48 : M0				
 割付 No		信号名			楼	能
0			入力端子	ニを	使用しないとき(<u>…</u> こ設定します。
1		FWD	モーター	が	FWD方向へ回	<u></u> 転します。
2		REV	モーター	が	REV方向へ回車	云します。
19	S	TOP-MODE	瞬時停止	Lま	たは減速停止を	選択します。
20		MB-FREE	電磁ブレ		キを解放します。)
21	E	XT-ERROR			<u>+ , , , , + </u>	
22		TH	モーター	を	争止させます 。(ノーマルクロース)
24	AL	ARM-RESET	発生中の)ア	ラームをリセット	します。
27		OPX-2Aや MEXE02の機能制限を解除します。 HMI (ノーマルクローズ)		も制限を解除します。		
32		R0				
33		R1				
34		R2]			
35		R3	1			
36		R4]			
37		R5]			
38		R6				
39		R7	汎用信号	7		
40		R8	RS-485	通	信で制御すると	きに使用します。
41		R9				
42		R10				
43		R11				
44		R12				
45		R13				
46		R14				
47		R15				
48		MO				
49		M1	4 705	w/h	を使って、運転	データ No を選択L ます
50		M2		21		() クロロ.と述訳しみり。
51		M3				
54		TL	トルク制	限を	を無効にします。	(ノーマルクローズ)

関連するパラメータ

パラメータ名	説明	初期値
IN0 入力機能選択		1 : FWD
IN1 入力機能選択	入力信号を入力端子 INO ~ IN6 に割り付けます。 割付番号と対応する信号については、前ページの 表をご覧ください。	2:REV
IN2 入力機能選択		19:STOP-MODE
IN3 入力機能選択		48:M0
IN4 入力機能選択		24: ALARM-RESET
IN5 入力機能選択		20:MB-FREE
IN6 入力機能選択		22:TH

重要
 ・同じ入力信号を複数の入力端子に割り当てないでください。複数の入力端子に割り当てたときは、どれかの端子に入力があれば、機能が実行されます。

- ALARM-RESET入力は、ONから OFFになったときに実行されます。
- HMI入力とTL入力は、入力端子に割り当てられなかったときは常時 ONになります。また、複数の 端子(ダイレクト I/O、ネットワーク I/Oを含む)に割り当てたときは、すべてが ONにならないと機能し ません。

■ 入力信号の接点設定の切り替え

パラメータで、入力端子 IN0 ~ IN6の接点設定を切り替えることができます。

関連するパラメータ

パラメータ名	説 明	初期値
IN0 入力接点設定 ~ IN6 入力接点設定	入力端子 INO ~ IN6 の接点設定を切り替えます。 0:A接点(ノーマルオープン) 1:B接点(ノーマルクローズ)	0

■ 出力端子への割り付け

パラメータで、次の出力信号を CN6 の出力端子 OUT0、OUT1 に割り付けることができます。 出力信号の詳細は 48 ページをご覧ください。

出力端子	- 初期値		
OUT0	85:SPEED-OU	Т	
OUT1	65:ALARM-OU	[1	
割付 No.	信号名	機 能	
0	未使用	出力端子を使用しないときに設定します。	
1	FWD_R	FWD入力に対する応答を出力します。	
2	REV_R	REV入力に対する応答を出力します。	
19	STOP-MODE_R	STOP-MODE入力に対する応答を出力します。	
20	MB-FREE_R	MB-FREE入力に対する応答を出力します。	
27	HMI_R	HMI入力に対する応答を出力します。	
32	R0		
33	R1		
34	R2		
35	R3		
36	R4		
37	R5		
38	R6		
39	R7		
40	R8		
41	R9		
42	R10		
43	R11		
44	R12		
45	R13		
46	R14		
47	R15		
48	M0_R		
49	M1_R	- M0 ~ M3 λ カに対する広答を出力」ます	
50	M2_R		
51	M3_R		
54	TL_R	TL入力に対する応答を出力します。	
65	ALARM_OUT1	アラーム発生時に出力されます。(ノーマルクローズ)	
66	WNG	ワーニング発生時に出力されます。	
68	MOVE	モーター運転中に出力します。	
71	TLC	モーターのトルクがトルク制限値に到達すると出力されます。	
77	VA	モーターの速度が設定した速度に到達すると出力されます。	
80	S-BSY	ドライバが内部処理状態のときに出力されます。	
81	ALARM-OUT2	過負荷ワーニングレベルを超えると出力されます。 過負荷アラームが発生すると出力されます。 (ノーマルクローズ)	
82	MPS	主電源の投入状態を出力します。	
84			
	DIR	モーター軸の回転方向を出力します。	

関連するパラメータ

パラメータ名	説 明	初期値
OUT0 出力機能選択	出力信号を出力端子 OUT0 と OUT1 に割り付けます。	85: SPEED-OUT
OUT1 出力機能選択	割付番号と対応する信号については、上表をご覧ください。	65: ALARM-OUT1

3.2 ネットワーク I/Oの割り付け

I/O機能をRS-485 通信に割り付けます。

■ 入力信号の割り付け

パラメータで、次の入力信号をネットワーク I/Oの NET-IN0 ~ NET-IN15 に割り付けることができます。 NET-IN0 ~ NET-IN15 の配置については、各プロトコルを参照してください。

割付 No.	信号名	機能	設定範囲
0	未使用	入力端子を使用しないときに設定します。	-
1	FWD	モーターが FWD方向へ回転します。	0:停止
2	REV	モーターが REV方向へ回転します。	1:運転
19	STOP-MODE	瞬時停止または減速停止を選択します。	0:瞬時停止 1:減速停止
20	MB-FREE	電磁ブレーキを解放します。	0:電磁ブレーキ保持 1:電磁ブレーキ解放
27	НМІ	OPX-2Aや MEXE02の機能制限を解除します。 (ノーマルクローズ)	0:機能を制限 1:制限を解除
32	R0		
33	R1]	
34	R2		
35	R3]	0:OFF 1:ON
36	R4]	
37	R5		
38	R6		
39	R7] 汎用信号	
40	R8	RS-485 通信で制御するときに使用します。	
41	R9]	
42	R10		
43	R11		
44	R12		
45	R13		
46	R14]	
47	R15		
48	MO		
49	M1		
50	M2	4 うのこうにを使うし、理転ナーダ NO.を迭折しまり。 	0 · · · · · · · · · · · · · · · · · · ·
51	M3		
54	TL	トルク制限を無効にします。(ノーマルクローズ)	0:トルク制限無効 1:トルク制限有効

関連するパラメータ

パラメータ名	説 明	初期値
NET-IN0 入力機能選択		48:M0
NET-IN1 入力機能選択		49:M1
NET-IN2 入力機能選択		50:M2
NET-IN3 入力機能選択		1:FWD
NET-IN4 入力機能選択		2:REV
NET-IN5 入力機能選択		19:STOP-MODE
NET-IN6 入力機能選択		20:MB-FREE
NET-IN7 入力機能選択	入力信号を NET-INO ~ NET-IN15 に割り付 はます、割け番号と対応する信号についてけ	
NET-IN8 入力機能選択	1)より。割り留ちと対応りる信ちについては、 上表をご覧ください。	0:未使用
NET-IN9 入力機能選択		
NET-IN10 入力機能選択		
NET-IN11 入力機能選択		
NET-IN12 入力機能選択		
NET-IN13 入力機能選択		
NET-IN14 入力機能選択		
NET-IN15 入力機能選択		

- **重要** 同じ入力信号を複数の入力端子に割り当てないでください。複数の入力端子に割り当てたときは、どれかの端子に入力があれば、機能が実行されます。
 - HMI入力とTL入力は、入力端子に割り当てられなかったときは常時 ONになります。また、複数の 端子(ダイレクト I/O、ネットワーク I/Oを含む)に割り当てたときは、すべてが ONにならないと機能し ません。

■ 出力信号の割り付け

パラメータで、次の出力信号をネットワーク I/Oの NET-OUT0 ~ NET-OUT15 に割り付けることができます。 NET-OUT0 ~ NET-OUT15 の配置については、各プロトコルを参照してください。

割付 No.	信号名	機能	読み出し内容	
0	未使用	出力端子を使用しないときに設定します。		
1	FWD_R	FWD入力に対する応答を出力します。	-	
2	REV_R	REV入力に対する応答を出力します。		
19	STOP-MODE_R	STOP-MODE入力に対する応答を出力します。		
20	MB-FREE_R	MB-FREE入力に対する応答を出力します。		
27	HMI_R	HMI入力に対する応答を出力します。		
32	R0			
33	R1			
34	R2			
35	R3			
36	R4			
37	R5			
38	R6			
39	R7			
40	R8			
41	R9			
42	R10			
43	R11			
44	R12			
45	R13			
46	R14			
47	R15			
48	M0_R			
49	M1_R			
50	M2_R	100~103 人力に対する心合を出力します。		
51	M3_R			
54	TL_R	TL入力に対する応答を出力します。		
65	ALARM_OUT1	アラーム発生時に出力されます。(ノーマルクローズ)	0:アラームなし 1:アラーム発生中	
66	WNG	ワーニング発生時に出力されます。	0:ワーニングなし 1:ワーニング発生中	
68	MOVE	モーター運転中に出力されます。	0:モーター停止 1:モーター動作中	
71	TLC	モータートルクがトルク制限値に到達したときに出力されます。	0:トルク制限なし 1:トルク制限中	
77	VA	モーター速度が設定した速度に到達したときに出力されます。	0:速度未到達 1:速度到達	
80	S-BSY	ドライバが内部処理状態のときに出力されます。	0:OFF 1:ON	
81	ALARM-OUT2	過負荷ワーニングレベルを超えると出力されます。 過負荷アラームが発生すると出力されます。 (ノーマルクローズ)	0:正常 1:過負荷中	
82	MPS	主電源の投入状態を出力します。	0:主電源 OFF 1:主電源 ON	
84	DIR	モーター出力軸の回転方向を出力します。	0:REV方向 1:FWD方向	

関連するパラメータ

パラメータ名	説 明	初期値
NET-OUT0 出力機能選択		48:M0_R
NET-OUT1 出力機能選択		49:M1_R
NET-OUT2 出力機能選択		50:M2_R
NET-OUT3 出力機能選択		1:FWD_R
NET-OUT4 出力機能選択		2:REV_R
NET-OUT5 出力機能選択		19:STOP-MODE_R
NET-OUT6 出力機能選択		66:WNG
NET-OUT7 出力機能選択	出力信号を NET-OUT0 ~ NET-OUT15 に割 り付けます。割付番号と対応する信号につい ては、前ページの表をご覧ください。	65:ALARM-OUT1
NET-OUT8 出力機能選択		80:S-BSY
NET-OUT9 出力機能選択		
NET-OUT10 出力機能選択		0:未使用
NET-OUT11 出力機能選択		
NET-OUT12 出力機能選択		81:ALARM-OUT2
NET-OUT13 出力機能選択		68:MOVE
NET-OUT14 出力機能選択		77 : VA
NET-OUT15 出力機能選択		71:TLC

3.3 入力信号

信号の状態は信号の電圧レベルではなく、内部フォトカプラの「ON:通電」「OFF:非通電」を表わしています。

■ FWD入力・REV入力

FWD入力をONにすると、モーターが時計方向へ回転します。OFFにすると停止します。 REV入力をONにすると、モーターが反時計方向へ回転します。OFFにすると停止します。 FWD入力とREV入力の両方がONになると、モーターは瞬時停止します。

■ STOP-MODE入力

FWD入力またはREV入力をOFFにしたときのモーターの停止方法を選択します。 STOP-MODE入力がONのときは減速停止します。OFFのときは瞬時停止します。

■ MB-FREE入力

電磁ブレーキ付タイプの場合に使用する信号です。モーターが停止したときの電磁ブレーキの動作を選択します。 MB-FREE入力が ONのときは、電磁ブレーキを解放します。 OFFのときは電磁ブレーキが作動して、シャフトを保持します。

重要 アラームが発生しているときは、MB-FREE入力を受け付けません。

■ EXT-ERROR入力

EXT-ERROR入力はノーマルクローズです。 外部で検出される異常信号を接続してください。異常信号が入力されるとEXT-ERROR入力がOFFになり、モー ターを停止させます。 モーターを運転するときは EXT-ERROR入力を ONにしてください。

■ TH入力

TH入力はノーマルクローズです。 回生抵抗を使用する際に、回生抵抗のサーモスタット出力を接続します。

■ ALARM-RESET入力

アラームが発生するとモーターが停止します。このとき、ALARM-RESET入力をONからOFFにすると、アラームが解除されます(OFFエッジで有効)。必ずアラームが発生した原因を取り除き、安全を確保してから、アラームを解除してください。

ALARM-RESET入力では解除できないアラームもあります。アラームの内容については133ページをご覧ください。

■ HMI入力

HMI入力はノーマルクローズです。

HMI入力を ONにすると、OPX-2Aや MEXE02の機能制限を解除します。OFFにすると、機能が制限されます。 制限される機能は次のとおりです。

- I/Oテスト
- テスト運転
- ティーチング
- パラメータの書き込み、ダウンロード、初期化

重要 HMI入力は、入力端子に割り当てられなかったときは常時 ONになります。また、複数の端子(ダイレクト I/O、ネットワーク I/Oを含む)に割り当てたときは、すべてが ONにならないと機能しません。

■ M0 ~ M3 入力

M0 ~ M3 入力の ON/OFFを組み合わせて、多段速運転に使用する運転データ No.を選択します。多段速運転 については 68 ページをご覧ください。

運転データ No.	M3	M2	M1	M0	速度の設定方法
0	OFF	OFF	OFF	OFF	アナログ設定 /デジタル設定
1	OFF	OFF	OFF	ON	
2	OFF	OFF	ON	OFF	
3	OFF	OFF	ON	ON	
4	OFF	ON	OFF	OFF	
5	OFF	ON	OFF	ON	
6	OFF	ON	ON	OFF	
7	OFF	ON	ON	ON	
8	ON	OFF	OFF	OFF	デジタル設定
9	ON	OFF	OFF	ON	
10	ON	OFF	ON	OFF	
11	ON	OFF	ON	ON	
12	ON	ON	OFF	OFF	
13	ON	ON	OFF	ON	
14	ON	ON	ON	OFF	
15	ON	ON	ON	ON	

■ TL入力

TL入力はノーマルクローズです。

TL入力をONにすると、トルク制限が有効になります。OFFにすると、無効になります。

重要 TL入力は、入力端子に割り当てられなかったときは常時 ONになります。また、複数の端子(ダイレクト I/O、ネットワーク I/Oを含む)に割り当てたときは、すべてが ONにならないと機能しません。

3.4 出力信号

信号の状態は信号の電圧レベルではなく、内部フォトカプラの「ON:通電」「OFF:非通電」を表わしています。

■ SPEED-OUT出力

モーターの運転に同期して、モーター出力軸が1回転するたびに30パルスが出力されます。出力されるパルス 信号のパルス幅は0.2 msです。SPEED-OUT出力を利用して、モーター出力軸の回転速度を算出できます。

■ ALARM-OUT1 出力

ALARM-OUT1 出力はノーマルクローズです。

ドライバの保護機能がはたらくと ALARM-OUT1 出力が OFFになり、ALM LEDが点滅します。 標準タイプのときは、モーターが自然停止します。電磁ブレーキ付タイプのときはモーターが瞬時停止し、電磁ブ レーキが作動してシャフトを保持します。

アラームを解除するときは、FWD入力とREV入力をOFFにして、アラームの原因を取り除いてから、

ALARM-RESET入力をワンショット入力(10 ms以上)してください。FWD入力や REV入力が ONになっているとき は、ALARM-RESET入力を受け付けません。

ALARM-RESET入力で解除できないときは、いったん電源を切り、30秒以上経過してから電源を再投入してください。

* 電磁ブレーキ付タイプの場合、アラームの発生と同時に電磁ブレーキが作動してシャフトを保持します。**OPX-2A、MEXEO2**、 RS-485 通信のどれかで、モーターの自然停止後に保持する設定にも変更できます。

■ MOVE出力

モーターの運転中(運転入力が ONの間)、MOVE出力が ONになります。

■ VA出力

モーターの回転速度が設定した速度に到達するとONになります。

■ ALARM-OUT2 出力

ALARM-OUT2出力はノーマルクローズです。 過負荷ワーニング機能を有効にした場合、過負荷ワーニング検出レベルを超えるとOFFになります。 過負荷ワーニング機能が無効でも、過負荷アラームが発生するとOFFになります。

■ WNG出力

ワーニングが発生すると、WNG出力がONになります。モーターの運転は継続します。 ワーニングの原因が取り除かれると、WNG出力は自動でOFFになります。

■ TLC出力

モーターのトルクがトルク制限値に到達するとONになります。

■ S-BSY出力

ドライバが内部処理状態のときに ONになります。ドライバは次の場合に内部処理状態になります。

• RS-485 通信でメンテナンスコマンドを実行中

■ MPS出力

ドライバの主電源が投入されているときに ONになります。

■ DIR出力

モーター出力軸の回転方向を出力します。ONのときは FWD方向、OFFのときは REV方向を表わします。

■ レスポンス出力

レスポンス出力は、対応する入力信号の ON/OFF状態を出力する信号です。 入力信号と出力信号の対応は下表のとおりです。

出力信号	入力信号	出力信号
FWD_R	MO	M0_R
REV_R	M1	M1_R
STOP-MODE_R	M2	M2_R
MB-FREE_R	M3	M3_R
HMI_R	TL	TL_R
	出力信号 FWD_R REV_R STOP-MODE_R MB-FREE_R HMI_R	出力信号 入力信号 FWD_R M0 REV_R M1 STOP-MODE_R M2 MB-FREE_R M3 HMI_R TL

3.5 汎用信号(R0~R15)

R0~R15は、RS-485 通信で制御できる汎用信号です。

R0~R15を使用すると、ドライバを通して、マスタ機器から外部機器の入出力信号を制御できます。ドライバの ダイレクト I/Oを I/Oユニットのように使用できます。 以下に、汎用信号の設定例を示します。

• マスタ機器から外部機器に出力する場合

汎用信号 R0を OUT0 出力と NET-IN0 に割り付けます。 NET-IN0を1にすると OUT0 出力が ONになり、0にすると OUT0 出力が OFFになります。

• 外部機器の出力をマスタ機器に入力する場合

汎用信号 R1 を IN6 入力と NET-OUT15 に割り付けます。

外部機器から IN6 入力を ONにすると NET-OUT15 が 1 になり、IN6 入力を OFFにすると NET-OUT15 が 0 にな ります。IN6 入力の接点は、「IN6 接点設定」パラメータで設定できます。

2 設置と接続

3 I/O制御

アナログ設定で回転速度を設定し、I/Oで運転を制御する場合について説明しています。OPX-2Aまたは MEXE02 で運転データやパラメータを設定することもできます。

もくじ

1	ガイ	ダンス	52
2	運転	データ、パラメータ	54
	2.1	運転データ	
	2.2	パラメータ	
		■ パラメーター覧	
		■ 機能設定パラメータ	
		■ I/O機能パラメータ	
		■ I/O機能[RS-485]パラメータ	
		■ アナログ調整パラメータ	
		■ アラーム・ワーニングパラメータ	
		■ テスト運転・表示パラメータ	
		■ 動作設定パラメータ	
		■ 通信パラメータ	60
3	I/O制	御による運転	61
	3.1	運転に必要なデータ	61
	3.2	回転速度の設定	61
		■ アナログ設定	61
		■ デジタル設定	63

3.3	加速時間、減速時間の設定	63
	■ 回転速度をアナログ設定する場合	63
	■ 回転速度をデジタル設定する場合	63
3.4	トルク制限の設定	64
3.5	運転·停止方法	
	■ 運 転	
	■ 回転方向	
3.6	運転パターン例	
3.7	並列運転	
	■ 外部速度設定器を使用する場合	
	■ 外部直流電圧を使用する場合	
	■ 速度差を調整する方法	67
3.8	多段速運転	

1 ガイダンス

はじめてお使いになるときはここをご覧になり、運転方法のながれについてご理解ください。

重要 モーターを動かすときは周囲の状況を確認し、安全を確保してから運転してください。

モーターを運転します STEP3 **OPX-2A**またはMEXE02で 3. モーターが問題なく回る 運転データやパラメータを 設定することもできます ことを確認します。 OPX-2A MEXE02 888888 または ۲ \Box _ e 畿 θ 8000 1. FWD入力をONにします。 $\overline{\bigcirc}$ 5 プログラマブル 予 コントローラ DC24 V \oplus + \oplus 2. 外部速度設定器を右に回して \bigcirc \bigcirc 回転速度を設定します。 外部速度設定器

STEP4 うまく動かせましたか?

いかがでしたか。うまく運転できたでしょうか。 モーターが動かないときは、次の点を確認してください。

- アラームが発生していませんか?
- 電源やモーターは確実に接続されていますか?
- 外部速度設定器は確実に接続されていますか?

詳細な設定や機能については、次ページ以降をご覧ください。

2 運転データ、パラメータ

モーターの運転に必要なパラメータには、次の2種類があります。

- 運転データ
- ユーザーパラメータ

パラメータは RAMまたは NVメモリに保存されます。RAMのパラメータは DC24 V電源を遮断すると消去されますが、NVメモリのパラメータは DC24 V電源を遮断しても保存されています。

ドライバに DC24 V電源を投入すると、NVメモリのパラメータが RAMに転送され、RAM上でパラメータの再計算 やセットアップが行なわれます。

RS-485通信またはFAネットワークでパラメータを設定したときは、RAMに保存されます。RAMに保存されたパラメー タを NVメモリに保存するには、メンテナンスコマンドの「NVメモリー括書き込み」を行なってください。 MEXEO2で設定したパラメータは、「データの書き込み」を行なうと NVメモリに保存されます。

パラメータを変更したときに、変更した値が反映されるタイミングはパラメータによって異なり、次の4種類があります。

反映タイミング		内容
А	即時	パラメータを書き込むと、すぐに再計算とセットアップが行なわれます。
В	運転停止後	運転を停止すると、再計算とセットアップが行なわれます。
С	Configurationの実行後 または電源の再投入後	Configurationの実行後または DC24 V電源の再投入後に再計算とセットアップ が行なわれます。
D	電源の再投入後	DC24 V電源の再投入後に再計算とセットアップが行なわれます。

■要 • RS-485 通信でパラメータを書き込んだときは、RAM領域に書き込まれます。電源の再投入後に 有効になるパラメータを変更したときは、電源を切る前に必ず NVメモリへ保存してください。

• NVメモリへの書き込み可能回数は、約10万回です。

2.1 運転データ

モーターを運転する際に必要なデータは次のとおりです。この製品では合計 16 個の運転データ(No.0 ~ No.15) を設定できます。設定方法には次の2種類があります。

- •回転速度のアナログ設定:外部設定器または外部直流電圧で設定する方法です。
- •回転速度のデジタル設定: OPX-2A、MEXEO2、および RS-485 通信のどれかで設定する方法です。

項目	内容	設定範囲	初期値	反映 *1
回転速度 No.0 ~ 回転速度 No.15	モーターの回転速度を設定します。	アナログ設定 : 100 ~ 4000 r/min デジタル設定 : 80 ~ 4000 r/min	0	
加速時間 No.0 ~ 加速時間 No.15	回転速度に達するまでの時間を設定しま す。*2	0.2 ~ 15 c	0.5	A
減速時間 No.0 ~ 減速時間 No.15	回転速度から停止するまでの時間を設定 します。*3	0.2 ** 13 5		
トルク制限 No.0 ~ トルク制限 No.15	モーターの出力トルクを制限します。定格 トルクを100%として、最大トルクを設定し ます。	0 ~ 200%	200	

*1 変更したデータが反映されるタイミングを表わします。(A:即時反映)

*2 回転速度をデジタル設定する場合の加速時間は、設定した回転速度に達するまでの時間になります。

回転速度をアナログ設定する場合の加速時間は、定格回転速度(3000 r/min)に達するまでの時間になります。

*3 回転速度をデジタル設定する場合の減速時間は、設定した回転速度から停止するまでの時間になります。

回転速度をアナログ設定する場合の減速時間は、定格回転速度(3000 r/min)から停止するまでの時間になります。

2.2 パラメータ

■ パラメーター覧

	● 減速比	 コンベヤ減速比の桁指定
機能設定パラメータ	 減速比の桁指定 	●コンベヤ増速比
(56 ページ)	●増速比	●モーター回転方向選択
	●コンベヤ減速比	●回転速度到達幅
	• IN0 ~ IN6 入力機能選択	
I/O機能ハフメータ (57 ページ)	● IN0 ~ IN6 入力接点設定	
	●OUT0、OUT1 出力機能選択	
I/O機能[RS-485]パラメータ	●NET-IN0 ~ NET-IN15 入力機能選択	
(58 ページ)	●NET-OUT0 ~ NET-OUT15 出力機能選択	
	 アナログ速度指令ゲイン 	 アナログトルク制限ゲイン
アナロク調整ハフメータ (59ページ)	 アナログ速度指令オフセット 	●アナログトルク制限オフセット
	 アナログ回転速度最大値 	 アナログトルク制限最大値
アラーム・ワーニングパラメータ	● 過負荷ワーニング機能	
(59 ページ)	● 過負荷ワーニングレベル	
テスト運転・表示パラメータ	●JOG運転速度	 データ設定器速度表示
(59 ページ)	●JOG運転トルク	●テータ設定器編集
	●運転モード選択	•初期時回生サーマル入力検出
朝作設定ハフメータ (59ページ)	 アラーム時電磁ブレーキ動作 	●データ設定器初期表示
	● 初期時運転禁止アラーム機能	•アナログ入力信号選択
	●通信タイムアウト	 ● 通信ストップビット
通信ハフメータ (60ページ)	●通信異常アラーム	●送信待ち時間
	●通信パリティ	

名 称	内容	設定範囲	初期値	反映 *
減速比	ギヤヘッドの減速比を設定すると、ギヤ	100 ~ 9999	100	А
減速比の桁指定	ヘッド出力軸の回転速度として表示できます。「減速比の桁指定」パラメータでは、 減速比の設定値に付ける小数点の位置を 設定します。	0:1 桁 1:2 桁 2:3 桁	2	
増速比	モーター出力軸の回転速度に対する増速 比を設定します。増速比を1に設定すると、 減速比が有効になります。増速比を1以 外に設定すると、増速比が有効になりま す。	1~5	1	
コンベヤ減速比	コンベヤ減速比を設定すると、コンベヤ搬	100 ~ 9999	100	
コンベヤ減速比の桁指定	送速度として表示できます。「コンベヤ減 速比の桁指定」パラメータでは、減速比の 設定値に付ける小数点の位置を設定しま す。	0:1 桁 1:2 桁 2:3 桁	2	
コンベヤ増速比	モーター出力軸の回転速度に対するコン ベヤ増速比を設定します。	1 ~ 5	1	
モーター回転方向選択	FWD入力が ONになったときのモーター回 転方向を設定します。	0: +側 =CCW 1: +側 =CW	1	С
回転速度到達幅	モーターの回転速度が設定値に達したと 判断する速度幅を設定します。	0 ~ 400 r/min	200	А

■ 機能設定パラメータ

* データが反映されるタイミングを表わします。(A:即時反映、C:Configurationの実行後または電源の再投入後に反映)

• 減速比の設定方法

「減速比」パラメータと「減速比の桁指定」パラメータの組み合わせで設定します。減速比と小数点位置の関係は、 下表のようになります。

実際の減速比	「減速比」パラメータ	「減速比の桁指定」パラメータ
1.00 ~ 9.99		2
10.0 ~ 99.9 100 ~ 999		1
100 ~ 999		0
10.00 ~ 99.99		2
100.0 ~ 999.9	1000 ~ 9999	1
1000 ~ 9999		0

コンベヤ搬送速度を設定する場合

コンベヤ搬送速度で表示させるときは、次の式でコンベヤ減速比を算出し、設定してください。

コンベヤ減速比 =
$$\frac{1}{\text{E}-9-1[0]$$
転での送り量 = $\frac{\text{ギャヘッド減速比}}{\text{プーリー直径[m]} × \pi}$ コンベヤ搬送速度
フーリー直径

算出されたコンベヤ減速比を使うと、コンベヤ搬送速度は次のように換算されます。

例:プーリー径 0.1 m、ギヤヘッド減速比 20 の場合

コンベヤ減速比 =
$$\frac{$$
ギヤヘッド減速比} \mathcal{T} = $\frac{20}{0.1[m] \times \pi}$ = 63.7

換算式から、この例ではコンベヤ減速比が 63.7 になります。これは、「コンベヤ減速比」パラメータが 637、「コン ベヤ減速比の桁指定」パラメータが 1 ということです。 減速比が 63.7 で、モーターの回転速度が 1300 r/minの場合、コンベヤ搬送速度は

コンベヤ搬送速度[m/min] = <u>1300</u> 63.7 ≒20.4

と換算されます。

3 I/O 制御

■ I/O機能パラメータ

名称	内容	設定範囲	初期値	反映 *	
IN0 入力機能選択			1:FWD		
IN1 入力機能選択			2:REV		
IN2 入力機能選択			19:STOP-MODE		
IN3 入力機能選択	人力信号を人力端子 INO ~ IN6 に割り付けます	下表をご覧ください。	48:M0	В	
IN4 入力機能選択			24:ALARM-RESET	1	
IN5 入力機能選択			20:MB-FREE		
IN6 入力機能選択			22:TH		
IN0 入力接点設定				с	
IN1 入力接点設定		0:A接点 (ノーマルオープン) 1:B接点 (ノーマルクローズ)	0		
IN2 入力接点設定					
IN3 入力接点設定	人刀端子 INU ~ IN6 の接点 設定を切り基えます				
IN4 入力接点設定					
IN5 入力接点設定					
IN6 入力接点設定					
OUT0 出力機能選択	出力信号を出力端子 OUT0、	下またご覧ノださい	85:SPEED-OUT	— A	
OUT1 出力機能選択	OUT1 に割り付けます。	「衣をに見いたらい。	65: ALARM-OUT1		

* データが反映されるタイミングを表わします。

(A:即時反映、B:運転停止後に反映、C:Configurationの実行後または電源の再投入後に反映)

• IN入力機能選択の設定内容

0:未使用	22:TH	35:R3	41:R9	47:R15
1:FWD	24: ALARM-RESET	36:R4	42:R10	48:M0
2:REV	27 : HMI	37:R5	43:R11	49:M1
19:STOP-MODE	32:R0	38:R6	44:R12	50:M2
20:MB-FREE	33:R1	39:R7	45:R13	51 : M3
21:EXT-ERROR	34:R2	40:R8	46:R14	54:TL

• OUT出力機能選択の設定内容

0:未使用	34:R2	42:R10	50:M2_R	80:S-BSY
1:FWD_R	35:R3	43:R11	51:M3_R	81: ALARM-OUT2
2:REV_R	36:R4	44:R12	54:TL_R	82:MPS
19:STOP-MODE_R	37:R5	45:R13	65:ALARM_OUT1	84:DIR
20:MB-FREE_R	38:R6	46:R14	66:WNG	85: SPEED-OUT
27 : HMI_R	39:R7	47:R15	68:MOVE	
32:R0	40:R8	48:M0_R	71:TLC	
33:R1	41:R9	49:M1_R	77 : VA	

■ I/O機能[RS-485]パラメータ

名 称	内容	設定範囲	初期値	反映 *
NET-IN0 入力機能選択			48:M0	
NET-IN1 入力機能選択]		49:M1	
NET-IN2 入力機能選択]		50:M2	
NET-IN3 入力機能選択			1:FWD	
NET-IN4 入力機能選択]		2:REV	
NET-IN5 入力機能選択			19:STOP-MODE	
NET-IN6 入力機能選択			20:MB-FREE	
NET-IN7 入力機能選択	人力信号を NET-IN0 ~ NET-IN15 に割り付けま	「下志たご覧ください」		
NET-IN8 入力機能選択	す。			
NET-IN9 入力機能選択				
NET-IN10 入力機能選択				
NET-IN11 入力機能選択			0:未使用	
NET-IN12 入力機能選択				
NET-IN13 入力機能選択				
NET-IN14 入力機能選択				
NET-IN15 入力機能選択				C
NET-OUT0 出力機能選択			48:M0_R	C
NET-OUT1 出力機能選択			49:M1_R	
NET-OUT2 出力機能選択			50:M2_R	
NET-OUT3 出力機能選択			1:FWD_R	
NET-OUT4 出力機能選択			2:REV_R	
NET-OUT5 出力機能選択			19:STOP-MODE_R	
NET-OUT6 出力機能選択			66:WNG	
NET-OUT7 出力機能選択	出力信号を NE I-OU I0 ~ NET-OUT15 に割り付	「下志たご覧ください」	65: ALARM-OUT1	
NET-OUT8 出力機能選択	けます。		80:S-BSY	
NET-OUT9 出力機能選択				
NET-OUT10 出力機能選択			0:未使用	
NET-OUT11 出力機能選択				
NET-OUT12 出力機能選択			81: ALARM-OUT2	
NET-OUT13 出力機能選択			68:MOVE	
NET-OUT14 出力機能選択			77 : VA	
NET-OUT15 出力機能選択			71:TLC	

* データが反映されるタイミングを表わします。(C:Configurationの実行後または電源の再投入後に反映)

• NET-IN入力機能選択の設定内容

0
2
-
3
Č.
L
1

• NET-OUT出力機能選択の設定内容

0:未使用	34:R2	42:R10	50:M2_R	80:S-BSY
1:FWD_R	35:R3	43:R11	51:M3_R	81: ALARM-OUT2
2:REV_R	36:R4	44:R12	54:TL_R	82:MPS
19:STOP-MODE_R	37:R5	45:R13	65:ALARM_OUT1	84:DIR
20:MB-FREE_R	38:R6	46:R14	66:WNG	
27:HMI_R	39:R7	47:R15	68:MOVE	
32:R0	40:R8	48:M0_R	71:TLC	
33:R1	41 : R9	49:M1_R	77 : VA	

3 I/O 制御

■ アナログ調整パラメータ

名 称	内容	設定範囲	初期値	反映 *
アナログ速度指令ゲイン	入力電圧1 Vあたりの速度指令を設 定します。	0 ~ 4000 r/min	800	
アナログ速度指令オフセット 速度指令入力のオフセットを設定しま - 2000 ~ 2000 r/min す。		0		
アナログトルク制限ゲイン	入力電圧1 Vあたりのトルク制限を設 定します。	0 ~ 200%	40	A
アナログトルク制限オフセット	トルク制限入力のオフセットを設定します。	- 50 ~ 50%	0	
アナログ回転速度最大値	回転速度の最大値を設定します。	0 ~ 4000 r/min	4000	
アナログトルク制限最大値	トルク制限の最大値を設定します。	0 ~ 200%	200	
وهد الجد الاست والالتستاذي و الأسا				

* データが反映されるタイミングを表わします。(A:即時反映)

■ アラーム・ワーニングパラメータ

名 称	内容	設定範囲	初期値	反映 *
過負荷ワーニング機能	過負荷ワーニング機能の有効/無効を切り替 えます。	0:無効 1:有効	0	^
過負荷ワーニングレベル	モーターの負荷トルクに対して、過負荷ワーニ ングを発生させるレベルを設定します。	50 ~ 100%	100	A

* データが反映されるタイミングを表わします。(A:即時反映)

■ テスト運転・表示パラメータ

名 称	内容	設定範囲	初期値	反映 *
JOG運転速度	JOG運転の回転速度を設定します。	0、または 80 ~ 1000 r/min	300	
JOG運転トルク	JOG運転における出カトルクを制限します。定格 トルクを 100%として、最大トルクを設定します。	0 ~ 200%	200	
データ設定器速度 表示	モニタモードで表示する回転速度の表示方法を設定します。0にすると、REV入力方向へ回転しているとさは「-」が表示されます。	0:符号あり 1:絶対値	0	A
データ設定器編集	OPX-2Aの操作をロックして、運転データ・パラメータの編集や消去を禁止します。	0:無効 1:有効	1	

* データが反映されるタイミングを表わします。(A:即時反映)

■ 動作設定パラメータ

名 称	内容	設定範囲	初期値	反映 *
運転モード選択	大慣性を駆動した際、すぐに過電圧ア ラームが発生しないよう、モーターの励 磁を遮断できます。ただしモーターが停 止するまでの時間が長くなります。	0:励磁を遮断する 1:励磁を遮断しない	1	
アラーム時 電磁ブレーキ動作	アラーム発生時の電磁ブレーキの動作 タイミングを設定します。0にすると、モー ターが自然停止した後に電磁ブレーキ が作動して位置を保持します。	0:自然停止後に保持 1:即時保持	1	
初期時運転禁止 アラーム機能	初期時運転禁止アラームの有効/無効 を切り替えます。		0	
初期時回生サーマル 入力検出	初期時回生サーマル入力検出の有効/ 無効を切り替えます。 1にすると、TH入力を割り付けていな い状態でDC24 V電源を投入した場合、 回生抵抗過熱アラームが発生します。	0:無効 1:有効	0	С
データ設定器初期 表示	ドライバに電源を投入したときに OPX-2Aに表示される初期画面を設定 します。	0:運転速度 1:コンベヤ搬送速度 2:負荷率 3:運転番号 4:モニタモードのトップ画面	0	
アナログ入力信号 選択	運転データの設定方法を変更します。 詳細は次ページをご覧ください。	0:アナログ無効 1:アナログ速度設定有効 2:アナログトルク制限有効	1	

* データが反映されるタイミングを表わします。(C:Configurationの実行後または電源の再投入後に反映)

重要 【電磁ブレーキ付モーターで上下駆動する場合は、「運転モード選択」パラメータを0にしないでください。

• アナログ入力信号選択パラメータ

「アナログ入力信号選択」パラメータで、運転データの設定方法を変更できます。ただし、下表に示した組み合わ せしか設定できません。

「アナログ入力信号 選択」パラメータ	運転データ No.	回転速度	加速時間 減速時間	トルク制限
0	0 ~ 15		デジタル設定	
1	0	アナログ設定	デジタル設定	
(初期値)	1 ~ 15		デジタル設定	
2	0~15	デジタ	 ル設定	アナログ設定

設定例

• すべての運転データをデジタルで設定したい場合:「アナログ入力信号選択」パラメータを0にする。

• 運転データ No.0 の回転速度だけをアナログで設定したい場合:「アナログ入力信号選択」パラメータを1にする。

■ 通信パラメータ

名 称	内容	設定範囲	初期値	反映 *
通信タイムアウト	RS-485 通信の通信タイムアウトの発生条 件を設定します。	0:監視なし 1 ~ 10000 ms	0	
通信異常アラーム	RS-485 通信異常アラームの発生条件を 設定します。設定した回数だけ RS-485 通信異常が発生すると、通信異常アラー ムになります。	1~10回	3	A
通信パリティ	RS-485 通信のパリティを設定します。	0:なし 1:偶数 2:奇数	1	
通信ストップビット	RS-485 通信のストップビットを設定しま す。	0:1ビット 1:2ビット	0	D
送信待ち時間	RS-485 通信の送信待ち時間を設定しま す。	0 ~ 10000(1=0.1 ms)	100	

* データが反映されるタイミングを表わします。(A:即時反映、D:電源の再投入後に反映)

I/O制御による運転 3

この製品で実行できる運転について説明します。

3.1 運転に必要なデータ

モーターを運転する際に必要なデータは次のとおりです。この製品では合計16個の運転データ(No.0~No.15) を設定できます。設定方法には次の2種類があります。

- 回転速度のアナログ設定:外部設定器または外部直流電圧で設定する方法です。
- 回転速度のデジタル設定: OPX-2A、MEXEO2、および RS-485 通信のどれかで設定する方法です。

データ名	内容	設定方法	設定範囲	初期値
同転油度	エーターの回転連度を設定します	アナログ設定	100 ~ 4000 r/min	0 r/min
凹虹述反	モーターの回転速度を設定します。	デジタル設定	80 ~ 4000 r/min	01/11111
加速時間	回転速度に達するまでの時間を設定します。	デジタル設定	0.2 ~ 15 c	050
減速時間	回転速度から停止するまでの時間を設定します。	アンダル設定	0.2 ~ 15 5	0.5 \$
トルク制限	モーターの出力トルクを制限します。定格トルクを 100%として、最大トルクを設定します。	デジタル設定 アナログ設定	0 ~ 200%	200%

回転速度やトルク制限をデジタル設定する場合は、次のパラメータを変更して、デジタル設定を有効にしてください。

パラメータ名	内容	設定範囲	初期値
アナログ入力信号選択	運転データの設定方法を変更します。 詳細は 60 ページをご覧ください。	0:アナログ無効 1:アナログ速度設定有効 2:アナログトルク制限有効	1

3.2 回転速度の設定

■ アナログ設定

付属の外部速度設定器、または外部直流電圧で設定します。

外部速度設定器による設定

付属の信号線を使用して、CN6のピン No.1~3に接続してくださ 回転速度特性(代表値) い。信号線のシールド線は VL入力端子に接続し、他の端子と接 触しないように処理してください。

外部速度設定器は時計方向へ回すと高速、反時計方向へ回すと 低速になります。

• 外部直流電圧による設定

外部電圧には、一次側と二次側が強化絶縁された直流電圧 (DC0~10V)を使用し、CN6のピンNo.2と3に接続してください。 VM入力とVL入力間の入力インピーダンスは約30kQです。 VL入力はドライバ内部でIN-COM1に接続されています。

CN	16		外部直流電源
d		2 VM入力	
d	Ĭ	┓3 VL入力	
d			
d			
Id	ΠÖ		

回転速度特性(代表值)

重要 外部直流電圧は、必ず DC10 V以下でお使いください。また、外部直流電圧を接続するときは、極性 を間違えないでください。ドライバが破損するおそれがあります。

外部直流電圧のゲイン調整とオフセット調整

外部直流電圧で回転速度を設定する際、ゲインやオフセッ **モ** トを調整すると、電圧値と回転速度の関係を変更することが できます。**OPX-2A、MEXE02**、または RS-485 通信のど れかでパラメータを変更してください。

重要

製品によって、電圧値に対する回転速度には ばらつきがあります。

パラメータ名	内容	設定範囲	初期値
アナログ速度指令ゲイン	入力電圧 1 Vあたりの速度指令を設定します。	0 a. 4000 r/min	800
アナログ回転速度最大値	回転速度の最大値を設定します。	0 ~ 4000 i/min	4000
アナログ速度指令オフセット	速度指令入力のオフセットを設定します。	− 2000 ~ 2000 r/min	0

設定例 1:

外部直流電圧 0 ~ 10 Vの間で、最高回転速度を 4000 r/minとし、直線的にモーターを動かす場合 アナログ速度指令ゲインを 400 に設定します。

設定例 2:

外部直流電圧 0 ~ 10 Vの間で、最高回転速度を 2000 r/minとし、直線的にモーターを動かす場合 アナログ回転速度最大値を 2000 に設定し、次にアナログ速度指令ゲインを 200 に設定します。

■ デジタル設定

- OPX-2Aによる設定: OPX-2Aの取扱説明書をご覧ください。
- MEXE02による設定: MEXE02の取扱説明書をご覧ください。
- RS-485 通信による設定: 「4 Modbus RTU制御 (RS-485 通信)」または「5 FAネットワーク制御」をご覧ください。

3.3 加速時間、減速時間の設定

回転速度の設定方法によって、加速時間・減速時間の考え方が異なります。

■ 回転速度をアナログ設定する場合

アナログ設定では、運転データ No.0 の加速時間と減速時間で動作します。 加速時間(t1)は、モーターが停止状態から定格回転速度(3000 r/min)に達するまでの時間です。 減速時間(t2)は、定格回転速度(3000 r/min)からモーターが停止するまでの時間です。

■ 回転速度をデジタル設定する場合

デジタル設定では、運転データ No.0 ~ No.15 のそれぞれに、任意の値を設定できます。 加速時間は、モーターが停止状態から設定した回転速度に達するまでの時間です。 減速時間は、設定した回転速度からモーターが停止するまでの時間です。

3.4 トルク制限の設定

モーターの出力トルクを抑えたいときなどに、トルク制限を設定してください。アナログ設定またはデジタル設定の どちらでも設定できます。ここでは、外部直流電圧によるアナログ設定について説明します。

■ 外部直流電圧による設定

外部電圧には、一次側と二次側が強化絶縁された直流電圧 (DC0~10V)を使用し、CN6のピンNo.2と3に接続してください。 VM入力とVL入力間の入力インピーダンスは約30kΩです。 VL入力はドライバ内部でIN-COM1に接続されています。

重要 外部直流電圧は、必ず DC10 V以下でお使いください。また、外部直流電圧を接続するときは、極性 を間違えないでください。ドライバが破損するおそれがあります。

外部直流電圧のゲイン調整とオフセット調整

アナログ設定でトルク制限値を設定する際、ゲインとオフセットを 調整して、電圧値とトルク制限値の関係を変えることができます。 OPX-2A、MEXEO2、または RS-485 通信のどれかでパラメータを 変更してください。

パラメータ名	内容	設定範囲	初期値
アナログトルク制限ゲイン	入力電圧 1 Vあたりのトルク制限を設定します。	$0 \sim 200\%$	40
アナログトルク制限最大値	トルク制限の最大値を設定します。	0~200%	200
アナログトルク制限オフセット	トルク制限入力のオフセットを設定します。	- 50 ~ 50%	0

設定例:

外部直流電圧 0 ~ 10 Vの間で、トルク制限値を 200%まで調整する場合

アナログトルク制限ゲインを20に設定します。

3.5 運転·停止方法

運転を制御する信号を入力して、モーターを運転・停止させます。

■ 運 転

FWD入力をONにすると、モーターが時計方向へ回転します。OFFにすると停止します。 REV入力をONにすると、モーターが反時計方向へ回転します。OFFにすると停止します。 FWD入力とREV入力の両方がONになると、モーターは瞬時停止します。

■ 停 止

STOP-MODE入力が ONのときは、減速停止します。STOP-MODE入力が OFFのときは、瞬時停止します。

■ 回転方向

モーター出力軸の回転方向は、モーター出力軸側から見たものです。

• コンビタイプ・平行軸ギヤヘッドの場合

```
ギヤヘッドの減速比によって、モーター出力軸の回転方向と、
ギヤヘッド出力軸の回転方向が異なります。
```

減速比	ギヤヘッド出力軸の回転方向	
5、10、15、20、200	モーター出力軸と同方向	
30、50、100	モーター出力軸と逆方向	

• コンビタイプ・中空軸フラットギヤヘッドの場合

減速比に関係なく、ギヤヘッド出力軸はモーター出力軸と逆方向に回転します。 ギヤヘッドを見る面によって、回転方向が異なります。

後面から見たとき

3.6 運転パターン例

図は、外部速度設定器を3000 r/min、運転データNo.1の回転速度を1000 r/minに設定し、速度を2段階に切り替える場合の例です。

- 重要 各信号の ON時間は、10 ms以上を確保してください。
 - FWD入力とREV入力を切り替えるときは、10 ms以上の間隔をあけてください。

3.7 並列運転

- 1つの外部速度設定器(外部直流電圧)で、複数のモーターを同じ速度で運転することができます。
- ここで紹介している接続例は、単相仕様のものです。三相仕様のときは、電源ラインを三相電源に接続してくだ さい。
- 図では、モーターや入出力信号の接続を省略しています。

■ 外部速度設定器を使用する場合

図のように接続してください。外部速度設定器を使用する場合は、20台以下で運転してください。

ドライバをn台接続するときの抵抗値(VRx)の算出方法

抵抗値(VRx) = $20/n(k\Omega)$ 、n/4(W)

例:ドライバを2台接続する場合

抵抗値(VRx) = 20/2(kΩ)、2/4(W) つまり、10 kΩ、1/2 Wの抵抗値になります。

■ 外部直流電圧を使用する場合

図のように接続してください。

ドライバをn台接続するときの外部直流電源の電流容量(I)の算出方法

電流容量(I) = $1 \times n(mA)$

例:ドライバを2台接続する場合

電流容量(I) = 1 × 2(mA) つまり2 mA以上の電流容量になります。

■ 速度差を調整する方法

1 台目のモーターと2 台目以降のモーターで速度差があるときは、パラメータを変更するか、抵抗を接続して調整 してください。

• パラメータによる調整

2 台目以降のドライバの「アナログ速度指令ゲイン」パラメータ、「アナログ速度指令オフセット」パラメータを変更し て調整します。ここでは、「アナログ速度指令オフセット」パラメータで調整する方法を説明します。詳細は 62 ページ をご覧ください。

- 1台目のモーターに対して2台目のモーターが遅い場合:
 「アナログ速度指令オフセット」パラメータで、+側のオフセット値を設定してください。
- 1台目のモーターに対して2台目のモーターが速い場合:
 「アナログ速度指令オフセット」パラメータで、一側のオフセット値を設定してください。

抵抗による調整

1 台目のドライバの VM端子に 470 Ω 、1/4 Wの抵抗を接続し、2 台目以降は 1 k Ω 、1/4 Wの可変抵抗器 VRnを接続して調整してください。

3.8 多段速運転

CN5 の入力端子に M0 ~ M3 入力を割り付けると、最大 16 個の運転データでモーターを変速運転できます。 ここでは、M0 ~ M2 入力を割り付けて、8 個の運転データで変速運転したときの例を示します。 M0 ~ M3 入力の組み合わせと運転データの選択方法については、47 ページをご覧ください。

4 Modbus RTU制御 (RS-485 通信)

RS-485 通信で上位システムから制御する方法について説明しています。RS-485 通信で使用するプロトコルは、 Modbus RTUプロトコルです。

もくじ

1	ガイ	ダンス70			
2	通信	仕様73			
3	スイ	ッチの設定74			
4	RS-485 通信の設定76				
5	通信方式と通信タイミング77				
	5.1	通信方式77			
	5.2	通信タイミング77			
6	メッ	セージ78			
	6.1	クエリ78			
	6.2	レスポンス80			
7	ファ	ンクションコード82			
	7.1	保持レジスタの読み出し82			
	7.2	保持レジスタへの書き込み			
	7.3	診 断			
	7.4	複数の保持レジスタへの書き込み			

8	レジ	スタアドレス一覧	
	8.1	動作コマンド	
	8.2	メンテナンスコマンド	
	8.3	モニタコマンド	
	8.4	パラメータ R/Wコマンド	
		■ 運転データ	
		■ ユーザーパラメータ	
9	グル	ープ送信	96
9 10	グル [.] 通信	ープ送信 異常の検出	96 98
9 10	グル [・] 通信: 10.1	ープ送信 異常の検出 通信エラー	96 98
9 10	グル ⁻ 通信: 10.1 10.2	ー プ送信 異常の検出 通信エラー アラームとワーニング	96 98 98 98
9 10 11	グル 通信 10.1 10.2 タイ	ープ送信 異常の検出 通信エラー アラームとワーニング ミングチャート	96 98 98 98 98

1 ガイダンス

Modbusプロトコルは、仕様が一般に公開されており、簡単であるため、産業分野で広く使用されています。 Modbusの通信方式はシングルマスタ/マルチスレーブ方式です。マスタだけがクエリ(問い合わせ)を発行できま す。スレーブはクエリで要求された処理を実行し、応答メッセージを返信します。 はじめてお使いになるときはここをご覧になり、運転方法のながれについてご理解ください。 ここで紹介する例は、上位システムで運転データやパラメータを設定して、モーターを運転する方法です。

重要 モーターを動かすときは周囲の状況を確認し、安全を確保してから運転してください。

STEP1 設置と接続を確認します

■ 運転データの設定法

出荷時は回転速度を外部速度設定器や外部直流電圧で設定できるアナログ設定が有効になっています。 RS-485 通信で上位システムから制御する際は、「アナログ入力信号選択」パラメータの設定を0(デジタル設定)に 変更してください。

パラメータの設定は下表をご覧ください。

「アナログ入力信号 選択」パラメータ	運転データ No.	回転速度	加速時間 減速時間	トルク制限	
0	0 ~ 15		デジタル設定		
1	0	アナログ設定	デジタ	デジタル設定	
(初期値)	1 ~ 15		デジタル設定		
2	0 ~ 15	デジタル設定		アナログ設定	

STEP3 電源を投入し、パラメータを確認します

ドライバと上位システムのパラメータが同じであることを確認します。 ドライバのパラメータを変更するときは、**OPX-2A**や **MEXE02**をお使いください。

STEP4 電源を再投入します

通信パラメータは、電源の再投入後に有効になります。通信パラメータを変更したときは、必ず電源を再投入して ください。

STEP5 モーターを運転します

3. モーターが問題なく回る

STEP6 うまく動かせましたか?

いかがでしたか。うまく運転できたでしょうか。モーターが動かないときは、次の点を確認してください。

- アラームが発生していませんか?
- 電源、モーター、RS-485 通信ケーブルは確実に接続されていますか?
- スレーブアドレス、通信速度、終端抵抗の設定は正しいですか?
- C-ERR LEDが点灯していませんか?
- C-DAT LEDは点灯または点滅していますか?

詳細な設定や機能については、次ページ以降をご覧ください。
2 通信仕様

電気的特性	EIA-485 準拠、ストレートケーブル ツイストペア線 (TIA/EIA-568B CAT5e以上を推奨)を使用し、総延長距離を 50 mまでとする。*
送受信方式	半二重通信
伝送速度	9600 bps、19200 bps、38400 bps、57600 bps、115,200 bpsから選択
物理層	調歩同期方式(データ:8ビット、ストップビット:1ビット/2ビット、パリティ:なし/偶数/奇数)
プロトコル	Modbus RTUモード
接続形態	上位システム1台に対して最大31台まで接続できます。

* 配線・配置によりモーターケーブルや電源ケーブルから発生するノイズが問題になる場合は、シールドするかフェライトコアを 使用してください。

4 Modbus RTU 制御 (RS-485 通信)

3 スイッチの設定

重要 スイッチを設定するときは、必ずドライバの電源を切ってください。電源が投入されている状態で設定しても、有効になりません。

■ プロトコル

機能設定スイッチ(SW5)の No.2 を ONにします。Modbusプロトコルが選択されます。 出荷時設定 OFF

■ 号機番号(スレーブアドレス)

号機設定スイッチ(SW1)と機能設定スイッチ2(SW5)の No.1を併用して、号機番号(スレーブアドレス)を設定します。号機番号(スレーブアドレス)は重複しないように設定してください。号機番号(スレーブアドレス)0 はブロードキャストで予約されているので、使用しないでください。 出荷時設定 SW1:0、SW5-No.1:OFF(号機番号0)

SW1	SW5-No.1	号機番号 (スレーブアドレス)	-	SW1	SW5-No.1	号機番号 (スレーブアドレス)
0		使用しません	-	0		16
1		1	-	1		17
2		2	-	2		18
3		3		3		19
4		4		4		20
5		5		5		21
6	OFF	6		6		22
7		7		7		23
8		8		8	ON	24
9		9		9		25
А		10		А		26
В		11		В		27
С		12		С		28
D		13		D		29
E		14	_	E]	30
F		15	-	F		31

■ 通信速度

通信速度設定スイッチ(SW4)で通信速度を設定します。 通信速度は、上位システムの通信速度と同じ値を設定してください。 出荷時設定 7

SW4	通信速度(bps)
0	9600
1	19200
2	38400
3	57600
4	115,200
5	使用しません
6	使用しません
7	ネットワークコンバータ
8 ~ F	使用しません

重要 5、6、および8~Fの目盛りは設定しないでください。

■ 終端抵抗

上位システムから一番離れた位置(終端)にあるドライバは、終端抵抗を設定します。 機能設定スイッチ1(SW3)のNo.4をONにして、RS-485 通信の終端抵抗(120Ω)を設定してください。 出荷時設定 OFF(終端抵抗なし)

* DC24 V電源入力端子(CN5)の GNDと共通です。

4 RS-485 通信の設定

事前に RS-485 通信に必要なパラメータを設定してください。

■ OPX-2Aまたは MEXE02で設定するパラメータ

次のパラメータは RS-485 通信では設定できません。 OPX-2Aまたは MEXE02で設定してください。

パラメータ名	設定範囲	初期値	内容
通信パリティ	0:なし 1:偶数 2:奇数	1	RS-485 通信のパリティを設定します。
通信ストップビット	0:1ビット 1:2ビット	0	RS-485 通信のストップビットを設定します。
送信待ち時間	0 ~ 10000(1=0.1 ms)	100	RS-485 通信の送信待ち時間を設定します。

■ RS-485 通信でも設定できるパラメータ

OPX-2A、MEXE02、および RS-485 通信のどれかで、次のパラメータを設定してください。

パラメータタ	設定範囲	如期值	内容
X	設足範囲	初知但	
通信タイムアウト	0:監視なし 0 ~ 10000 ms	0	RS-485 通信の通信タイムアウトの発生条件を設定します。
通信異常アラーム	1~10回	3	RS-485 通信異常アラームの発生条件を設定します。設定した回数だけ RS-485 通信異常が発生すると、通信異常アラームになります。

5 通信方式と通信タイミング

5.1 通信方式

Modbusプロトコルの通信方式は、シングルマスタ/マルチスレーブ方式です。 メッセージの送信方法には2種類あります。

• ユニキャストモード

• ブロードキャストモード

マスタでスレーブアドレス0を指定すると、すべてのスレーブに対して クエリを送信できます。スレーブは処理を実行しますが、レスポンスは 返信しません。

5.2 通信タイミング

			K Tb1					
			<	Tb3(ブロ	ードキャスト)	>		
	C3.5	ł	C3.5	Tb2	*	C3.5		
マスタ		クエリ]				クエリ	
スレーブ					レスポンス			

記号	名 称	内容
Tb1	通信タイムアウト	受信したクエリの間隔を監視します。 「通信タイムアウト」パラメータで設定した時間を過ぎてもクエリを受信できな かったときは、通信タイムアウトのアラームが発生します。
Tb2	送信待ち時間	マスタからクエリを受信した後、スレーブが通信ラインを送信状態に切り替えて、 レスポンスの返信を開始するまでの時間です。 「送信待ち時間」パラメータで設定します。実際の送信待ち時間は、サイレント インターバル(C3.5)+送信待ち時間(Tb2)になります。
Tb3	ブロードキャスト間隔	ブロードキャストの場合、次のクエリを送信するまでの時間です。 サイレントインターバル(C3.5)+5 ms以上の時間が必要です。
C3.5	サイレントインターバル	送信待ち時間として、必ず 3.5 文字以上の間隔を空けてください。 3.5 文字未満ではドライバが応答できません。送信待ち時間については下表 をご覧ください。

サイレントインターバルの送信待ち時間

通信速度(bps)	送信待ち時間
9600	5.5 ms以上
19200	
38400	2.5 molth
57600	3.5 115 以上
115,200	

メッセージ

6 メッセージ

メッセージのフォーマットを示します。

6.1 クエリ

クエリのメッセージ構成を示します。

スレーブアドレス	ファンクションコード	データ	エラーチェック
8 ビット	8ビット	N×8 ビット	16 ビット

■ スレーブアドレス

スレーブアドレスを指定します(ユニキャストモード)。 スレーブアドレスを0に設定すると、すべてのスレーブに対してクエリを送信できます(ブロードキャストモード)。

■ ファンクションコード

ドライバがサポートしているファンクションコードとメッセージ長は、次のとおりです。

	松台	メッセー	ブロ_ビナ レフト	
ファンクションコード	175C FIL	クエリ	レスポンス	
03h	保持レジスタからの読み出し	8	7 ~ 37	不可
06h	保持レジスタへの書き込み	8	8	可
08h	診断	8	8	不可
10h	複数の保持レジスタへの書き込み	11 ~ 41	8	可

■ データ

ファンクションコードに関連するデータを設定します。ファンクションコードによってデータ長は変化します。

■ エラーチェック

Modbus RTUモードのエラーチェックは CRC-16 方式を採用しています。スレーブは受信したメッセージの CRC-16 を計算して、メッセージに含まれるエラーチェックの値と比較します。CRC-16 の計算値とエラーチェックが一致していれば、正常なメッセージと判断します。

CRC-16 の計算方法

- 1. 初期値を FFFFhとし、FFFFhとスレーブアドレス(8ビット)の排他的論理和(XOR)を計算します。
- 2. 手順1の結果を1bit右へシフトします。このシフトはあふれたビットが「1」になるまで行ないます。
- 3. あふれたビットが「1」になったら、手順2の結果とA001hの XORを計算します。
- 4. シフトが8回になるまで、手順2と手順3を繰り返します。
- 5. 手順4の結果とファンクションコード(8ビット)の XORを計算します。 すべてのバイトに対して、手順2から4を繰り返します。 最後の結果が CRC-16の計算結果になります。

• CRC-16 の計算例

下表は、1 バイト目のスレーブアドレスを 02h、2 バイト目のファンクションコードを 07hとした場合の計算例です。 実際の CRC-16 の計算結果は、3 バイト目以降のデータも含めて計算されます。

内容	結果	桁あふれ
CRCレジスタ初期値 FFFFh	1111 1111 1111 1111	_
先頭バイト 02h	0000 0000 0000 0010	-
初期値 FFFFhと XOR	1111 1111 1111 1101	_
右シフト1回目	0111 1111 1111 1110	1
A001hとXOR	1010 0000 0000 0001 1101 1111 1111 1111	_
右シフト 2 回目	0110 1111 1111 1111	1
A001hとXOR	1010 0000 0000 0001 1100 1111 1111 1110	_
右シフト3回目	0110 0111 1111 1111	0
右シフト 4 回目	0011 0011 1111 1111	1
A001hとXOR	1010 0000 0000 0001 1001 0011 1111 1110	_
右シフト 5 回目	0100 1001 1111 1111	0
右シフト 6 回目	0010 0100 1111 1111	1
A001hとXOR	1010 0000 0000 0001 1000 0100 1111 1110	_
右シフト 7 回目	0100 0010 0111 1111	0
右シフト 8 回目	0010 0001 0011 1111	1
A001hと XOR	1010 0000 0000 0001 1000 0001 0011 1110	_
次のバイト 07hと XOR	0000 0000 0000 0111 1000 0001 0011 1001	-
右シフト 1 回目	0100 0000 1001 1100	1
A001hとXOR	1010 0000 0000 0001 1110 0000 1001 1101	_
右シフト 2 回目	0111 0000 0100 1110	1
A001hとXOR	1010 0000 0000 0001 1101 0000 0100 1111	_
右シフト3回目	0110 1000 0010 0111	1
A001hとXOR	1010 0000 0000 0001 1100 1000 0010 0110	-
右シフト 4 回目	0110 0100 0001 0011	0
右シフト 5 回目	0011 0010 0000 1001	1
A001hと XOR	1010 0000 0000 0001 1001 0010 0000 1000	_
右シフト 6 回目	0100 1001 0000 0100	0
右シフト 7 回目	0010 0100 1000 0010	0
右シフト 8 回目	0001 0010 0100 0001	0
CRC-16 の結果	0001 0010 0100 0001	_

6.2 レスポンス

スレーブから返信されるレスポンスには、正常応答、無応答、および例外応答の3種類があります。 レスポンスのメッセージ構成はクエリと同じです。

スレーブアドレス	ファンクションコード	データ	エラーチェック
8 ビット	8 ビット	N×8 ビット	16 ビット

■ 正常応答

マスタからクエリを受信すると、スレーブは要求された処理を実行し、レスポンスを返信します。

■ 無応答

マスタがクエリを送信しても、スレーブがレスポンスを返信しない場合があります。この状態を無応答といいます。 無応答になる原因を示します。

伝送異常の場合

スレーブは次の伝送異常を検出すると、クエリを破棄し、レスポンスを返信しません。

伝送異常の原因	内容
フレーミングエラー	ストップビット0が検出されました。
パリティエラー	設定したパリティとの不一致が検出されました。
CRC不一致	CRC-16 の計算値とエラーチェックが不一致でした。
メッセージ長不正	メッセージの長さが 256 バイトを超えました。

• 伝送異常ではない場合

伝送異常が検出されなくても、レスポンスを返信しない場合があります。

原 因	内容
ブロードキャスト	ブロードキャストで通信している場合、要求された処理は実行しますが、レスポンスは返信しません。
スレーブアドレス不一致	クエリのスレーブアドレスとドライバのスレーブアドレスが一致しませんでした。

■ 例外応答

スレーブがクエリで要求された処理を実行できないときに、例外応答を返信します。レスポンスには、処理できない原因を示す例外コードが付加されます。例外応答のメッセージ構成は次のとおりです。

スレーブアドレス	ファンクションコード	例外コード	エラーチェック
8 ビット	8 ビット	8 ビット	16 ビット

• ファンクションコード

例外応答のファンクションコードは、クエリのファンクションコードに 80hを加算した値になります。例)クエリ:03h → 例外応答:83h

例外応答の例

マスタ			クエリ	スレー	ブ	
スレーフ	ブアドレス	01h	<u> </u>	スレー	ブアドレス	01h
ファンク	ションコード	06h	レスポンス	ファンク	ションコード	86h
	レジスタアドレス(上位)	02h		データ	例外コード	04h
<u>-</u>	レジスタアドレス(下位)	40h		エラーき	チェック(下位)	02h
) —9	ライト値(上位)	FFh		エラーき	チェック(上位)	61h
	ライト値(下位)	FFh				
エラーラ	チェック(下位)	88h				
エラーラ	チェック(上位)	16h				

● 例外コード

処理できない原因を示します。

例外コード	通信エラーコード	原因	内容
01h	99b	不正ファンクション	ファンクションコードが不正のため実行できませんでした。 ・未対応のファンクションコード ・診断(08h)のサブファンクションコードが 00h以外
02h	0011	不正データアドレス	データアドレスが不正のため実行できませんでした。 ・未対応のレジスタアドレス(0000h ~ 1FFFh以外) ・レジスタアドレスとレジスタ数の和が 2000h以上
03h	8Ch	不正データ	データが不正のため実行できませんでした。 ・レジスタ数が 0、または 17 以上 ・バイト数がレジスタ数 ×2 以外の値 ・データ長が範囲外
04h	89h 8Ah 8Ch 8Dh	スレーブエラー	 スレーブでエラーが発生したため、実行できませんでした。 ・ユーザー I/Fと通信中(89h) ・OPX-2Aでダウンロード、初期化、またはティーチング中 ・MEXE02でダウンロードまたは初期化中 ・NVメモリ処理中(8Ah) ・内部処理中(S-BSYが ON) ・EEPROMエラーのアラームが発生中 ・パラメータ設定範囲外(8Ch) ・ライト値が設定範囲外 ・コマンド実行不可(8Dh)

7.1 保持レジスタの読み出し

レジスタ(16 bit)を読み出します。連続するレジスタを最大 16 個まで(16×16 bit)読み出せます。 データは上位と下位を同時に読み出してください。同時に読み出さないと、値が不正になる場合があります。 複数の保持レジスタを読み出すときは、レジスタアドレスの順に実行されます。

読み出しの例

スレーブアドレス1の運転データの回転速度 No.0とNo.1を読み出します。

内容	レジスタアドレス	読み出される値	10 進数の表示
回転速度 No.0(上位)	0480h	0000h	100
回転速度 No.0(下位)	0481h	0064h	100
回転速度 No.1(上位)	0482h	0000h	4000
回転速度 No.1(下位)	0483h	0FA0h	4000

• クエリ

	フィールド名称	データ 内容	
スレーブア	ドレス	01h	スレーブアドレス 1
ファンクショ	レコード	03h	保持レジスタからの読み出し
	レジスタアドレス(上位)	04h	まっしし のちょしたてし ジュタマバレス
データ	レジスタアドレス(下位)	80h	読み出しの起点となるレンスダアトレス
	レジスタ数(上位)	00h	起点のレジスタアドレスから読み出すレジスタ
	レジスタ数(下位)	04h	の数(4 個 =0004h)
エラーチェック(下位)		44h	CPC 16 の計算結果
エラーチェック(上位)		D1h	000-10 0前身袍木

フィールド名称		データ	内容				
スレーブア	スレーブアドレス						
ファンクションコード		03h					
	データバイト数	08h	クエリのレジスタ数の2倍の値				
	レジスタアドレスのリード値(上位)	00h					
	レジスタアドレスのリード値(下位)	00h	- レンスダアトレス 046011の読み出し値				
データ	レジスタアドレス +1 のリード値(上位)	00h					
	レジスタアドレス +1 のリード値(下位)	64h	- レジスダアトレス 0481110 読み出し値				
	レジスタアドレス +2 のリード値(上位)	00h					
	レジスタアドレス +2 のリード値(下位)	00h	- レンスダアトレス 046211の読み出し値				
	レジスタアドレス +3 のリード値(上位)	0Fh					
	レジスタアドレス +3 のリード値(下位)	A0h	- レジスダアトレス 0483110 読み出し恒				
エラーチェ	····································	E1h					
エラーチェック(上位)		97h	0K0-10 の計昇結未				

7.2 保持レジスタへの書き込み

データを指定のレジスタに書き込みます。

ただし、上位と下位を合わせた結果がデータ範囲外になる場合があるため、できるだけ「複数の保持レジスタへの 書き込み(10h)」を使用して、上位と下位を同時に書き込んでください。

書き込みの例

スレーブアドレス2の過負荷ワーニングレベル(下位)に50(32h)を書き込みます。

内容	レジスタアドレス	書き込む値	10 進数の表示	
過負荷ワーニングレベル(下位)	10ABh	32h	50	

• クエリ

	フィールド名称		内容
スレーブア	ドレス	02h	スレーブアドレス 2
ファンクショ	ョンコード	06h	保持レジスタへの書き込み
	レジスタアドレス(上位)	マアドレス(上位) 10h またい ひょくにたらし ジスクマド	まきになたなたらしジュカマビレス
データ	レジスタアドレス(下位)	ABh	音さ込みを1」なりレンスダアトレス
	ライト値(上位)	00h	しジフタマビレフにまたいたは
	ライト値(下位)	32h	
エラーチェ	エラーチェック(下位)		CRC 16 の計算結果
エラーチェ	ック(上位)		

フィールド名称		データ	内容
スレーブアドレス		02h	
ファンクションコード		06h	
	レジスタアドレス(上位)	10h	
データ	レジスタアドレス(下位)	ABh	マエリと同し1個
	ライト値(上位)	00h	
	ライト値(下位)	32h	
エラーチェック(下位)		7Dh	
エラーチェック(上位)		0Ch	CRC-10 の計昇結果

7.3 診断

マスタとスレーブ間の通信を診断します。任意のデータを送信し、返信されたデータで通信が正常かを判断します。 サブファンクションは 00h(クエリの返信)だけになります。

診断の例

任意のデータ(1234h)をスレーブに送信します。

• クエリ

フィールド名称		データ	内容
スレーブアドレス		03h	スレーブアドレス 3
ファンクショ	ンコード	08h	診断
データ	サブファンクションコード(上位)	00h	クェリデータの海信
	サブファンクションコード(下位)	00h	クエリナーダの返信
	データ値(上位)	12h	
	データ値(下位)	34h	住息のナーダ(12341)
エラーチェック(下位)		ECh	
エラーチェック(上位)		9Eh	

	フィールド名称	データ	内容
スレーブア	ドレス	03h	
ファンクショ	シュード	08h	
	サブファンクションコード(上位)	00h	
	サブファンクションコード(下位)	00h	
7-9	データ値(上位)	レド名称 データ 内容 03h 08h クションコード(上位) 00h クションコード(下位) 00h 上位) 12h 下位) 34h ECh 9Eh	クエリと问し個
	データ値(下位)		
エラーチェ	ック(下位)	ECh	
エラーチェ	ック(上位)	9Eh	

7.4 複数の保持レジスタへの書き込み

複数の連続するレジスタにデータを書き込みます。最大16個のレジスタに書き込むことができます。 データは上位と下位を同時に書き込んでください。同時に書き込まないと、値が不正になる場合があります。 書き込みは、レジスタアドレスの順に実行されます。範囲外のデータなど、一部のデータによって例外応答が返 信されたときでも、他のデータは正常に書き込まれている場合があります。

書き込みの例

次のデータをスレーブアドレス4の運転データの加速時間 No.0 ~ No.2 に設定します。

内容	レジスタアドレス	書き込む値	10 進数の表示
加速時間 No.0(上位)	0600h	0000h	2
加速時間 No.0(下位)	0601h	0002h	2
加速時間 No.1(上位)	0602h	0000h	FO
加速時間 No.1(下位)	0603h	0032h	50
加速時間 No.2(上位)	0604h	0000h	150
加速時間 No.2(下位)	0605h	0096h	150

• クエリ

	フィールド名称	データ	内容
スレーブア	ドレス	04h	スレーブアドレス 4
ファンクショ	ョンコード	10h	複数の保持レジスタへの書き込み
	レジスタアドレス(上位)	06h	まきみなのおちとたることでなっていって
	レジスタアドレス(下位)	00h	るとなるのでは、こののでは、このでは、
	レジスタ数(上位)	00h	起点のレジスタアドレスから書き込む
	レジスタ数(下位)	06h	レジスタの数(6個=0006h)
	バイト数	0Ch	クエリのレジスタ数の2倍の値(6個 x2=12個:0Ch)
	レジスタアドレスのライト値(上位)	00h	
	レジスタアドレスのライト値(下位)	00h	- レンスダアトレス 0600100 書き込み 値
	レジスタアドレス +1 のライト値(上位)	00h	しジフタマビレス 06016のまたり 71店
データ	レジスタアドレス +1 のライト値(下位)	02h	- レンスダアトレス 000 11100 音さ込み 値
	レジスタアドレス +2 のライト値(上位)	00h	
	レジスタアドレス +2 のライト値(下位)	00h	- レンスダアトレス 00021100音さ込み値
	レジスタアドレス +3 のライト値(上位)	00h	
	レジスタアドレス +3 のライト値(下位)	32h	- レンスダアトレス 06030の書さ込み値
	レジスタアドレス +4 のライト値(上位)	00h	しジスタマビレス 060.46のまたり 7.店
	レジスタアドレス +4 のライト値(下位)	00h	- レンスダアトレス 000411の書き込み値
	レジスタアドレス +5 のライト値(上位)	00h	しジフタマビレフ 06055のまたり 71店
	レジスタアドレス +5 のライト値(下位)	96h	レンヘジ / トレヘ 00030010101001001001001001000000000000
エラーチェ	ック(下位)	85h	CPC 16 の計算結果
エラーチェ		70h	000-10 001 异和木

	フィールド名称	データ	内容		
スレーブア	バ レス	04h			
ファンクシ	ョンコード	10h			
	レジスタアドレス(上位)	06h	 クェリトロド店		
<u> </u>	レジスタアドレス(下位)	00h	クエリと向し値		
7-9	レジスタ数(上位)	00h]		
	レジスタ数(下位)	06h]		
エラーチェ	ック(下位)	40h			
エラーチェ	ック(上位)	D6h	CRC-10 0計昇和采		

8 レジスタアドレス一覧

ドライバで使用するデータはすべて 32 bit幅です。Modbusプロトコルではレジスタは 16 bit幅のため、2 個のレジスタで 1 つのデータを表わしています。

アドレス配置はビッグエンディアンとなっているため、偶数アドレスが上位、奇数アドレスが下位になります。

8.1 動作コマンド

モーターの動作に関するコマンドです。動作コマンドの内容は NVメモリには保存されません。

レジスタ	アドレス	名称	内容	READ/	設定範囲	
Dec	Нех					
48	0030h	グループ(上位)	グループのアドレスを	D/M/	-1:グループの指定なし(グ ループ送信を行ないません。)	
49	0031h	グループ(下位)	設定します。	10/00	1 ~ 31:グループのアドレス (親スレーブの号機番号)	
124	007Ch	ドライバ入力指令(上位)	ドライバへの入力指令	D/M		
125	007Dh	ドライバ入力指令(下位)	を設定します。		下記の説明をこ見てたさい。	
126	007Eh	ドライバ出力指令(上位)	ドライバの出力状態を	Р	次ページをご覧ください。	
127	007Fh	ドライバ出力指令(下位)	読み込みます。	ĸ		

• グループ(0030h/0031h)

複数のスレーブでグループを組んで、クエリを一斉送信できます。グループについては96ページをご覧ください。 初期値は -1 です。グループを設定するときは、上位と下位を同時に読み書きしてください。

アドレス(Hex)		アドレスの内容 *								
	bit15	bit14	bit13	bit12	bit11	bit10	bit9	bit8		
00206		[FFFh]								
0030h	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0		

* []内は初期値です。

アドレス(Hex)											
0031h	bit15	bit14	bit13	bit12	bit11	bit10	bit9	bit8			
		1~31:グループのアドレスを設定[FFFFh]									
	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0			

* []内は初期値です。

ドライバ入力指令(007Ch/007Dh)

RS-485 通信でアクセスできるドライバの入力信号です。各入力信号については 46 ページをご覧ください。

アドレス(Hex)		アドレスの内容 *								
00701	bit15	bit14	bit13	bit12	bit11	bit10	bit9	bit8		
	-	-	-	-	-	—	-	-		
007Ch	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0		
	-	_	_	_	-	_	_	_		

アドレス (Hex)		アドレスの内容 *							
	bit15	bit14	bit13	bit12	bit11	bit10	bit9	bit8	
007Db	NET-IN15 [未使用]	NET-IN14 [未使用]	NET-IN13 [未使用]	NET-IN12 [未使用]	NET-IN11 [未使用]	NET-IN10 [未使用]	NET-IN9 [未使用]	NET-IN8 [未使用]	
007.011	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	
	NET-IN7 [未使用]	NET-IN6 [MB-FREE]	NET-IN5 [STOP-MODE]	NET-IN4 [REV]	NET-IN3 [FWD]	NET-IN2 [M2]	NET-IN1 [M1]	NET-IN0 [M0]	

* []内は初期値です。

ドライバ出力指令(007Eh/007Fh)

RS-485 通信で取得できるドライバの出力信号です。各出力信号については 48 ページをご覧ください。

アドレス(Hex)		アドレスの内容 *						
007Eh	bit15	bit14	bit13	bit12	bit11	bit10	bit9	bit8
	-	-	-	-	-	—	-	-
	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
	-	—	_	—	—	_	-	_

* []内は初期値です。

アドレス (Hex)	アドレスの内容 *							
	bit15	bit14	bit13	bit12	bit11	bit10	bit9	bit8
00751	NET-OUT15 [TLC]	NET-OUT14 [VA]	NET-OUT13 [MOVE]	NET-OUT12 [ALARM- OUT2]	NET-OUT11 [未使用]	NET-OUT10 [未使用]	NET-OUT9 [未使用]	NET-OUT8 [S-BSY]
007FI	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
	NET-OUT7 [ALARM- OUT1]	NET-OUT6 [WNG]	NET-OUT5 [STOP- MODE_R]	NET-OUT4 [REV_R]	NET-OUT3 [FWD_R]	NET-OUT2 [M2_R]	NET-OUT1 [M1_R]	NET-OUT0 [M0_R]
							Г	

* []内は初期値です。

8.2 メンテナンスコマンド

アラームやワーニングを解除したり、NVメモリの一括処理を行ないます。 すべて READ/WRITEになります。0から1へ書き込むと実行されます。

_						
	レジスタアドレス		- 2 称	内容	設定範囲	
_	Dec	Hex			以化型的	
	384	0180h	アラームのリセット(上位)	発生中のアラームを解除します。アラームの		
_	385	0181h	アラームのリセット(下位)	種類によっては解除できないものがあります。		
	388	0184h	アラーム履歴クリア(上位)			
	389	0185h	アラーム履歴クリア(下位)	ノノーム腹腔をソリノしより。		
	390	0186h	ワーニング履歴クリア(上位)			
	391	0187h	ワーニング履歴クリア(下位)	「ノーニング腹腔をワリアしより。		
	392	0188h	通信エラー履歴クリア(上位)			
	393	0189h	通信エラー履歴クリア(下位)	ー通信エノー腹腔をクリアします。		
	396	018Ch	Configuration(上位)	パラメータの再計算とセットアップを実行しま	0、1	
	397	018Dh	Configuration(下位)] र् 。		
	398	018Eh	全データ初期化(上位)*	NVメモリに保存されているパラメータを初期値		
	399	018Fh	全データ初期化(下位)*	に戻します。		
	400	0190h	NVメモリー括読み出し(上位)	NVメモリに保存されているパラメータを RAM		
	401	0191h	NVメモリー括読み出し(下位)	データとパラメータはすべて上書きされます。		
_	402	0192h	NVメモリー括書き込み(上位)	RAMに保存されているパラメータを NVメモリ		
	403	0193h	NVメモリー括書き込み(下位)	ション (10 万回です。)		

* 通信パリティ、通信ストップビット、および送信待ち時間は初期化されません。OPX-2Aまたは MEXE02で初期化してください。

重要 NVメモリの書き換え可能回数は、約10万回です。

Configuration (018Ch)

Configurationは、次のすべての条件が満たされると実行できます。

- アラームが発生していない
- モーターが動作していない
- OPX-2Aがテストモードまたはコピーモード以外
- MEXE02が I/Oテスト、テスト運転、ティーチング、およびダウンロードを行なっていない

Configuration実行前後のドライバの状態を示します。

項目	Configurationが可能な状態	Configurationの実行中	Configurationの実行後
PWR LED	点灯	点灯	
ALM LED	消灯	消灯	ドライバの状態によります。
電磁ブレーキ	保持 /解放	保持	
出力信号	有効	不定	有効
入力信号	有効	無効	有効

重要 Configurationの実行中にモニタを行なっても、正常なモニタ値が返らない場合があります。

8.3 モニタコマンド

指令位置、指令速度、アラーム・ワーニング履歴などをモニタします。すべて READになります。

レジスタ	アドレス	夕 升	中 穷	
Dec	Hex	白你		■●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
128	0080h	現在のアラーム(上位)	発生中のマラー / コードたテレキオ	
129	0081h	現在のアラーム(下位)		
130	0082h	アラーム履歴1(上位)		
131	0083h	アラーム履歴1(下位)		
132	0084h	アラーム履歴 2(上位)		
133	0085h	アラーム履歴 2(下位)		
134	0086h	アラーム履歴3(上位)		
135	0087h	アラーム履歴3(下位)		
136	0088h	アラーム履歴 4(上位)		
137	0089h	アラーム履歴 4(下位)		
138	008Ah	アラーム履歴 5(上位)		
139	008Bh	アラーム履歴 5(下位)		
140	008Ch	アラーム履歴 6(上位)	「ノノーム腹腔を示しより。 」	
141	008Dh	アラーム履歴 6(下位)		
142	008Eh	アラーム履歴7(上位)		
143	008Fh	アラーム履歴7(下位)		
144	0090h	アラーム履歴8(上位)		
145	0091h	アラーム履歴8(下位)		
146	0092h	アラーム履歴 9(上位)		
147	0093h	アラーム履歴 9(下位)		
148	0094h	アラーム履歴 10(上位)		
149	0095h	アラーム履歴 10(下位)		
150	0096h	現在のワーニング(上位)	発生中のワーニングコードをテレます	
151	0097h	現在のワーニング(下位)		
152	0098h	ワーニング履歴1(上位)		
153	0099h	ワーニング履歴 1(下位)		00h ~ FFh
154	009Ah	ワーニング履歴 2(上位)		
155	009Bh	ワーニング履歴 2(下位)		
156	009Ch	ワーニング履歴 3(上位)		
157	009Dh	ワーニング履歴3(下位)		
158	009Eh	ワーニング履歴 4(上位)		
159	009Fh	ワーニング履歴 4(下位)		
160	00A0h	ワーニング履歴 5(上位)	-	
161	00A1h	ワーニング履歴 5(下位)	ワーニング履歴を示します。	
162	00A2h	ワーニング履歴 6(上位)		
163	00A3h	ワーニング履歴 6(下位)	-	
164	00A4h	ワーニング履歴 7(上位)	-	
165	00A5h	ワーニング履歴 7(下位)	-	
166	00A6h	ワーニング履歴 8(上位)	-	
167	00A7h	ワーニング履歴8(下位)	-	
168	00A8h	ワーニング履歴9(上位)	-	
169	00A9h	ワーニング履歴 9(下位)	-	
170	00AAh	ワーニング履歴 10(上位)	-	
171	00ABh	ワーニンク履歴 10(下位)		
172	00ACh		前回受信した通信エラーコードを示します。	
173	00ADh			
174	00AEh			
175	00AFh			
176	00B0h		これまでに発生した通信エラーコード履歴を示しま	
177	00B1h		9 •	
178	00B2h	通信エラーコード履歴 3(上位)	-	
179	00B3h	通信エラーコード履歴3(下位)		

レジスタ	アドレス	5 TL		
Dec	Hex	名称		範 囲
180	00B4h	通信エラーコード履歴 4(上位)		
181	00B5h	通信エラーコード履歴 4(下位)		
182	00B6h	通信エラーコード履歴 5(上位)		
183	00B7h	通信エラーコード履歴 5(下位)		
184	00B8h	通信エラーコード履歴 6(上位)		
185	00B9h	通信エラーコード履歴 6(下位)		
186	00BAh	通信エラーコード履歴 7(上位)	ー これまでに発生した通信エラーコード履歴を示しま	
187	00BBh	通信エラーコード履歴 7(下位)	す。	00h ~ FFh
188	00BCh	通信エラーコード履歴8(上位)		
189	00BDh	通信エラーコード履歴8(下位)		
190	00BEh	通信エラーコード履歴 9(上位)		
191	00BFh	通信エラーコード履歴 9(下位)		
192	00C0h	通信エラーコード履歴 10(上位)		
193	00C1h	通信エラーコード履歴 10(下位)		
196	00C4h	現在の運転データ No.(上位)		
197	00C5h	現在の運転データ No.(下位)	運転中のデータNo.を示します。	0~15
	00001			-4010 ~ +4010 r/min
200	00C8h	指令速度(上位) 		+:正転
201	00C9h	指令速度(下位)	旧中述反を小しまり。	-:逆転
201	000011			0:停止
206	00CEh	フィードバック速度(上位)		-5200 ~ +5200 r/min
			フィードバック速度を示します。	+:止転 :逝転
207	00CFh	フィードバック速度(下位)		0:停止
		ダイレクト 1/0 雷磁ブレーキの		
212	00D4h	状態(上位)		
212	00D5h	ダイレクト I/O、電磁ブレーキの	ダイレクト I/Oと電磁フレーキの状態を示します。 	火表をこ寛くたさい。
215	000511	状態(下位)		
256	0100h	 運転速度(上位)		-20050 ~
			減速比または増速比で換算したフィードバック速度	+20050 r/min +:正転
257	01016	 運転速度(下位)	を示します。	-:逆転
251	010111			0:停止
258	0102h	 運転速度 小数占位置(上位)		0:小数点なし
			運転速度の小数点位置を示します。*1	1:1桁
259	0103h	運転速度 小数点位置(下位)		2:2 桁 3:3 桁
				0.0050
260	0104h	コンベヤ搬送速度(上位)		-20050 ∼ +20050 m/min
			コンベヤ減速比またはコンベヤ増速比で換算した コンードバック速度をテレキオ	+:正転
261	0105h	コンベヤ搬送速度(下位)	フィートハック速度を示します。	-:逆転
				0:停止
262	0106h	コンペヤ搬送速度小数点位直		0:小数点なし
		(エロ)	コンベヤ搬送速度の小数点位置を示します。*2	2:2 桁
263	0107h	(下位)		3:3 桁
264	0108h	負荷率(上位)	定格トルクを 100%として、モーターから発生する	
265	0109h	負荷率(下位)	トルクを示します。	0~200%
268	010Ch	外部アナログ速度設定(上位)		a 1000 / :
269	010Dh	外部アナログ速度設定(下位)	アテロソ 迷度の設定 値を示します。*3 	0 ~ 4000 r/min
070	01104	外部アナログトルク制限設定		
212	UTION	(上位)	 アナログトルクの制限値を示します *2	0~200%
273	0111h	外部アナログトルク制限設定	/ / - / / / / / / / / / / / / / / / /	20070
	0.110			
278	0116h	外部アナロク電圧設定(上位)	アナログ電圧の設定値を示します。	0 ~ 100(1=0.1 V)
279	0117h	外部アナログ電圧設定(下位)		

*1 小数点の位置は、「減速比」パラメータや「減速比の桁指定」パラメータの設定によって自動的に変わります。

*2 小数点の位置は、「コンベヤ減速比」パラメータや「コンベヤ減速比の桁指定」パラメータの設定によって自動的に変わります。

*3 「アナログ入力信号選択」パラメータで選択されていないときは「FFFFh」が表示されます。

■ ダイレクト I/O、電磁ブレーキの状態(00D4h)

アドレス(Hex)	アドレスの内容							
	bit15	bit14	bit13	bit12	bit11	bit10	bit9	bit8
00046	—	—	—	-	—	—	MB	—
00D411	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
	—	—	—	—	—	—	OUT1	OUT2
アドレス(Hex)				アドレス	の内容			
	bit15	bit14	bit13	bit12	bit11	bit10	bit9	bit8
00D5b	—	—	—	—	—	—	—	_
UUDSN	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
	_	IN6	IN5	IN4	IN3	IN2	IN1	IN0

8.4 パラメータ R/Wコマンド

パラメータの読み出しや書き込みを行ないます。 すべて WRITE/READになります。 運転データを変更すると、すぐに再計算とセットアップが行なわれ、変更した値が反映されます。 パラメータの詳細は 55 ページをご覧ください。

■ 運転データ

レジスタアドレス		夕私	設空筎田	力坦広	
Dec	Hex	1 17	設た型団	的树间	
1152 1153	0480h 0481h	回転速度 No.0(上位) 回転速度 No.0(下位)			
~ 1182 1183	~ 049Eh 049Fh	~ 回転速度 No.15(上位) 回転速度 No.15(下位)	0、または 80 ~ 4000 r/min	0	
1536 1537 ~	0600h 0601h ~	加速時間 No.0(上位) 加速時間 No.0(下位) ~			
1566 1567	061Eh 061Fh	加速時間 No.15(上位) 加速時間 No.15(下位)	$-2 \sim 150(1-0.1 c)$	5	
1664 1665 ~	0680h 0681h ~	減速時間 No.0(上位) 減速時間 No.0(下位) ~	2 - 130(1=0.13)	5	
1694 1695	069Eh 069Fh	減速時間 No.15(上位) 減速時間 No.15(下位)			
1792 1793	0700h 0701h	トルク制限 No.0(上位) トルク制限 No.0(下位)			
~ 1822 1823	~ 071Eh 071Fh	~ トルク制限 No.15(上位) トルク制限 No.15(下位)	0~200%	200	

■ ユーザーパラメータ

レジスタ	アドレス	夕 乔	記中午日	勿 期/店	声呐,	
Dec	Hex		設定軋囲	初期他	及哄 *	
646	0286h	JOG運転速度(上位)	$0 = t_{1} + 80 \sim 1000 r/min$	300	Δ	
647	0287h	JOG運転速度(下位)		500		
900	0384h	モーター回転方向選択(上位)	0:十側 =CCW	1	C	
901	0385h	モーター回転方向選択(下位)	1:十側 =CW	1		
960	03C0h	データ設定器速度表示(上位)	0:符号あり	0		
961	03C1h	データ設定器速度表示(下位)	1:絶対値	0	Δ	
962	03C2h	データ設定器編集(上位)	0:無効	1		
963	03C3h	データ設定器編集(下位)	1:有効	I		
4140	102Ch	運転モード選択(上位)	0:励磁遮断あり	1	C	
4141	102Dh	運転モード選択(下位)	1: 励磁遮断なし			
4162	1042h	JOG運転トルク(上位)	0 ~ 200%	200		
4163	1043h	JOG運転トルク(下位)	0 20070	200		
4170	104Ah	減速比(上位)	100 ~ 9999	100		
4171	104Bh	減速比(下位)		100		
4172	104Ch	減速比の桁指定(上位)	0:1桁 -1·2桁	2		
4173	104Dh	減速比の桁指定(下位)	2:3 桁	2		
4174	104Eh	増速比(上位)				
4175	104Fh	増速比(下位)	1~5	1	A	
4176	1050h	コンベヤ減速比(上位)	400 0000	100		
4177	1051h	コンベヤ減速比(下位)	100 ~ 9999	100		
4178	1052h	コンベヤ減速比の桁指定(上位)	0:1 桁	0		
4179	1053h	コンベヤ減速比の桁指定(下位)	-1:2 桁 2:3 桁	2	-	
4180	1054h	コンベヤ増速比(上位)	4 5			
4181	1055h	コンベヤ増速比(下位)	1~5	1		
4224	1080h	アラーム時電磁ブレーキ動作(上位)	0:自然停止後に保持	4		
4225	1081h	アラーム時電磁ブレーキ動作(下位)	1:即時保持	I		
4226	1082h	初期時運転禁止アラーム機能(上位)		0	6	
4227	1083h	初期時運転禁止アラーム機能(下位)		0	C	
4230	1086h	初期時回生サーマル入力検出(上位)	0:無効	0		
4231	1087h	初期時回生サーマル入力検出(下位)	1:有効	0		
4258	10A2h	過負荷ワーニング機能(上位)		0		
4259	10A3h	過負荷ワーニング機能(下位)		0	Λ	
4266	10AAh	過負荷ワーニングレベル(上位)	50 × 100%	100	~	
4267	10ABh	過負荷ワーニングレベル(下位)	50 100 %	100		
4320	10E0h	データ設定器初期表示(上位)	0:運転速度 1:コンベヤ搬送速度 - 2: 負荷率	0		
4321	10E1h	データ設定器初期表示(下位)	3:運転番号 4:モニタモードのトップ画面		C	
4322	10E2h	アナログ入力信号選択(上位)	0:アナログ無効 1:アナログ速度設定有効 2:マナログトルク制限有効	1		
4323	10E3h	アナログ入力信号選択(下位)	(詳細は95ページをご覧ください。)	•		
4430	114Eh	回転速度到達幅(上位)	$0 \sim 400 \text{ r/min}$	200	Δ	
4431	114Fh	回転速度到達幅(下位)		200		
4352	1100h	IN0 入力機能選択(上位)				
4353	1101h	IN0 入力機能選択(下位)	_			
4354	1102h	IN1 入力機能選択(上位)	95 ページの表をご覧ください	2.RF//	R	
4355	1103h	IN1 入力機能選択(下位)		2.1XE V		
4356	1104h	IN2 入力機能選択(上位)	_	19 STOP-MODE	DF	
4357	1105h	IN2 入力機能選択(下位)				

* データが反映されるタイミングを表わします。(A:即時反映、B:運転停止後に反映、C:Configurationの実行後または電源の再投入後に反映)

レジスタ	アドレス				
Dec	Hex	名 杯	設定範囲	初期値	反映 *
4358	1106h				
4359	1107h	IN3 入力機能選択(下位)	-	48:M0	
4360	1108h	IN4 入力機能選択(上位)	-		
4361	1109h	IN4 入力機能選択(下位)		24:ALARM-RESET	_
4362	110Ah	IN5 入力機能選択(上位)	95ページの表をご覧ください。		В
4363	110Bh	IN5 入力機能選択(下位)	-	20:MB-FREE	
4364	110Ch	IN6 入力機能選択(上位)	-		
4365	110Dh	IN6 入力機能選択(下位)	-	22:TH	
4384	1120h	INO 入力接点設定(上位)			
4385	1121h	INO 入力接点設定(下位)	-		
4386	1122h	IN1 入力接点設定(上位)	-		
4387	1123h	IN1 入力接点設定(下位)	-		
4388	1124h	IN2 入力接点設定(上位)	-		
4389	1125h	IN2 入力接点設定(下位)	-		
4390	1126h	IN3 入力接点設定(上位)	- 0・A接占(ノーマルオープン)		_
4391	1127h	IN3 入力接点設定(下位)	1:B接点(ノーマルクローズ)	0	С
4392	1128h	IN4 入力接点設定(上位)	-		
4393	1129h	IN4 入力接点設定(下位)	-		
4394	112Ah	IN5 入力接点設定(上位)	-		
4395	112Bh	IN5 入力接点設定(下位)	-		
4396	112Ch	IN6 入力接点設定(上位)	-		
4397	112Dh	IN6 入力接点設定(下位)	-		
4416	1140h	OUT0 出力機能選択(上位)			
4417	1141h	OUT0 出力機能選択(下位)		85:SPEED-OUT	
4418	1142h	OUT1 出力機能選択(上位)	95 ページの表をご覧ください。		А
4419	1143h	OUT1 出力機能選択(下位)	-	65:ALARM-OUT1	
4448	1160h	NET-IN0 入力機能選択(上位)			
4449	1161h	NET-IN0 入力機能選択(下位)	-	48:M0	
4450	1162h	NET-IN1 入力機能選択(上位)	-		-
4451	1163h	NET-IN1 入力機能選択(下位)	-	49:M1	
4452	1164h	NET-IN2 入力機能選択(上位)	-		
4453	1165h	NET-IN2 入力機能選択(下位)	-	50:M2	
4454	1166h	NET-IN3 入力機能選択(上位)	-		
4455	1167h	NET-IN3 入力機能選択(下位)	-	1:FWD	
4456	1168h	NET-IN4 入力機能選択(上位)	-		
4457	1169h	NET-IN4 入力機能選択(下位)	-	2:REV	
4458	116Ah	NET-IN5 入力機能選択(上位)	-		
4459	116Bh	NET-IN5 入力機能選択(下位)	-	19:STOP-MODE	
4460	116Ch	NET-IN6 入力機能選択(上位)	-		
4461	116Dh	NET-IN6 入力機能選択(下位)		20:MB-FREE	_
4462	116Eh	NET-IN7 入力機能選択(上位)	95 ページの表をご覧ください。		С
4463	116Fh	NET-IN7 入力機能選択(下位)	-		
4464	1170h	NET-IN8 入力機能選択(上位)	-		
4465	1171h	NET-IN8 入力機能選択(下位)	-		
4466	1172h	NET-IN9 入力機能選択(上位)	-		
4467	1173h	NET-IN9 入力機能選択(下位)	-		
4468	1174h	NET-IN10 入力機能選択(上位)	-		
4469	1175h	NET-IN10 入力機能選択(下位)	-	0:未使用	
4470	1176h	NET-IN11 入力機能選択(上位)	1		
4471	1177h	NET-IN11 入力機能選択(下位)	1		
4472	1178h	NFT-IN12 入力機能選択(上位)			
4473	1179h	NFT-IN12 入力機能選択(工位)	-		
4474	117Ah	NET-IN13 入力機能選択(上位)	-		
4475	117Rh	NET-IN13 入力機能選択(下位)	-		
			1	1	L

* データが反映されるタイミングを表わします。(A:即時反映、B:運転停止後に反映、C:Configurationの実行後または電源の再投入後に反映)

レジスタ	アドレス	夕			
Dec	Hex	名 你	設定範囲	10	反映 *
4476	117Ch	NET-IN14 入力機能選択(上位)			
4477	117Dh	NET-IN14 入力機能選択(下位)			
4478	117Eh	NET-IN15 入力機能選択(上位)	95 ハージの衣をこ見ください。	0:木便用	
4479	117Fh	NET-IN15 入力機能選択(下位)	-		
4480	1180h	NET-OUT0 出力機能選択(上位)			
4481	1181h	NET-OUT0 出力機能選択(下位)		40:IVIU_K	
4482	1182h	NET-OUT1 出力機能選択(上位)		40.M1 P	
4483	1183h	NET-OUT1 出力機能選択(下位)		49.WII_K	
4484	1184h	NET-OUT2 出力機能選択(上位)		50·M2 P	
4485	1185h	NET-OUT2 出力機能選択(下位)		50.1WIZ_IX	
4486	1186h	NET-OUT3 出力機能選択(上位)			
4487	1187h	NET-OUT3 出力機能選択(下位)		1.1 WD_K	
4488	1188h	NET-OUT4 出力機能選択(上位)		2.REV R	
4489	1189h	NET-OUT4 出力機能選択(下位)		2.KLV_K	
4490	118Ah	NET-OUT5 出力機能選択(上位)		19.STOP-MODE R	
4491	118Bh	NET-OUT5 出力機能選択(下位)			
4492	118Ch	NET-OUT6 出力機能選択(上位)		66 WNG	
4493	118Dh	NET-OUT6 出力機能選択(下位)		00.0010	C
4494	118Eh	NET-OUT7 出力機能選択(上位)			C
4495	118Fh	NET-OUT7 出力機能選択(下位)	95 ページの表をご覧ください		
4496	1190h	NET-OUT8 出力機能選択(上位)		80.S-BSV	
4497	1191h	NET-OUT8 出力機能選択(下位)		00.0-001	
4498	1192h	NET-OUT9 出力機能選択(上位)		0:未使用	
4499	1193h	NET-OUT9 出力機能選択(下位)			
4500	1194h	NET-OUT10 出力機能選択(上位)			
4501	1195h	NET-OUT10 出力機能選択(下位)			
4502	1196h	NET-OUT11 出力機能選択(上位)			
4503	1197h	NET-OUT11 出力機能選択(下位)			
4504	1198h	NET-OUT12 出力機能選択(上位)			
4505	1199h	NET-OUT12 出力機能選択(下位)			
4506	119Ah	NET-OUT13 出力機能選択(上位)		68 · MOVE	
4507	119Bh	NET-OUT13 出力機能選択(下位)		00.100 V L	
4508	119Ch	NET-OUT14 出力機能選択(上位)	_	77 · \/Δ	
4509	119Dh	NET-OUT14 出力機能選択(下位)	_		
4510	119Eh	NET-OUT15 出力機能選択(上位)		71 · TI C	
4511	119Fh	NET-OUT15 出力機能選択(下位)		71.120	
4512	11A0h	アナログ速度指令ゲイン(上位)	$0 \sim 4000 \text{ r/min}$	800	
4513	11A1h	アナログ速度指令ゲイン(下位)		000	
4514	11A2h	アナログ速度指令オフセット(上位)	$-2000 \sim 2000 r/min$	0	
4515	11A3h	アナログ速度指令オフセット(下位)	2000 2000 //////	, , , , , , , , , , , , , , , , , , ,	
4516	11A4h	アナログトルク制限ゲイン(上位)	$0 \sim 200\%$	40	
4517	11A5h	アナログトルク制限ゲイン(下位)	0 20070	10	
4518	11A6h	アナログトルク制限オフセット(上位)	-50 ~ 50%	0	
4519	11A7h	アナログトルク制限オフセット(下位)		, v	А
4522	11AAh	アナログ回転速度最大値(上位)	$-0 \sim 4000 \text{ r/min}$	4000	
4523	11ABh	アナログ回転速度最大値(下位)			
4526	11AEh	アナログトルク制限最大値(上位)	0 ~ 200%	200	
4527	11AFh	アナログトルク制限最大値(下位)		200	
4608	1200h	通信タイムアウト(上位)	0:監視なし	0	
4609	1201h	通信タイムアウト(下位)	1 ~ 10000 ms	, v	
4610	1202h	通信異常アラーム(上位)	1~10回	3	
4611	1~10 [1611 1203h 通信異常アラーム(下位) 1~10 [5	

* データが反映されるタイミングを表わします。(A:即時反映、C:Configurationの実行後または電源の再投入後に反映)

• アナログ入力信号選択パラメータ

「アナログ入力信号選択」パラメータで、運転データの設定方法を変更できます。ただし、下表に示した組み合わ せしか設定できません。

「アナログ入力信号 選択」パラメータ	運転データ No.	回転速度	加速時間 減速時間	トルク制限
0	0 ~ 15	デジタル設定		
1	0	アナログ設定	デジタル設定	
(初期値)	1 ~ 15	デジタル設定		
2	0 ~ 15	デジタル設定 アナログ語		アナログ設定

設定例

- すべての運転データをデジタルで設定したい場合:「アナログ入力信号選択」パラメータを0にする。
- 運転データ No.0 の回転速度だけをアナログで設定したい場合:「アナログ入力信号選択」パラメータを1にする。

入出力信号割り当ての設定内容

IN入力機能選択パラメータ

	22:TH	35:R3	41:R9	47:R15
1:FWD	24:ALARM-RESET	36:R4	42:R10	48:M0
2:REV	27 : HMI	37:R5	43:R11	49:M1
19:STOP-MODE	32:R0	38:R6	44:R12	50:M2
20:MB-FREE	33:R1	39:R7	45:R13	51:M3
21:EXT-ERROR	34:R2	40:R8	46:R14	54:TL

OUT出力機能選択パラメータ

0:未使用	32:R0	38:R6	44:R12	50:M2_R	71:TLC
1:FWD_R	33:R1	39:R7	45:R13	51:M3_R	77 : VA
2:REV_R	34:R2	40:R8	46:R14	54:TL_R	80:S-BSY
19:STOP-MODE_R	35:R3	41:R9	47:R15	65: ALARM-OUT1	81: ALARM-OUT2
20:MB-FREE_R	36:R4	42:R10	48:M0_R	66:WNG	82:MPS
27:HMI_R	37:R5	43:R11	49:M1_R	68:MOVE	84 : DIR
					85: SPEED-OUT

NET-IN入力機能選択パラメータ

0:未使用	32:R0	38:R6	44:R12	50:M2
1:FWD	33:R1	39:R7	45:R13	51:M3
2:REV	34:R2	40:R8	46:R14	54:TL
19:STOP-MODE	35:R3	41:R9	47:R15	
20:MB-FREE	36:R4	42:R10	48:M0	
27 : HMI	37:R5	43:R11	49:M1	

NET-OUT出力機能選択パラメータ

	32 · R0	38 · R6	44·R12	50·M2 R	71 · TI C
	32 · D1	30.P7	15.D12	51 · M2 P	77.\/A
	24.00	40.00	45.1(15		
Z:REV_R	34:RZ	40:88	40:R14		
19:STOP-MODE_R	35:R3	41:R9	47:R15	65: ALARM-OUT1	81:ALARM-OUT2
20:MB-FREE_R	36:R4	42:R10	48:M0_R	66:WNG	82:MPS
27:HMI_R	37 : R5	43:R11	49:M1_R	68:MOVE	84:DIR

9 グループ送信

複数のスレーブでグループを組み、そのグループに対してクエリを一斉に送信できます。

■ グループの構成

グループは親スレーブ1台と子スレーブで構成され、親ス レーブだけがレスポンスを返します。

■ グループのアドレス

グループ送信を行なうときは、グループのアドレスをグルー プの対象となる子スレーブに対して設定します。 グループのアドレスを設定した子スレーブは、親スレーブに 子スレーブ 送信されたクエリを受け取ることができます。

■ 親スレーブ

親スレーブには、グループ送信のための設定は必要ありません。親スレーブのアドレスが、グループのアドレスに なります。マスタからクエリが親スレーブに送信されると、親スレーブは要求された処理を実行してレスポンスを返し ます(ユニキャストモードと同じ)。

■ 子スレーブ

「グループ」コマンドでグループのアドレスを子スレーブに設定します。グループの変更はユニキャストモードで行なってください。グループを設定するときは、上位と下位を同時に読み書きしてください。

レジスタ	アドレス	名称 内容		READ/	設定範囲	
Dec	Hex	10 10	P 3 10	WRITE		
48	0030h	グループ(上位)	-プ(上位) グループのアドレスを -プ(下位) 記定します。	-	-1:グループの指定なし(グループ送 信を行ないません。)	
49	0031h	グループ(下位)		R/W	1~31:グループのアドレス(親スレー ブの号機番号)	

重要 グループ設定は NVメモリに保存されないため、「NVメモリー括書き込み」を実行しても、ドライバの電源 を遮断するとグループ設定は初期化されます。

■ グループ送信で実行できるファンクションコード

10通信異常の検出

RS-485 通信に異常が発生したことを検出する機能で、通信エラー、アラーム、およびワーニングがあります。

10.1 通信エラー

通信エラーの履歴は RAMに保存されます。通信エラーは RS-485 通信の「通信エラー履歴」コマンドで確認できます。

重要ドライバの電源を切ると、通信エラー履歴は消去されます。

通信エラーの種類	エラーコード	原因
RS-485 通信異常	84h	伝送異常が検出されました。 80ページ「無応答」をご覧ください。
コマンド未定義	88h	例外応答(例外コード 01h、02h)が検出されました。 80 ページをご覧ください。
ユーザー I/F通信中のため実行不可	89h	例外応答(例外コード 04h)が検出されました。
NVメモリ処理中のため実行不可	8Ah	80 ページをご覧ください。
設定範囲外	8Ch	例外応答(例外コード 03h、04h)が検出されました。 80 ページをご覧ください。
コマンド実行不可	8Dh	例外応答(例外コード 04h)が検出されました。 80 ページをご覧ください。

10.2 アラームとワーニング

アラームが発生するとALARM-OUT1出力がOFFになり、モーターが停止します。同時にALM LEDが点滅します。 ワーニングが発生すると、WNG出力がONになります。ただし、モーターの運転は継続します。ワーニングが発 生した原因が取り除かれると、WNG出力は自動でOFFになります。

重要ドライバの電源を切ると、ワーニング履歴は消去されます。

■ 通信用スイッチ設定異常(83h)

通信速度設定スイッチ(SW4)を8~Fのどれかに設定すると、通信用スイッチ設定異常が発生します。

■ RS-485 通信異常(84h)

RS-485 通信異常が発生した際の、アラームとワーニングの関係は下表のようになります。

異常の内容	内容
ワーニング	RS-485 通信異常(84h)が1回検出されるとワーニングになります。 ワーニングが発生している途中で受信が正常に行なわれると、ワーニングは自動で解除されます。
アラーム	RS-485 通信異常(84h)が、「通信異常アラーム」パラメータに設定した回数だけ連続して検出されると アラームになります。

■ RS-485 通信タイムアウト(85h)

「通信タイムアウト」パラメータで設定した時間を経過してもマスタとの通信が行なわれなかったときは、アラームが 発生します。

11 タイミングチャート

タイミングチャート内の記号については、77ページ「5.2通信タイミング」をご覧ください。

*1 RS-485 通信による Configurationを含むメッセージ

*2 Tb2(送信待ち時間)+C3.5(サイレントインターバル)+コマンド処理時間

*3 内部処理時間 +1 s以下

内部処理

*4 ドライバの内部処理が終了してからクエリを実行してください。

内部処理中

タイミングチャート

5 FAネットワーク制御

FAネットワークで制御する方法について説明しています。ネットワークコンバータ(別売)を使用することで、 CC-Link通信や MECHATROLINK通信に対応できます。

もくじ

1	CC-	Link通信で制御する場合	102
	1.1	ガイダンス	.102
	1.2	スイッチの設定	.105
	1.3	リモートレジスター覧	.106
	1.4	6 軸接続モードのリモート I/Oの	
		割り付け	.106
		■ リモート I/O割り付け一覧	106
		■ リモート I/Oの入出力	107
		■ リモート I/O割り付けの詳細	108
	1.5	12 軸接続モードのリモート I/Oの	
		割り付け	.109
		■ リモート I/O割り付け一覧	109
		■ リモート I/Oの入出力	109
		■ リモート I/O割り付けの詳細	110
2	MEC	CHATROLINK通信で制御する場合	112
	2.1	ガイダンス	.112
	2.2	スイッチの設定	.115
	2.3	NETC01-M2 の I/Oフィールドマップ	.116
	2.4	NETC01-M3の I/Oフィールドマップ	.117
	2.5	通信フォーマット	.118
		■ リモート I/O入力	118
		■ リモート I/O出力	118
		■ リモートレジスタ入力	118
		■ リモートレジスタ出力	119

3	リモ	ート I/Oの詳細	
	3.1	ドライバへの入力	
	3.2	ドライバからの出力	
4	命令	コードー覧	
	4.1	グループ機能	
	4.2	メンテナンスコマンド	
	4.3	モニタコマンド	
	4.4	運転データ	
	4.5	ユーザーパラメータ	
		■ 機能設定パラメータ	
		■ I/O機能パラメータ	
		■ I/O機能[RS-485]パラメータ	
		■ アナログ調整パラメータ	
		■ アラーム・ワーニングパラメータ	
		■ テスト運転・表示パラメータ	
		■ 動作設定パラメータ	
		■ 通信パラメータ	

CC-Link通信で制御する場合 T

ネットワークコンバータ NETC01-CCと組み合わせて CC-Link通信で制御する方法について説明します。 リモートI/Oや命令コードについては 120 ページ「3 リモートI/Oの詳細」をご覧ください。

1.1 ガイダンス

はじめてお使いになるときはこの節をご覧になり、運転方法のながれについてご理解ください。

• パラメータの設定方法は、別冊の NETC01-CCユーザーズマニュアルをご覧ください。

通信速度、局番、号機番号を設定します STEP1

ドライバの設定条件

- 号機番号:0
- RS-485 通信速度:625,000 bps
- 機能設定スイッチ 2(SW5-No.2):OFF

NETC01-CCの設定条件

- CC-Link局番:1
- RS-485 通信速度:625,000 bps
- CC-Link通信速度:マスタ局に同じ
- 動作モード:6 軸接続モード

■ パラメータによる設定

- 1. NETC01-CCの「接続(号機番号 0) (1D80h)」パラメータを「有効」に設定します。
- 2. NETC01-CCの「NVメモリー括書き込み(3E85h)」コマンドを実行します。
- 3. NETC01-CCの電源を再投入します。

重要 「接続」パラメータは、電源の再投入後に有効になります。

STEP2 接続を確認します

終端抵抗の設定を確認します

STEP4 電源を投入し、設定を確認します

LEDの状態が図のようになっていることを確認してください。

- ドライバまたは NETC01-CCの C-ERR(赤)が点灯しているとき:RS-485 通信の通信速度や号機番号を確認してください。
- NETC01-CCの L-ERR(赤)が点灯しているとき:CC-Link通信エラーの内容を確認してください。

STEP5 CC-Link通信のリモート I/Oで運転を実行します

- 1. ドライバの運転データ No.1 の回転速度(1241h)を設定します。
- 2. CC-Linkのリモート I/Oの号機番号 0の M0と FWDを ONにして、運転を実行します。

RY(マスタ→ NETC01-CC)					
デバイス No.	信号名	初期値			
RY0	NET-IN0	MO			
RY1	NET-IN1	M1			
RY2	NET-IN2	M2			
RY3	NET-IN3	FWD			
RY4	NET-IN4	REV			
RY5	NET-IN5	STOP-MODE			
RY6	NET-IN6	MB-FREE			
RY7	NET-IN7	未使用			

RY(RY(マスタ→ NETC01-CC)					
デバイス No.	信号名	初期値				
RY8	NET-IN8					
RY9	NET-IN9					
RYA	NET-IN10					
RYB	NET-IN11	土体田				
RYC	NET-IN12	不使用				
RYD	NET-IN13					
RYE	NET-IN14					
RYF	NET-IN15					

STEP6 うまく運転できましたか?

いかがでしたか。うまく運転できたでしょうか。運転できないときは、次の点を確認してください。

- ドライバまたは NETC01-CC にアラームが発生していませんか?
- 号機番号、通信速度、終端抵抗は正しく設定されていますか?
- NETC01-CCの「接続」パラメータは正しく設定されていますか?
- C-ERR LEDが点灯していませんか? (RS-485 通信異常)
- L-ERR LEDが点灯していませんか? (CC-Link通信異常)
- 運転データ(回転速度)は正しく設定されていますか?
- ドライバのパラメータは正しく設定されていますか?

詳細な設定や機能については、NETC01-CCユーザーズマニュアル、および次ページ以降をご覧ください。

1.2 スイッチの設定

ネットワークコンバータと組み合わせて使うときは、事前にドライバのスイッチを設定してください。

重要 スイッチを設定するときは、必ず電源を切ってください。電源が投入されている状態で設定しても、有効 になりません。

■ 接続先の設定

機能設定スイッチ 2(SW5)の No.2 で、RS-485 通信の接続先を設定します。ネットワークコンバータで制御するときは OFFにしてください。

出荷時設定 OFF(ネットワークコンバータ)

■ 号機番号(スレーブアドレス)

号機設定スイッチ(SW1)と機能設定スイッチ2(SW5)の No.1を併用して、号機番号(スレーブアドレス)を設定します。 号機番号(スレーブアドレス)は重複しないように設定してください。 出荷時設定 SW1:0、SW5-No.1:OFF(号機番号0)

山何时設定 SW1.0、SW3-N0.1.0FF(万傚省万0)

号機番号 (スレーブアドレス)	0	1	2	3	4	5	6	7	8	9	10	11
SW1	0	1	2	3	4	5	6	7	8	9	Α	В
SW5-No.1		OFF										
接続モード			6 軸接約	売モード					12 軸接	続モート	`	

■ 通信速度

通信速度設定スイッチ(SW4)で、通信速度を 625,000 bpsに設定してください。 出荷時設定 7(625,000 bps)

■ 終端抵抗

ネットワークコンバータから一番離れた位置(終端)にあるドライバは、終端	SW3-No.4	終端抵抗(120 Ω)
抵抗を設定します。 機能設定スイッチ 1 (SW3)の No.4 を ONにして、	OFF	なし
RS-485 通信の終端抵抗(120Ω)を設定してください。	ON	あり
出荷時設定 OFF(終端抵抗なし)		

1.3 リモートレジスター覧

リモートレジスタは、6軸接続モードと12軸接続モードで共通です。

リモートレジスタを使って、ドライバや **NETC01-CC**のモニタ、パラメータの読み出しや書き込み、およびメンテナ ンスコマンドを実行します。

「n」は、CC-Link局番設定によってマスタ局に割り付けられたアドレスです。

RWw	/(マスタ→ NETC01-CC)	RWi	·(NETC01-CC→マスタ)
アドレス No.	内容	アドレス No.	内容
RWwn0	モニタ0の命令コード	RWrn0	モニタ0のデータ(下位 16 bit)
RWwn1	モニタ0の号機番号	RWrn1	モニタ0のデータ(上位 16 bit)
RWwn2	モニタ1の命令コード	RWrn2	モニタ1のデータ(下位 16 bit)
RWwn3	モニタ1の号機番号	RWrn3	モニタ1のデータ(上位 16 bit)
RWwn4	モニタ2の命令コード	RWrn4	モニタ2のデータ(下位 16 bit)
RWwn5	モニタ2の号機番号	RWrn5	モニタ2のデータ(上位 16 bit)
RWwn6	モニタ3の命令コード	RWrn6	モニタ3のデータ(下位 16 bit)
RWwn7	モニタ3の号機番号	RWrn7	モニタ3のデータ(上位 16 bit)
RWwn8	モニタ4の命令コード	RWrn8	モニタ4のデータ(下位 16 bit)
RWwn9	モニタ4の号機番号	RWrn9	モニタ4のデータ(上位 16 bit)
RWwnA	モニタ5の命令コード	RWrnA	モニタ5のデータ(下位 16 bit)
RWwnB	モニタ5の号機番号	RWrnB	モニタ5のデータ(上位 16 bit)
RWwnC	命令コード	RWrnC	命令コード応答
RWwnD	号機番号	RWrnD	号機番号応答
RWwnE	データ(下位)	RWrnE	データ(下位)
RWwnF	データ(上位)	RWrnF	データ(上位)

1.4 6 軸接続モードのリモート I/Oの割り付け

ドライバのリモート I/O割り付けを示します。「n」は、CC-Link局番設定によってマスタ局に割り付けられたアドレスです。6軸接続モードについては、NETC01-CCユーザーズマニュアルをご覧ください。

■ リモート I/O割り付け一覧

コマンド RY (マ	マスタ→ NETC01-CC)	レスポンス RX(NETC01-CC→マスタ)			
デバイス No.	内容	デバイス No.	内容		
RYn7 ~ RYn0		RXn7 ~ RXn0			
RYnF ~ RYn8	ち版留号 0 リモート 1/0 八月	RXnF ~ RXn8	考機留号 0 リモート 1/0 山 刀		
$RY(n+1)7 \sim RY(n+1)0$		$RX(n+1)7 \sim RX(n+1)0$			
$RY(n+1)F \sim RY(n+1)8$		$RX(n+1)F \sim RX(n+1)8$			
$RY(n+2)7 \sim RY(n+2)0$		$RX(n+2)7 \sim RX(n+2)0$			
$RY(n+2)F \sim RY(n+2)8$	「ち城田ち」2」りモート1/0八月	$RX(n+2)F \sim RX(n+2)8$			
$RY(n+3)7 \sim RY(n+3)0$		$RX(n+3)7 \sim RX(n+3)0$			
$RY(n+3)F \sim RY(n+3)8$		$RX(n+3)F \sim RX(n+3)8$			
$RY(n+4)7 \sim RY(n+4)0$		$RX(n+4)7 \sim RX(n+4)0$			
$RY(n+4)F \sim RY(n+4)8$		$RX(n+4)F \sim RX(n+4)8$			
$RY(n+5)7 \sim RY(n+5)0$		$RX(n+5)7 \sim RX(n+5)0$			
$RY(n+5)F \sim RY(n+5)8$	ち版留号 3 リモート 1/0 八月	$RX(n+5)F \sim RX(n+5)8$	5 (() 日 5 5 5 5 5 5 5 5 5 5		
$RY(n+6)7 \sim RY(n+6)0$	NETCO1 CCの制御入力。	$RX(n+6)7 \sim RX(n+6)0$	NETCO1 CCの伴能出力。		
$RY(n+6)F \sim RY(n+6)8$	Nercor-cco的制御八方*	$RX(n+6)F \sim RX(n+6)8$	NEICOT-CCO状態山刀*		
$RY(n+7)7 \sim RY(n+7)0$	システム領域の制御入力。	$RX(n+7)7 \sim RX(n+7)0$	システム領域の状態出力。		
$RY(n+7)F \sim RY(n+7)8$	レスノム 原境の 前御八刀 *	$RX(n+7)F \sim RX(n+7)8$			

* 詳細は NETC01-CCユーザーズマニュアルをご覧ください。

■ リモート I/Oの入出力

リモート I/O入力

NETC01-CC		ドライバ 号機番号0	ドライバ 号機番号1	ドライバ 号機番号5
RYnF~RYn0 RY(n+1)F~RY(n+1)0 RY(n+2)F~RY(n+2)0 RY(n+3)F~RY(n+3)0 RY(n+4)F~RY(n+4)0 RY(n+5)F~RY(n+5)0 RY(n+6)F~RY(n+6)0	号機番号「0」リモートI/O入力 号機番号「1」リモートI/O入力 号機番号「2」リモートI/O入力 号機番号「3」リモートI/O入力 号機番号「4」リモートI/O入力 号機番号「5」リモートI/O入力 NETC01-CC 制御入力	号機番号「0」 リモートI/O入力	号機番号「1」 リモートI/O入力	 号機番号「5」 リモートI/O入力
RY(n+7)F~RY(n+7)0	システム領域 制御入力			

リモート Ⅰ/O出力

		ドライバ	ドライバ		ドライバ
NETC01-CC		号機番号0	号機番号1		号機番号5
RXnF~RXn0 RX(n+1)F~RX(n+1)0 RX(n+2)F~RX(n+2)0 RX(n+3)F~RX(n+3)0 RX(n+4)F~RX(n+3)0 RX(n+4)F~RX(n+4)0 RX(n+5)F~RX(n+5)0 RX(n+6)F~RX(n+6)0 RX(n+7)F~RX(n+7)0	号機番号「0」リモートI/O出力 号機番号「1」リモートI/O出力 号機番号「2」リモートI/O出力 号機番号「3」リモートI/O出力 号機番号「4」リモートI/O出力 号機番号「5」リモートI/O出力 NETC01-CC 状態出力 システム領域 状態出力	号機番号「0」 リモートI/O出力	号機番号「1」 リモートI/O出力	····	号機番号「5」 リモートI/O出力
				-	

■ リモート I/O割り付けの詳細

	コマンド	・ RY(マスタ→ I	NETC01-CC)	レスポンス RX(NETC01-CC →マスタ)				
	デバイス No.	信号名	内容*	デバイス No.	信号名	内 容 *		
号機番号「0」	RY(n)0	NET-IN0	[M0]	RX(n)0	NET-OUT0	[M0_R]		
	RY(n)1	NET-IN1	[M1]	RX(n)1	NET-OUT1	[M1_R]		
	RY(n)2	NET-IN2	[M2]	RX(n)2	NET-OUT2	[M2_R]		
	RY(n)3	NET-IN3	[FWD]	RX(n)3	NET-OUT3	[FWD_R]		
	RY(n)4	NET-IN4	[REV]	RX(n)4	NET-OUT4	[REV_R]		
	RY(n)5	NET-IN5	[STOP-MODE]	RX(n)5	NET-OUT5	[STOP-MODE_R]		
	RY(n)6	NET-IN6	[MB-FREE]	RX(n)6	NET-OUT6	[WNG]		
	RY(n)7	NET-IN7		RX(n)7	NET-OUT7	[ALARM-OUT1]		
	RY(n)8	NET-IN8		RX(n)8	NET-OUT8	[S-BSY]		
	RY(n)9	NET-IN9		RX(n)9	NET-OUT9	[未使用]		
	RY(n)A	NET-IN10		RX(n)A	NET-OUT10			
	RY(n)B	NET-IN11	[未使用]	RX(n)B	NET-OUT11			
	RY(n)C	NET-IN12		RX(n)C	NET-OUT12	[ALARM-OUT2]		
	RY(n)D	NET-IN13		RX(n)D	NET-OUT13	[MOVE]		
	RY(n)E	NET-IN14		RX(n)E	NET-OUT14	[VA]		
	RY(n)F	NET-IN15		RX(n)F	NET-OUT15	[TLC]		
号機番号「1」	RY(n+1)0	NET-IN0		RX(n+1)0	NET-OUT0	号機番号「0」に同じ		
	RY(n+1)F	NET-IN15		RX(n+1)F	NET-OUT15			
号機番号「2」	RY(n+2)0	NET-IN0		RX(n+2)0	NET-OUT0			
	∼ RY(n+2)F	~ NET-IN15	ち懱畬ち 0」に回し 	∼ RX(n+2)F	~ NET-OUT15	亏機番号Ⅰ0」に同じ		
号機番号「3」	RY(n+3)0	NET-IN0		RX(n+3)0	NET-OUT0	号機番号「0」に同じ		
	∼ RY(n+3)F	~ NET-IN15	亏機番号 0」に同し 	∼ RX(n+3)F	~ NET-OUT15			
	RY(n+4)0	NET-IN0		RX(n+4)0	NET-OUT0			
号機畨号 4」	∼ RY(n+4)F	~ NET-IN15	号機番号 0」に同じ 	∼ RX(n+4)F	~ NET-OUT15	亏機番号 0」に同じ		
	RY(n+5)0	NET-IN0		RX(n+5)0	NET-OUT0	号機番号「0」に同じ		
号機番号「5」	~ RY(n+5)F	~ NFT-IN15	号機番号「0」に同じ	~ RX(n+5)F	~ NET-OUT15			
	RY(n+6)0	M-REQ0	モニタ要求 0	RX(n+6)0	M-DAT0	モニタ中 0		
	RY(n+6)1	M-REQ1	モニタ要求 1	RX(n+6)1	M-DAT1	モニタ中 1		
	RY(n+6)2	M-REQ2	モニタ要求 2	RX(n+6)2	M-DAT2	モニタ中 2		
	RY(n+6)3	M-REQ3	モニタ要求 3	RX(n+6)3	M-DAT3	モニタ中 3		
	RY(n+6)4	M-REQ4	モニタ要求 4	RX(n+6)4	M-DAT4	モニタ中 4		
	RY(n+6)5	M-REQ5	モニタ要求 5	RX(n+6)5	M-DAT5	モニタ中 5		
	RY(n+6)6	_	_	RX(n+6)6	WNG	ワーニング		
NFTC01-CC	RY(n+6)7	ALM-RST	アラームリセット	RX(n+6)7	ALM	アラーム		
制御入力 /状態出力	RY(n+6)8			RX(n+6)8	C-SUC			
	RY(n+6)9	n+6)9		RX(n+6)9		_		
	RY(n+6)A	_	_	RX(n+6)A	_			
	RY(n+6)B			RX(n+6)B				
	RY(n+6)C	D-REQ	コマンド実行要求	RX(n+6)C	D-END	コマンド処理完了		
	RY(n+6)D			RX(n+6)D	R-ERR	レジスタエラー		
	RY(n+6)E	((n+6)E –	_	RX(n+6)E	S-BSY	システム処理中		
	RY(n+6)F			RX(n+6)F	_	_		
システム領域 制御入力 /状態出力				RX(n+7)0		使用禁止		
	RY(n+7)0			∼ RX(n+7)A	_			
	~	_	使用禁止	RX(n+7)B	CRD	リモート通信局レディ		
	RY(n+7)F			RX(n+7)C		14 m ++ ·		
				∼ RX(n+7)F	_	使用禁止		
						* []内は初期値です。		
1.5 12 軸接続モードのリモート I/Oの割り付け

ドライバのリモート I/O割り付けを示します。「n」は、CC-Link局番設定によってマスタ局に割り付けられたアドレスです。12軸接続モードについては、NETC01-CCユーザーズマニュアルをご覧ください。

コマンド RY (マ	マスタ→ NETC01-CC)
デバイス No.	内容
RYn7 ~ RYn0	号機番号「0」リモート I/O入力
RYnF ~ RYn8	号機番号「1」リモート I/O入力
$RY(n+1)7 \sim RY(n+1)0$	号機番号「2」リモート I/O入力
$RY(n+1)F \sim RY(n+1)8$	号機番号「3」リモート I/O入力
$RY(n+2)7 \sim RY(n+2)0$	号機番号「4」リモート I/O入力
$RY(n+2)F \sim RY(n+2)8$	号機番号「5」リモート I/O入力
$RY(n+3)7 \sim RY(n+3)0$	号機番号「6」リモート I/O入力
$RY(n+3)F \sim RY(n+3)8$	号機番号「7」リモート I/O入力
$RY(n+4)7 \sim RY(n+4)0$	号機番号「8」リモート I/O入力
$RY(n+4)F \sim RY(n+4)8$	号機番号「9」リモート I/O入力
$RY(n+5)7 \sim RY(n+5)0$	号機番号「10」リモート I/O入力
$RY(n+5)F \sim RY(n+5)8$	号機番号「11」リモート I/O入力
$RY(n+6)7 \sim RY(n+6)0$	NETCO1 CCの制御入力。
$RY(n+6)F \sim RY(n+6)8$	NEICOI-CCO/前個八月 *
$RY(n+7)7 \sim RY(n+7)0$	シューノ領域の制御る力が
$RY(n+7)F \sim RY(n+7)8$	システム 限級の前御人力*

■ リモート I/O割り付け一覧

レスポンス RX((NETC01-CC→マスタ)
デバイス No.	内容
RXn7 ~ RXn0	号機番号「0」リモート I/O出力
RXnF ~ RXn8	号機番号「1」リモート I/O出力
$RX(n+1)7 \sim RX(n+1)0$	号機番号「2」リモート I/O出力
$RX(n+1)F \sim RX(n+1)8$	号機番号「3」リモート I/O出力
$RX(n+2)7 \sim RX(n+2)0$	号機番号「4」リモート I/O出力
$RX(n+2)F \sim RX(n+2)8$	号機番号「5」リモート I/O出力
$RX(n+3)7 \sim RX(n+3)0$	号機番号「6」リモート I/O出力
$RX(n+3)F \sim RX(n+3)8$	号機番号「7」リモート I/O出力
$RX(n+4)7 \sim RX(n+4)0$	号機番号「8」リモート I/O出力
$RX(n+4)F \sim RX(n+4)8$	号機番号「9」リモート I/O出力
RX(n+5)7 ~ RX(n+5)0	号機番号「10」リモート I/O出力
$RX(n+5)F \sim RX(n+5)8$	号機番号「11」リモート I/O出力
$RX(n+6)7 \sim RX(n+6)0$	NETCO1 CCの状態出力。
$RX(n+6)F \sim RX(n+6)8$	
RX(n+7)7 ~ RX(n+7)0	シューノ領域の状態山力。
$RX(n+7)F \sim RX(n+7)8$	ンヘナム限戦の状態田月*

* 詳細は NETC01-CCユーザーズマニュアルをご覧ください。

■ リモート I/Oの入出力

NETC01-CC			ドライバ 号機番号0	ドライバ 号機番号1	ドライバ 号機番号11
RYn7~RYn0 RYnF~RYn8 RY(n+1)7~RY(n+1)0 RY(n+1)F~RY(n+1)8 RY(n+2)7~RY(n+2)0 RY(n+2)F~RY(n+2)8 RY(n+3)7~RY(n+3)0 RY(n+3)F~RY(n+3)8 RY(n+4)7~RY(n+4)0 RY(n+4)F~RY(n+4)8 RY(n+5)7~RY(n+5)0	号機番号「0」リモートI/O入力 号機番号「1」リモートI/O入力 号機番号「2」リモートI/O入力 号機番号「3」リモートI/O入力 号機番号「4」リモートI/O入力 号機番号「5」リモートI/O入力 号機番号「6」リモートI/O入力 号機番号「6」リモートI/O入力 号機番号「8」リモートI/O入力 号機番号「8」リモートI/O入力		号機番号「0」 リモートI/O入力	号機番号「1」 リモートI/O入力	
RY(n+5)F~RY(n+5)8	号機番号「11」リモートI/O入力	$\frac{1}{1}$			└ 号機番号 11」 リモートI/O入力
RY(n+6)F~RY(n+6)0 RY(n+7)F~RY(n+7)0	NETC01-CC 制御入力 システム領域 制御入力				

リモート I/O出力

■ リモート I/O割り付けの詳細

	コマンド	・ RY(マスタ→ I	NETC01-CC)	レスポン	スRX(NETCO	1-CC→マスタ)	
	デバイス No.	信号名	内容*	デバイス No.	信号名	内容*	
	RY(n)0	NET-IN0	[M0]	RX(n)0	NET-OUT0	[M0_R]	
	RY(n)1	NET-IN1	[M1]	RX(n)1	NET-OUT1	[M1_R]	
	RY(n)2	NET-IN2	[M2]	RX(n)2	NET-OUT2	[M2_R]	
	RY(n)3	NET-IN3	[FWD]	RX(n)3	NET-OUT3	[FWD_R]	
方倣省方10]	RY(n)4	NET-IN4	[REV]	RX(n)4	NET-OUT4	[REV_R]	
	RY(n)5	NET-IN5	[STOP-MODE]	RX(n)5	NET-OUT5	[STOP-MODE_R]	
	RY(n)6	NET-IN6	[MB-FREE]	RX(n)6	NET-OUT6	[WNG]	
	RY(n)7	NET-IN7	[未使用]	RX(n)7	NET-OUT7	[ALARM-OUT1]	
	RY(n)8	NET-IN0	[M0]	RX(n)8	NET-OUT0	[M0_R]	
	RY(n)9	NET-IN1	[M1]	RX(n)9	NET-OUT1	[M1_R]	
	RY(n)A	NET-IN2	[M2]	RX(n)A	NET-OUT2	[M2_R]	
□ 槛来□[1]	RY(n)B	NET-IN3	[FWD]	RX(n)B	NET-OUT3	[FWD_R]	
万悈留万□]	RY(n)C	NET-IN4	[REV]	RX(n)C	NET-OUT4	[REV_R]	
	RY(n)D	NET-IN5	[STOP-MODE]	RX(n)D	NET-OUT5	[STOP-MODE_R]	
	RY(n)E	NET-IN6	[MB-FREE]	RX(n)E	NET-OUT6	[WNG]	
	RY(n)F	NET-IN7	[未使用]	RX(n)F	NET-OUT7	[ALARM-OUT1]	
	RY(n+1)0	NET-IN0		RX(n+1)0	NET-OUT0		
号機番号「2」	\sim		号機番号「0」に同じ	\sim		号機番号「0」に同じ	
	RT(II+1)7 PV(p+1)8			$\frac{RX(n+1)7}{PX(n+1)8}$			
号機番号「3」	~	~		~	~	号機番号「1」に同じ	
	RY(n+1)F	NET-IN7		RX(n+1)F	NET-OUT7		
	RY(n+2)0	NET-IN0		RX(n+2)0	NET-OUT0		
号機番号「4」			号機番号「0」に同じ	~ DV(n+2)7		号機番号「0」に同じ	
	RY(n+2)7			RX(n+2)7	NET-OUT?		
号機番号[5]	~ KY(N+2)8	NET-INU ~	 号機番号「1」に同じ	KX(N+2)8 ~	NE1-0010	号機番号[1」に同じ	
	RY(n+2)F	NET-IN7		RX(n+2)F	NET-OUT7		
	RY(n+3)0	NET-IN0		RX(n+3)0	NET-OUT0		
号機番号「6」	~ ~	~	号機番号「0」に同じ	~ ~ ~ ~	~	号機番号「0」に同じ	
	RY(n+3)7	NET-IN7		RX(n+3)7	NET-OUT7		

	コマンド	・ RY(マスタ→ M	NETC01-CC)	レスポン	スRX(NETCO	1-CC→ マスタ)
	デバイス No.	信号名	内容*	デバイス No.	信号名	内容*
	RY(n+3)8	NET-IN0	모继来모[1,1-미)	RX(n+3)8	NET-OUT0	모槛포모[1기-미)
ち城宙ち!	RY(n+3)F	NET-IN7	「方城宙方」」」に向し	RX(n+3)F	NET-OUT7	方版曲方「」に向し
	RY(n+4)0	NET-IN0		RX(n+4)0	NET-OUT0	
号機番号「8」	~ RY(n+4)7	~ NET-IN7	号機番号「0」に同じ	~ RX(n+4)7	~ NET-OUT7	号機番号「0」に同じ
	RY(n+4)8	NET-IN0		RX(n+4)8	NET-OUT0	
号機番号「9」	∼ RY(n+4)F	~ NET-IN7	号機番号「1」に同じ	∼ RX(n+4)F	~ NET-OUT7	号機番号「1」に同じ
	RY(n+5)0	NET-IN0		RX(n+5)0	NET-OUT0	
号機番号「10」	\sim		号機番号「0」に同じ	\sim		号機番号「0」に同じ
	RT(II+3)7 PV(p+5)8			$\frac{RA(11+5)7}{PX(p+5)8}$		
号機番号「11」	~	~	 号機番号「1」に同じ	~	~	号機番号「1」に同じ
	RY(n+5)F	NET-IN7		RX(n+5)F	NET-OUT7	
	RY(n+6)0	M-REQ0	モニタ要求 0	RX(n+6)0	M-DAT0	モニタ中 0
	RY(n+6)1	M-REQ1	モニタ要求 1	RX(n+6)1	M-DAT1	モニタ中 1
	RY(n+6)2	M-REQ2	モニタ要求 2	RX(n+6)2	M-DAT2	モニタ中 2
	RY(n+6)3	M-REQ3	モニタ要求 3	RX(n+6)3	M-DAT3	モニタ中 3
	RY(n+6)4	M-REQ4	モニタ要求 4	RX(n+6)4	M-DAT4	モニタ中 4
	RY(n+6)5	M-REQ5	モニタ要求 5	RX(n+6)5	M-DAT5	モニタ中 5
	RY(n+6)6	—	-	RX(n+6)6	WNG	ワーニング
NETC01-CC	RY(n+6)7	ALM-RST	アラームリセット	RX(n+6)7	ALM	アラーム
制御入力 /状態出力	RY(n+6)8			RX(n+6)8	C-SUC	RS-485 通信中
	RY(n+6)9			RX(n+6)9		
	RY(n+6)A	_	—	RX(n+6)A	—	—
	RY(n+6)B			RX(n+6)B		
	RY(n+6)C	D-REQ	コマンド実行要求	RX(n+6)C	D-END	コマンド処理完了
	RY(n+6)D			RX(n+6)D	R-ERR	レジスタエラー
	RY(n+6)E	_	_	RX(n+6)E	S-BSY	システム処理中
	RY(n+6)F			RX(n+6)F	—	_
				RX(n+7)0		
				~	_	使用禁止
システム領域	RY(n+7)0		住田林山	RX(n+7)A	000	
制御入力 /状態出力	\sim RY(n+7)F	_	(使用票止		CKD	リモート週信向レナイ
				$\kappa_{X(n+7)C}$	_	使用禁止
				RX(n+7)F		

* []内は初期値です。

MECHATROLINK通信で制御する場合 2

ネットワークコンバータ NETC01-M2または NETC01-M3と組み合わせて MECHATROLINK通信で制御する方 法について説明します。リモートI/Oや命令コードについては120ページ「3リモートI/Oの詳細」をご覧ください。

2.1 ガイダンス

はじめてお使いになるときはこの節をご覧になり、運転方法のながれについてご理解ください。 ここでは NETC01-M2を例として説明しています。

重要 • 運転するときは周囲の状況を確認し、安全を確保してから行なってください。 パラメータの設定方法は、別冊の NETC01-M2または NETC01-M3ユーザーズマニュアルをご覧く ださい。

STEP1 通信速度、局アドレス、号機番号を設定します

■ パラメータによる設定

1. OPX-2Aまたは MEXE02で、NETC01-M2の「通信(号機番号 0)」パラメータを「有効」に設定します。

NETC01-M2の電源を再投入します。

重要
・「通信」パラメータは、電源の再投入後に有効になります。

• NETC01-M2のパラメータを設定するときは、OPX-2Aまたは MEXE02をお使いください。

STEP2 接続を確認します

* NETC01-M3には不要です。

STEP4 電源を投入し、設定を確認します

LEDの状態が図のようになっていることを確認してください。

- ドライバまたは NETC01-M2の C-ERR(赤)が点灯しているとき:RS-485 通信の通信速度や号機番号を確認してください。
- NETC01-M2の ERR(赤)が点灯しているとき:MECHATROLINK-Ⅱ通信エラーの内容を確認してく ださい。

STEP5 運転を実行します

ドライバの入出力信号は、MECHATROLINK-II通信の I/Oコマンド(DATA_RWA: 50h)で制御してください。

- 1. ドライバの運転データNo.1の回転速度(1241h)を設定します。
- 2. 号機番号 0 の M0 と FWDを ONにして、運転を実行します。

bit15	bit14	bit13	bit12	bit11	bit10	bit9	bit8
NET-IN15	NET-IN14	NET-IN13	NET-IN12	NET-IN11	NET-IN10	NET-IN9	NET-IN8
[未使用]	[未使用]	[未使用]	[未使用]	[未使用]	[未使用]	[未使用]	[未使用]
bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
NET-IN7	NET-IN6	NET-IN5	NET-IN4	NET-IN3	NET-IN2	NET-IN1	NET-IN0
[未使用]	[MB-FREE]	[STOP-MODE]	[REV]	[FWD]	[M2]	[M1]	[M0]

* []内は初期値です。

STEP6 うまく運転できましたか?

いかがでしたか。うまく運転できたでしょうか。運転できないときは、次の点を確認してください。

- ドライバまたは NETC01-M2にアラームが発生していませんか?
- 号機番号、通信速度、終端抵抗は正しく設定されていますか?
- NETC01-M2の「通信」パラメータは正しく設定されていますか?
- C-ERR LEDが点灯していませんか? (RS-485 通信異常)
- ERR LEDが点灯していませんか? (MECHATROLINK-Ⅱ/Ⅲ通信異常)
- 運転データ(回転速度)は正しく設定されていますか?
- ドライバのパラメータは正しく設定されていますか?

詳細な設定や機能については、NETC01-M2ユーザーズマニュアル、および次ページ以降をご覧ください。

2.2 スイッチの設定

ネットワークコンバータと組み合わせて使うときは、事前にドライバのスイッチを設定してください。

重要┃スイッチを設定するときは、必ず電源を切ってください。電源が投入されている状態で設定しても、有効 になりません。

■ 接続先の設定

機能設定スイッチ 2(SW5)の No.2 で、RS-485 通信の接続先を設定します。ネットワークコンバータで制御すると きは OFFにしてください。

出荷時設定 OFF(ネットワークコンバータ)

■ 号機番号(スレーブアドレス)

号機設定スイッチ(SW1)と機能設定スイッチ2(SW5)のNo.1を併用して、号機番号(スレーブアドレス)を設定し ます。号機番号(スレーブアドレス)は重複しないように設定してください。

出荷時設定 SW1:0、SW5-No.1:OFF(号機番号 0)

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
SW1	0	1	2	3	4	5	6	7	8	9	А	В	С	D	E	F
SW5-No.1								0	FF							
接続モード			:	8 軸接約	売モート	÷	-	-			1	6 軸接	続モー	4		

■ 通信速度

通信速度設定スイッチ(SW4)で、通信速度を 625,000 bpsに設定してください。 出荷時設定 7(625,000 bps)

■ 終端抵抗

ネットワークコンバータから一番離れた位置(終端)にあるドライバは、終端	SW3-No.4	終端抵抗(120 Ω)
抵抗を設定します。 機能設定スイッチ 1 (SW3)の No.4 を ONにして、	OFF	なし
RS-485 通信の終端抵抗(120Ω)を設定してください。	ON	あり
出荷時設定 OFF(終端抵抗なし)		

2.3 NETC01-M2の I/Oフィールドマップ

「DATA_RWA」コマンド(50h)で、リモート I/Oデータの更新(非同期)を行ないます。 リモート I/O占有サイズが 16 ビットモード、伝送バイト数が 32 バイト(出荷時設定)の場合、I/Oフィールドマップは 下表のようになります。その他の I/Oフィールドマップは、NETC01-M2ユーザーズマニュアルをご覧ください。

バイト	パート分類	種別	コマンド	レスポンス
1		- -	DATA RWA(50h)	DATA RWA(50h)
2				ALARM
3	ヘッダ部	 種別 - - - - - - - - リモート I/O 	OPTION	
4		類 種別 		STATUS
5		_		
6		_	予約	接続人ナータ人
7				
8			考機番号 0 リモート 1/0 人力	亏機备亏10」りモート1/0出力
9				
10				
11			号機番号「2」リモート 1/○入力	●
12				
13			号機番号「3」リモート1/0入力	
14		リモート 1/0		
15			号機番号「4」リモート I/O入力	号機番号「4」リモート I/O出力
16				
17			号機番号「5」リモート I/O入力	号機番号「5」リモート I/O出力
18	データ部			
19			号機番号「6」リモート I/O入力	号機番号「6」リモート I/O出力
20				
21			号機番号「7」リモート I/O入力	号機番号「7」リモート I/O出力
22				
23			レジスタ号機番号	レジスタ号機番号応答
25				
26			命令コード +TRIG	ー ポート心合 + I KIG心合 +STATUS
27		リモートレジスタ		
28				
29			DATA	DATA応答
30				
31		—	予約	予約

2.4 NETC01-M3の I/Oフィールドマップ

「DATA_RWA」コマンド(20h)で、リモートI/Oデータの更新(非同期)を行ないます。 リモートI/O占有サイズが16ビットモード、伝送バイト数が32バイト(出荷時設定)の場合、I/Oフィールドマップは 下表のようになります。その他のI/Oフィールドマップは、NETC01-M3ユーザーズマニュアルをご覧ください。

バイト	種別	コマンド	レスポンス			
0	_	DATA_RWA(20h)	DATA_RWA(20h)			
1	_	WDT	RWDT			
2	_		CMD STAT			
3	_					
4		予約				
5		ביא יר				
6						
7						
8						
9						
10		号機番号「2」リモート1/0入力	号機番号「2」リモート I/O出力			
11						
12			号機番号「3」リモート I/O出力			
13	リモート 1/0					
14			 			
15						
16		号機番号「5」リモート I/O入力	号機番号「5」リモート I/O出力			
17						
18		号機番号「6」リモート I/O入力	号機番号「6」リモート I/O出力			
19						
20		号機番号「7」リモート I/O入力	号機番号「7」リモート I/O出力			
21						
		レジスタ号機番号	レジスタ号機番号応答			
23						
24		命令コード +TRIG	命令コード応答 +TRIG応答 +STATUS			
25	リモートレジスタ					
26						
27		DATA	DATA応答			
28						
29						
30		予約	予約			
31	-					

2.5 通信フォーマット

ドライバと NETC01-M2 (NETC01-M3)との通信フォーマットを示します。

■ リモート I/O入力

リモートI/Oの詳細は120ページをご覧ください。

• 8 軸接続モードの場合(16 bitモード)

bit15	bit14	bit13	bit12	bit11	bit10	bit9	bit8
NET-IN15	NET-IN14	NET-IN13	NET-IN12	NET-IN11	NET-IN10	NET-IN9	NET-IN8
[未使用]	[未使用]	[未使用]	[未使用]	[未使用]	[未使用]	[未使用]	[未使用]
bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
NET-IN7	NET-IN6	NET-IN5	NET-IN4	NET-IN3	NET-IN2	NET-IN1	NET-IN0
[未使用]	[MB-FREE]	[STOP-MODE]	[REV]	[FWD]	[M2]	[M1]	[M0]

* []内は初期値です。

• 16 軸接続モードの場合(8 bitモード)

bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
NET-IN7 [去估田]	NET-IN6	NET-IN5	NET-IN4	NET-IN3	NET-IN2	NET-IN1	NET-IN0
「不仅用」							

* []内は初期値です。

■ リモート I/O出力

• 8 軸接続モードの場合(16 bitモード)

bit15	bit14	bit13	bit12	bit11	bit10	bit9	bit8
NET-OUT15 [TLC]	NET-OUT14 [VA]	NET-OUT13 [MOVE]	NET-OUT12 [ALARM-OUT2]	NET-OUT11 [未使用]	NET-OUT10 [未使用]	NET-OUT9 [未使用]	NET-OUT8 [S-BSY]
bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
NET-OUT7 [ALARM-OUT1]	NET-OUT6 [WNG]	NET-OUT5 [STOP- MODE_R]	NET-OUT4 [REV_R]	NET-OUT3 [FWD_R]	NET-OUT2 [M2_R]	NET-OUT1 [M1_R]	NET-OUT0 [M0_R]

* []内は初期値です。

• 16 軸接続モードの場合(8 bitモード)

bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
NET-OUT7	NET-OUT6	NET-OUT5	NET-OUT4	NET-OUT3	NET-OUT2	NET-OUT1	NET-OUT0
[ALARM-OUT1]	[WNG]	[STOP-MODE_R]	[REV_R]	[FWD_R]	[M2_R]	[M1_R]	[M0_R]

* []内は初期値です。

■ リモートレジスタ入力

コマンド[NETC01-M2(NETC01-M3)→ドライバ]

bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
					م_ ل		
_	TRIG	命令コード					

DATA

● 説 明

名称	内容	設定範囲
命令コード	パラメータの読み出しと書き込み、モニタ、およびメンテナンスの 命令コードを指定します。	_
TRIG	命令コードを実行するハンドシェイク用トリガです。TRIGが 0 から 1 になると、命令コードと DATAが実行されます。	0:動作なし 1:実行
DATA	ドライバに書き込むデータです(リトルエンディアン)。	_

■ リモートレジスタ出力

• レスポンス[ドライバ→ NETC01-M2(NETC01-M3)]

			•				
bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
			命令コード				
STATUS	TRIG_R						
DATA_R							

● 説 明

名称	内容	設定範囲
命令コード	コマンドの命令コードを返信します。	—
TRIG_R	命令コードの実行完了を表わすハンドシェイク用トリガです。命令 コードの実行が完了すると、TRIG_Rが0から1になります。	0:未処理 1:実行完了
STATUS	命令コードを実行した結果を示します。	0:正常 1:異常
DATA_R	ドライバから読み出されたデータです(リトルエンディアン)。	—

3 リモート I/Oの詳細

NETC01-CC、NETC01-M2、およびNETC01-M3に共通です。

3.1 ドライバへの入力

パラメータで、次の入力信号をリモート I/Oの NET-IN0 ~ NET-IN15 に割り付けることができます。 NET-IN0 ~ NET-IN15 の配置については、下表をご覧ください。 パラメータについては、127 ページ「I/O機能[RS-485]パラメータ」をご覧ください。

bit15	bit14	bit13	bit12	bit11	bit10	bit9	bit8
NET-IN15	NET-IN14	NET-IN13	NET-IN12	NET-IN11	NET-IN10	NET-IN9	NET-IN8
[未使用]	[【未使用]	「「「「「「「」」	[未使用]	[未使用]	[未使用]	[未使用]	[未使用]
bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
NET-IN7	NET-IN6	NET-IN5	NET-IN4	NET-IN3	NET-IN2	NET-IN1	NET-IN0
[未使用]	[MB-FREE]	[STOP-MODE]	[REV]	[FWD]	[M2]	[M1]	[M0]
						* []内(は初期値です。

信号名 機能 設定範囲 未使用 入力端子を使用しないときに設定します。 FWD モーターが FWD方向へ回転します。 0:停止 1:運転 REV モーターが REV方向へ回転します。 0:瞬時停止 STOP-MODE 瞬時停止または減速停止を選択します。 1: 減速停止 0:電磁ブレーキ保持 **MB-FREE** 電磁ブレーキを解放します。 1:電磁ブレーキ解放 OPX-2Aや MEXE02の機能制限を解除します。 0:機能を制限 HMI (ノーマルクローズ) 1:制限を解除 汎用信号 0:0FF R0 ~ R15 RS-485 通信で制御するときに使用します。 1:ON M0 ~ M3 4 つのビットを使って、運転データ No.を選択します。 0~15:運転データNo. 0:トルク制限無効 ΤL トルク制限を無効にします。(ノーマルクローズ) 1:トルク制限有効

重要

 同じ入力信号を複数の入力端子に割り当てないでください。複数の入力端子に割り当てたときは、 どれか入力があれば機能が実行されます。

HMI入力とTL入力は、入力端子に割り当てられなかったときは常時ON(1)になります。また、ダイレクトI/OとリモートI/Oの両方に割り当てたときは、両方ともON(1)にならないと機能しません。

3.2 ドライバからの出力

パラメータで、次の出力信号をリモート I/Oの NET-OUT0 ~ NET-OUT15 に割り付けることができます。 NET-OUT0 ~ NET-OUT15 の配置については、下表をご覧ください。 パラメータについては、127 ページ「I/O機能[RS-485]パラメータ」をご覧ください。

bit15	bit14	bit13	bit12	bit11	bit10	bit9	bit8
NET-OUT15 [TLC]	NET-OUT14 [VA]	NET-OUT13 [MOVE]	NET-OUT12 [ALARM-OUT2]	NET-OUT11 [未使用]	NET-OUT10 [未使用]	NET-OUT9 [未使用]	NET-OUT8 [S-BSY]
bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
NET-OUT7 [ALARM-OUT1]	NET-OUT6 [WNG]	NET-OUT5 [STOP- MODE_R]	NET-OUT4 [REV_R]	NET-OUT3 [FWD_R]	NET-OUT2 [M2_R]	NET-OUT1 [M1_R]	NET-OUT0 [M0_R]

* []内は初期値です。

	機能	読み出し内容
	出力端子を使用しないときに設定します。	-
FWD_R	FWD入力に対する応答を出力します。	
REV_R	REV入力に対する応答を出力します。	
STOP-MODE_R	STOP-MODE入力に対する応答を出力します。	
MB-FREE_R	MB-FREE入力に対する応答を出力します。	0:OFF
HMI_R	HMI入力に対する応答を出力します。	1:ON
R0 ~ R15	汎用信号 R0 ~ R15 の状態を出力します。	
M0_R ~ M3_R	M0 ~ M3 入力に対する応答を出力します。	
TL_R	TL入力に対する応答を出力します。	
ALARM_OUT1	アラーム発生時に出力されます。(ノーマルクローズ)	0:アラームなし 1:アラーム発生中
WNG	ワーニング発生時に出力されます。	0:ワーニングなし 1:ワーニング発生中
MOVE	モーター運転中に出力されます。	0:モーター停止 1:モーター動作中
TLC	モーターのトルクがトルク制限値に到達すると出力されます。	0:トルク制限なし 1:トルク制限中
VA	モーターの速度が設定した速度に到達すると出力されます。	0:速度未到達 1:速度到達
S-BSY	ドライバが内部処理状態のときに出力されます。	0:OFF 1:ON
ALARM-OUT2	過負荷ワーニングレベルを超えると出力されます。 過負荷アラームが発生すると出力されます。 (ノーマルクローズ)	0:正常 1:過負荷中
MPS	主電源の投入状態を出力します。	0:主電源 OFF 1:主電源 ON
DIR	モーター軸の回転方向を出力します。	0:REV方向 1:FWD方向

4 命令コード一覧

NETC01-CC、NETC01-M2、およびNETC01-M3に共通です。

4.1 グループ機能

ドライバにはグループ機能があります。グループ機能とは、複数のスレーブでグループを組み、そのグループに対して運転指令を一斉に送信することです。

■ グループの構成

グループは親スレーブ1台と子スレーブで構成されます。

■ グループのアドレス

グループ送信を行なうときは、グループのアドレスをグループの対象となる子スレーブに対して設定します。 グループのアドレスを設定した子スレーブは、親スレーブに送信された指令を受け取ることができます。 親スレーブに運転指令を送信することで、同一グループの子スレーブにも指令が送信されます。

• 親スレーブ

親スレーブには、グループ送信のための設定は必要ありません。親スレーブの号機番号が、グループのアドレスになります。

子スレーブ

「グループ」(1018h)でグループのアドレスを子スレーブに設定します。

重要 グループ機能で実行できるのはリモート I/O入力だけです。コマンドやパラメータの読み出し、書き込み は実行できません。

■ グループ設定

グループ設定は、メンテナンスコマンドの「NVメモリー括書き込み」を実行してもNVメモリに保存されません。

命令コード		中网	記中午日	如期/店
読み出し	書き込み	内谷	設た型が	初舟喧
0018h	1018h	グループ	グループのアドレスを設定します。 -1:個別(グループを指定しません。) 0 ~ 15:グループのアドレス(親スレーブの号機番号)*	-1:個別

* NETC01-CCを使用するときは 0 ~ 11、NETC01-M2や NETC01-M3を使用するときは 0 ~ 15 の範囲で設定してください。

■ グループ機能の設定例

号機番号0のドライバを親スレーブ、号機番号1と2のドライバを子スレーブにしてグループを組むときは、次のように設定してください。

グループを構成するドライバの NET-IN3(リモート I/O)に FWDを割り付けたときのタイミングチャートです。

重要 親スレーブにリモート I/Oを入力すると、子スレーブも動作します。子スレーブにリモート I/Oを入力して も動作しません。

4.2 メンテナンスコマンド

アラームやワーニング履歴をクリアしたり、NVメモリの一括処理に使用するコマンドです。

命令コード	内容	説 明	設定範囲
30C0h	アラームのリセット	発生中のアラームを解除します。アラームの種類に よっては解除できないものがあります。	
30C2h	アラーム履歴のクリア	アラーム履歴をクリアします。	
30C3h	ワーニング履歴のクリア	ワーニング履歴をクリアします。	
30C4h	通信エラーコード履歴クリア	通信エラー履歴をクリアします。	
30C6h	Configuration	パラメータの再計算とセットアップを実行します。	
30C7h	全データ初期化 *	NVメモリに保存されているパラメータを初期値に戻し ます。	1:実行する
30C8h	NVメモリー括読み出し	NVメモリに保存されているパラメータを RAMに読み出 します。RAMに保存されていた運転データとパラメー タはすべて上書きされます。	
30C9h	NVメモリー括書き込み	RAMに保存されているパラメータを NVメモリに書き込 みます。	

* 通信パリティ、通信ストップビット、および送信待ち時間は初期化されません。OPX-2Aまたは MEXE02で初期化してください。

重要 NVメモリの書き換え可能回数は、約10万回です。

4.3 モニタコマンド

ドライバの状態をモニタするコマンドです。

命令コード	内容	説明
2040h	現在のアラーム	発生中のアラームコードを示します。
2041h	アラーム履歴1	
2042h	アラーム履歴 2	
2043h	アラーム履歴3	
2044h	アラーム履歴 4	
2045h	アラーム履歴5	
2046h	アラーム履歴 6	アラーム腹歴を示します。
2047h	アラーム履歴 7	
2048h	アラーム履歴8	
2049h	アラーム履歴9	
204Ah	アラーム履歴 10	
204Bh	現在のワーニング	発生中のワーニングコードを示します。
204Ch	ワーニング履歴1	
204Dh	ワーニング履歴2	
204Eh	ワーニング履歴3	
204Fh	ワーニング履歴 4	
2050h	ワーニング履歴5	
2051h	ワーニング履歴6	·ワーニング 復歴を示します。
2052h	ワーニング履歴7	
2053h	ワーニング履歴8	
2054h	ワーニング履歴9	
2055h	ワーニング履歴 10	
2056h	通信エラーコード	発生中の通信エラーコードを示します。
2057h	通信エラーコード履歴 1	
2058h	通信エラーコード履歴 2	
2059h	通信エラーコード履歴 3	
205Ah	通信エラーコード履歴 4	
205Bh	通信エラーコード履歴 5	
205Ch	通信エラーコード履歴 6	
205Dh	通信エラーコード履歴 7	
205Eh	通信エラーコード履歴 8	
205Fh	通信エラーコード履歴 9	
2060h	通信エラーコード履歴 10	
2062h	現在の運転データ No.	運転中のデータNo.を示します。 停止中は、 最後に運転したデータ No.が示されます。
2064h	指令速度	指令速度を示します。
2067h	フィードバック速度	フィードバック速度を示します。
206Ah	ダイレクト I/O、電磁ブレーキ の状態	ダイレクト I/Oと電磁ブレーキの状態を示します。割り付けは次表をご 覧ください。
2080h	運転速度	減速比または増速比で換算したフィードバック速度を示します。 (単位:r/min)
2081h	運転速度 小数点位置	運転速度の小数点位置を示します。*1
2082h	コンベヤ搬送速度	コンベヤ減速比またはコンベヤ増速比で換算したフィードバック速度を 示します。(単位:m/min)
2083h	コンベヤ搬送速度小数点位置	コンベヤ搬送速度の小数点位置を示します。*2
2084h	負荷率	定格トルクを100%として、モーターから発生するトルクを示します。 (単位:%)
2086h	外部アナログ速度設定	アナログ速度の設定値を示します。(単位:r/min)*3
2088h	外部アナログトルク制限設定	アナログトルクの制限値を示します。(単位:%)*3
208Bh	外部アナログ電圧設定	アナログ電圧の設定値を示します。(単位:0.1 V)
*1 小粉古の片	業は 「浦油は」パラマニタの「油油	

*1 小数点の位置は、「減速比」バフメータや「減速比の桁指定」バフメータの設定によって目動的に変わります。

*2 小数点の位置は、「コンベヤ減速比」パラメータや「コンベヤ減速比の桁指定」パラメータの設定によって自動的に変わります。

*3 「アナログ入力信号選択」パラメータで選択されていないときは「FFFFh」が表示されます。

• ダイレクト I/O、電磁ブレーキの状態(206Ah)

バイト	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
0	—	IN6	IN5	IN4	IN3	IN2	IN1	IN0
1	-	-	—	—	-	—	—	—
2	-	-	-	_	-	_	OUT1	OUT2
3	-	-	-	_	-	-	MB	-

4.4 運転データ

設定できる運転データ数は16個です(データNo.0~15)。 運転データを変更すると、すぐに再計算とセットアップが行なわれ、変更した値が反映されます。

命令コード		夕五	設宁筠田	如邯値	
読み出し	書き込み		してた 型 四 し 四 一 一 一 一 一 一 一 一 一 一 一 一 一	101朔1恒	
0240h	1240h	回転速度 No.0			
~	~	~	0、または 80 ~ 4000 r/min	0	
024Fh	124Fh	回転速度 No.15			
0300h	1300h	加速時間 No.0			
~	~	~			
030Fh	130Fh	加速時間 No.15	2 = 150(1, 0, 1, 2)	F	
0340h	1340h	減速時間 No.0	$12 \sim 150(1=0.1 \text{ s})$	5	
~	~	~			
034Fh	134Fh	減速時間 No.15			
0380h	1380h	トルク制限 No.0			
~	~	~	0 ~ 200%	200	
038Fh	138Fh	トルク制限 No.15			

4.5 ユーザーパラメータ

パラメータは RAMまたは NVメモリに保存されます。RAMのパラメータは DC24 V電源を遮断すると消去されますが、NVメモリのパラメータは DC24 V電源を遮断しても保存されています。

ドライバに DC24 V電源を投入すると、NVメモリのパラメータが RAMに転送され、RAM上でパラメータの再計算 やセットアップが行なわれます。

RS-485通信またはFAネットワークでパラメータを設定したときは、RAMに保存されます。RAMに保存されたパラメー タを NVメモリに保存するには、メンテナンスコマンドの「NVメモリー括書き込み」を行なってください。 MEXEO2で設定したパラメータは、「データの書き込み」を行なうと NVメモリに保存されます。

パラメータを変更したときに、変更した値が反映されるタイミングはパラメータによって異なり、次の4種類があります。

	反映タイミング	内容
А	即時	パラメータを書き込むと、すぐに再計算とセットアップが行なわれます。
В	運転停止後	運転を停止すると、再計算とセットアップが行なわれます。
С	Configurationの実行後 または電源の再投入後	Configurationの実行後または DC24 V電源の再投入後に再計算とセットアップが行なわれます。
D	電源の再投入後	DC24 V電源の再投入後に再計算とセットアップが行なわれます。

 NETC01-CC、NETC01-M2、およびNETC01-M3でパラメータを書き込んだときは、RAM領域に 書き込まれます。電源の再投入後に有効になるパラメータを変更したときは、電源を切る前に必ず NVメモリへ保存してください。

• NVメモリへの書き込み可能回数は、約10万回です。

■ 機能設定パラメータ

命令コード		夕社	机中午田	勿 期/齿	豆味。
読み出し	書き込み		設た創め	初新旭	及咣 *
01C2h	11C2h	モーター回転方向選択	0:十側 =CCW 1:十側 =CW	1	С
0825h	1825h	減速比	100 ~ 9999	100	
0826h	1826h	減速比の桁指定	0:1 桁 1:2 桁 2:3 桁	2	
0827h	1827h	增速比	1~5	1	
0828h	1828h	コンベヤ減速比	100 ~ 9999	100	А
0829h	1829h	コンベヤ減速比の桁指定	0:1 桁 1:2 桁 2:3 桁	2	
082Ah	182Ah	コンベヤ増速比	1~5	1	
08A7h	18A7h	回転速度到達幅	0 ~ 400 r/min	200	

* データが反映されるタイミングを表わします。(A:即時反映、C:Configurationの実行後または電源の再投入後に反映)

■ I/O機能パラメータ

命令コード		夕 뀫	机中午日	力扣店	百吨。	
読み出し	書き込み		[]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]	例知恒	及呋*	
0880h	1880h	IN0 入力機能選択		1:FWD		
0881h	1881h	IN1 入力機能選択		2:REV		
0882h	1882h	IN2 入力機能選択		19:STOP-MODE		
0883h	1883h	IN3 入力機能選択	下表をご覧ください。	48:M0	В	
0884h	1884h	IN4 入力機能選択		24: ALARM-RESET		
0885h	1885h	IN5 入力機能選択		20:MB-FREE		
0886h	1886h	IN6 入力機能選択		22:TH		
0890h	1890h	IN0 入力接点設定			С	
0891h	1891h	IN1 入力接点設定				
0892h	1892h	IN2 入力接点設定				
0893h	1893h	IN3 入力接点設定	0:A接点(ノーマルオーノン) 1·B接占(ノーマルクローズ)	0		
0894h	1894h	IN4 入力接点設定				
0895h	1895h	IN5 入力接点設定				
0896h	1896h	IN6 入力接点設定				
08A0h	18A0h	OUT0 出力機能選択	下またご覧/ださい	85:SPEED-OUT	٨	
08A1h	18A1h	OUT1 出力機能選択	「衣でに見いたけい。	65: ALARM-OUT1	A	

* データが反映されるタイミングを表わします。

(A:即時反映、B:運転停止後に反映、C:Configurationの実行後または電源の再投入後に反映)

• IN入力機能選択の設定内容

0:未使用	22:TH	35:R3	41:R9	47:R15
1:FWD	24: ALARM-RESET	36:R4	42:R10	48:M0
2:REV	27 : HMI	37:R5	43:R11	49:M1
19:STOP-MODE	32:R0	38:R6	44:R12	50:M2
20:MB-FREE	33:R1	39:R7	45:R13	51:M3
21:EXT-ERROR	34:R2	40:R8	46:R14	54:TL

• OUT出力機能選択の設定内容

0:未使用	32:R0	38:R6	44:R12	50:M2_R	71:TLC
1:FWD_R	33:R1	39:R7	45:R13	51:M3_R	77:VA
2:REV_R	34:R2	40:R8	46:R14	54:TL_R	80:S-BSY
19:STOP-MODE_R	35:R3	41:R9	47:R15	65: ALARM-OUT1	81: ALARM-OUT2
20:MB-FREE_R	36:R4	42:R10	48:M0_R	66:WNG	82:MPS
27:HMI_R	37:R5	43:R11	49:M1_R	68:MOVE	84:DIR
					85:SPEED-OUT

■ I/O機能[RS-485]パラメータ

 命令コード					
 読み出し 書き込み		名 称	設定範囲	初期値	反映 *
	音で込の 18R0b			18·M0	
08B1b	19816			40.100 40.M1	
00D111	1982h			49.M1	
00020	10D211				
00D311	10D311				
00D411	10D411				
00D311	1986b				
000000	10001			20. WID-FREE	
00001	100/11		下表をご覧ください。		
	10000				
00000	100911				
				0:未使用	
08BCh 18BCh 08BDh 18BDh 08BEh 18BEh					
08BFh	18BFh	NET-IN15 人力機能選択			С
08C0h	18C0h	NET-OUT0 出力機能選択		48:M0_R	
08C1h	18C1h	NEI-OUI1 出力機能選択		49:M1_R	
08C2h	18C2h	NEI-OUI2 出力機能選択		50:M2_R	
08C3h	18C3h	NET-OUT3 出力機能選択		1:FWD_R	
08C4h	18C4h	NET-OUT4 出力機能選択		2:REV_R	
08C5h	18C5h	NET-OUT5 出力機能選択		19:STOP-MODE_R	
08C6h	18C6h	NET-OUT6 出力機能選択		66:WNG	
08C7h	18C7h	NET-OUT7 出力機能選択	下表をご覧ください。	65:ALARM-OUT1	
08C8h	18C8h	NET-OUT8 出力機能選択		80:S-BSY	
08C9h	18C9h	NET-OUT9 出力機能選択			
08CAh	18CAh	NET-OUT10 出力機能選択		0:未使用	
08CBh	18CBh	NET-OUT11 出力機能選択			
08CCh	18CCh	NET-OUT12 出力機能選択		81:ALARM-OUT2	
08CDh	18CDh	NET-OUT13 出力機能選択		68:MOVE	
08CEh	18CEh	NET-OUT14 出力機能選択		77:VA	
08CFh	18CFh	NET-OUT15 出力機能選択		71:TLC	

* データが反映されるタイミングを表わします。(C:Configurationの実行後または電源の再投入後に反映)

• NET-IN入力機能選択の設定内容

0:未使用	32:R0	38:R6	44:R12	50:M2
1:FWD	33:R1	39:R7	45:R13	51 : M3
2:REV	34:R2	40:R8	46:R14	54:TL
19:STOP-MODE	35:R3	41:R9	47:R15	
20:MB-FREE	36:R4	42:R10	48:M0	
27 : HMI	37:R5	43:R11	49:M1	

• NET-OUT出力機能選択の設定内容

0:未使用	33:R1	40:R8	47:R15	66:WNG
1:FWD_R	34:R2	41:R9	48:M0_R	68:MOVE
2:REV_R	35:R3	42:R10	49:M1_R	71:TLC
19:STOP-MODE_R	36:R4	43:R11	50:M2_R	77:VA
20:MB-FREE_R	37:R5	44:R12	51:M3_R	80:S-BSY
27:HMI_R	38:R6	45:R13	54:TL_R	81: ALARM-OUT2
32:R0	39:R7	46:R14	65:ALARM_OUT1	82:MPS
				84:DIR

■ アナログ調整パラメータ

命令コード		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	設定範囲	勿即店	500.
読み出し	書き込み		設た戦団	初新旭	汉呋 *
08D0h	18D0h	アナログ速度指令ゲイン	0 ~ 4000 r/min	800	
08D1h	18D1h	アナログ速度指令オフセット	-2000 ~ 2000 r/min	0	
08D2h	18D2h	アナログトルク制限ゲイン	0 ~ 200%	40	۸
08D3h	18D3h	アナログトルク制限オフセット	-50 ~ 50%	0	A
08D5h	18D5h	アナログ回転速度最大値	0 ~ 4000 r/min	4000	
08D7h	18D7h	アナログトルク制限最大値	0 ~ 200%	200	

* データが反映されるタイミングを表わします。(A:即時反映)

■ アラーム・ワーニングパラメータ

命令コード		夕 升	机中午日	力扣店	500.0
読み出し	書き込み	白你	設た創め	初期恒	反呋 *
0851h	1851h	過負荷ワーニング機能	0:無効 1:有効	0	A
0855h	1855h	過負荷ワーニングレベル	50 ~ 100%	100	

* データが反映されるタイミングを表わします。(A:即時反映)

■ テスト運転・表示パラメータ

命令コード		夕 开	机合效网	57 世(古	反映 *
読み出し	書き込み	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	るがしていたものでは、「ない」」では、「ない」では、「ない」」では、「ない」」では、「ない」では、「ない」」では、「ない」では、「ない」では、「ない」」では、「ない」」では、「ない」」では、「ない」」では、「ない」」では、「ない」」では、「ない」」では、「ない」」では、「ない」」では、「ない」」では、「ない」」では、「ない」」では、「ない」」では、「ない」」では、「ない」」では、「ない」」、「ない」」、「ない」」、「ない」」、「ない」」、		
0143h	1143h	JOG運転速度	0、または 80 ~ 1000 r/min	300	
01E0h	11E0h	データ設定器速度表示	0:符号あり 1:絶対値	0	^
01E1h	11E1h	データ設定器編集	0:無効 1:有効	1	A
0821h	1821h	JOG運転トルク	0 ~ 200%	200	

* データが反映されるタイミングを表わします。(A:即時反映)

■ 動作設定パラメータ

命令コード		名称	設定範囲	初期値	反映 *
0816h	1816h	運転モード選択	0:励磁遮断あり 1:励磁遮断なし	1	
0840h	1840h	マラーム時電磁ブレーキ動作 0:自然停止後に保持 1:即時保持		1	
0841h	1841h	初期時運転禁止アラーム機能	0:無効	0	
0843h	1843h	初期時回生サーマル入力検出	1:有効	0	
0870h	1870h	データ設定器初期表示	0:運転速度 1:コンベヤ搬送速度 2:負荷率 3:運転番号 4:モニタモードのトップ画面	0	С
0871h	1871h	アナログ入力信号選択	0:アナログ無効 1:アナログ速度設定有効 2:アナログトルク制限有効 (詳細は次ページをご覧くださ い。)	1	

* データが反映されるタイミングを表わします。(C:Configurationの実行後または電源の再投入後に反映)

• アナログ入力信号選択パラメータ

「アナログ入力信号選択」パラメータで、運転データの設定方法を変更できます。ただし、下表に示した組み合わ せしか設定できません。

「アナログ入力信号 選択」パラメータ	運転データ No.	回転速度 減速時間	加速時間	トルク制限
0	0 ~ 15	デジタル設定		
1	0	アナログ設定	デジタル設定	
(初期値)	1 ~ 15	デジタル設定		
2	0 ~ 15	デジタ	ル 設 定	アナログ設定

設定例

- すべての運転データをデジタルで設定したい場合:「アナログ入力信号選択」パラメータを0にする。
- 運転データ No.0 の回転速度だけをアナログで設定したい場合:「アナログ入力信号選択」パラメータを1にする。

■ 通信パラメータ

命令コード		中容	机合体面		
読み出し	書き込み		設定創出	初期恒	∇咣 *
0900h	1900h	通信タイムアウト	0:監視なし 1 ~ 10000 ms	0	A
0901h	1901h	通信異常アラーム	1~10回	3	

* データが反映されるタイミングを表わします。(A:即時反映)

-130-

6 点検とトラブルの処置

定期的な点検方法や、トラブル発生時の確認事項と対処方法について説明しています。

もくじ

1	点 検	Ì	132
2	アラ	ーム、ワーニング、通信エラー…	
	2.1	アラーム	133
		■ アラームの解除	
		■ アラーム履歴	
		■ アラーム一覧	
	2.2	ワーニング	135
		■ ワーニング一覧	
		■ ワーニング履歴	
	2.3	通信エラー	136
		■ 通信エラー一覧	
		■ 通信エラー履歴	
3	故障	の診断と処置	

1 点検

モーターの運転後は、定期的に次の項目を点検することをお勧めします。異常があるときは使用を中止し、お客 様ご相談センターにご連絡ください。

重要 • モーターとドライバを接続した状態で、絶縁抵抗測定、絶縁耐圧試験を行なわないでください。 製品が破損する原因になります。

• ドライバには半導体素子が使われているため、取り扱いに注意してください。静電気などによってドラ イバが破損するおそれがあります。

■ 点検項目

- モーター・ギャヘッドの取付ねじに緩みがないか。
- •モーターの軸受部(ボールベアリング)から異常な音が発生していないか。
- ギャヘッドの軸受部(ボールベアリング)やギャの噛み合い部から異常な音が発生していないか。
- モーター・ギヤヘッドの出力軸と負荷軸に心ズレが出ていないか。
- ケーブルに傷やストレスがないか、ドライバとの接続部に緩みがないか。
- •ドライバの開口部が目詰まりしていないか。
- ドライバの取付ねじや、主電源入力端子のねじに緩みがないか。
- ドライバ内部に異常や異臭がないか。

2 アラーム、ワーニング、通信エラー

ドライバには、温度上昇、接続不良、運転操作の誤りなどからドライバを保護するアラーム(保護機能)と、アラームが発生する前に警告を出力するワーニング(警告機能)が備わっています。また、マスタが要求した処理を実行できなかったときは、通信エラーを返します。

2.1 アラーム

アラームが発生するとALM出力がOFFになり、モーターが停止します。同時にALM LEDが点滅します。 ALM LEDの点滅回数を数えると、アラームの原因を確認できます。 または **OPX-2A、MEXE02**、および RS-485 通信のどれかでも、アラームを確認できます。

例:センサ異常のアラーム(点滅回数3回)

■ アラームの解除

必ず、アラームが発生した原因を取り除き、安全を確保してから、次のどれかの方法でアラームを解除してください。 タイミングチャートは48ページをご覧ください。

- ALARM-RESET入力をONからOFFにする。(OFFエッジで有効です。)
- RS-485 通信のアラームリセットを実行する。
- OPX-2Aまたは MEXE02でアラームリセットを実行する。
- 電源を再投入する。

重要 アラームの種類によっては、ALARM-RESET入力、**OPX-2A、MEXE02**、RS-485 通信で解除できな いものがあります。次ページ以降の表で確認してください。これらのアラームは電源を再投入して解除し てください。

■ アラーム履歴

発生したアラームは、最新のものから順に 10 個まで NVメモリに保存されます。次のどれかを行なうと、保存されているアラーム履歴を取得・消去できます。

- RS-485 通信のモニタコマンドでアラーム履歴を取得する。
- RS-485 通信のメンテナンスコマンドでアラーム履歴を消去する。
- OPX-2Aまたは MEXE02でアラーム履歴を取得・消去する。

■ アラーム一覧

アラーム コード	ALM LED 点滅数	アラーム名称	原因	処 置	ALARM- RESET入力 による解除
30h	2	過負荷	定格トルクを超える負荷がモー ターに約5秒以上加わった。	 負荷を軽くしてください。 加速時間、減速時間などの運転条件を見直してください。 	
28h		センサ異常	運転中にモーターのセンサ信号 線が断線した、またはモーター 信号用コネクタが外れた。	ドライバレモーターの接続を確認してく	-/
42h	3	初期時センサ異常	主電源を投入する前に、モーター のセンサ信号線が断線した、 またはモーター信号用コネクタが 外れた。	ださい。	
22h	4	過電圧	 主電源の電圧が、定格に対して約20%以上、上回った。 巻き下げ能力を超える負荷を駆動したり、大慣性を急激に起動、停止させた。 	 主電源の電圧を確認してください。 運転時に発生するときは、負荷を 軽くするか、加速時間、減速時間 を長くしてください。 回生抵抗を使用してください。 	有効
25h	5	不足電圧	主電源の電圧が、定格に対して 約 40%以上、下回った。	 主電源の電圧を確認してください。 電源ケーブルの配線を確認してください。 	
31h	6	過速度	モーター出力軸の回転速度が約 4800 r/minを超えた。	 負荷を軽くしてください。 加速時間、減速時間などの運転条件を見直してください。 	
20h	7	過電流	地絡などによって、過大な電流 がドライバに流れた。	ドライバとモーター間の配線に破損が ないか確認し、電源を再投入してくだ さい。	
41h	8	EEPROM異常	 保存データが破損した。 データの書き込みや読み出しができなくなった。 	OPX-2Aまたは MEXE02を使用して いるときは、パラメータを初期化してく ださい。電源を再投入してもアラーム が発生するときは、最寄の支店・営 業所にご連絡ください。	無効
51h	9	回生抵抗器過熱	 回生抵抗が異常に過熱した。 運転中、回生抵抗のサーモス タット出力が断線した。 入力信号用の外部電源を投入 する前に、ドライバの主電源を 投入した。 	 ・回生抵抗の許容回生電力を超えています。負荷や運転条件を見直してください。 ・回生抵抗の接続を確認してください。 ・入力信号用の外部電源を投入してから、ドライバの主電源を投入してください。 	
6Eh	10	外部停止 *1	EXT-ERROR入力が OFFになっ た。	EXT-ERROR入力を確認してくださ	有効
46h	11	初期時運転禁止 *2	FWD入力または REV入力が ONのときに、DC24 V電源を再 投入した。	FWD入力や REV入力を OFFにして から、DC24 V電源を再投入してくだ さい。	
81h		ネットワークバス異常	モーターの動作中、ネットワーク コンバータの上位ネットワークが 解列状態になった。	上位ネットワークのコネクタやケーブ ルを確認してください。	
83h		通信用スイッチ設定 異常	通信速度設定スイッチ(SW4)が 仕様外の設定になった。	通信速度設定スイッチ(SW4)を確認 してください。	無効
84h	12	RS-485 通信異常	RS-485 通信の連続異常回数が 「通信異常アラーム」パラメータ の設定値に達した。	 上位システムとの接続を確認してください。 RS-485 通信の設定を確認してください。 	
85h		RS-485 通信タイム アウト	「通信タイムアウト」パラメータに 設定した時間を経過しても、上 位システムとの通信が行なわれ なかった。	上位システムとの接続を確認してください。	有効
8Eh		ネットワーク コンバータ異常	ネットワークコンバータでアラー ムが発生した。	ネットワークコンバータのアラーム コードを確認してください。	

*1 EXT-ERRORを IN0 ~ IN6 入力に割り付けているときに発生します。

*2 「初期時運転禁止アラーム機能」パラメータを「有効」に設定しているときに発生します。

アラーム コード	ALM LED 点滅数	アラーム名称	原因	処 置	ALARM- RESET入力 による解除
23h	13	主電源オフ	 運転中に主電源が遮断された。 DC24 V電源は投入されているが、主電源が遮断された状態で運転指令を入力した。 	 主電源の接続を確認してください。 電源ケーブルの配線を確認してください。 	有効
2Dh	14	主回路出力異常 *	モーター動力線が断線した、ま たはモーターコネクタが外れた。	ドライバとモーターの接続を確認してく ださい。	

* トルク制限値を200%未満に設定したときは発生しません。

2.2 ワーニング

ワーニングが発生すると、WNG出力が ONになります。モーターの運転は継続します。 ワーニングが発生した原因が取り除かれると、WNG出力は自動で OFFになります。

■ ワーニング一覧

コード	ワーニングの種類	原因	処 置
30h	過負荷 *	モーターの負荷トルクが過負荷ワーニングレベル を超えました。	 負荷を軽くしてください。 加速時間、減速時間などの運転 パターンを見直してください。
6Ch	運転禁止	 OPX-2Aや MEXE02でテストモードから他のモードへ移行したときに、FWD入力または REV入力が ONになっていました。 OPX-2Aや MEXE02、および RS-485 通信のどれかで入力端子の割り付けを変更したときに、割り付け先の端子が ONになっていました。 	入力を OFFにしてください。
84h	RS-485 通信異常	RS-485 通信の異常が検出されました。	 上位システムとの接続を確認してください。 RS-485 通信の設定を確認してください。

* MEXE02または OPX-2Aでも検出レベルを変更できます。

■ ワーニング履歴

発生したワーニングは、最新のものから順に10個までRAMに保存されます。次のどれかを行なうと、保存されているワーニング履歴を取得・消去できます。

- RS-485 通信のモニタコマンドで、ワーニング履歴を取得する。
- RS-485 通信のメンテナンスコマンドで、ワーニング履歴を消去する。
- OPX-2Aまたは MEXEO2で、ワーニング履歴を取得・消去する。

重要ドライバの電源を切ると、ワーニング履歴は消去されます。

2.3 通信エラー

通信エラーは、最新のものから順に10個まで RAMに保存され、MEXE02や RS-485 通信で確認できます。

■ 通信エラー一覧

コード	通信エラーの種類	原因	処 置
84h	RS-485 通信異常	次の異常が検出されました。 ・フレーミングエラー ・BCCエラー	 上位システムとの接続を確認してください。 RS-485 通信の設定を確認してください。
88h	コマンド未定義	マスタから要求されたコマンドが未定義の ため、実行できませんでした。	コマンドの設定値を確認してください。フレーム構成を確認してください。
89h	ユーザー I/F通信中の ため実行不可	OPX-2Aまたは MEXE02とドライバが通信 中のため、マスタから要求されたコマンド を実行できませんでした。	OPX-2Aや MEXEO2の処理が終了するま でお待ちください。
8Ah	NVメモリ処理中の ため実行不可	ドライバが NVメモリ処理中のため、実行 できませんでした。 ・内部処理中(S-BSYが ON) ・EEPROM異常のアラームが発生中	 内部処理が終了するまでお待ちください。 EEPROM異常のアラームが発生したときは、OPX-2A、MEXE02、およびRS-485 通信のどれかでパラメータを初期化してください。
8Ch	設定範囲外	マスタから要求された設定データが範囲外 のため、実行できませんでした。	設定データを確認してください。
8Dh	コマンド実行不可	コマンドが実行できないときに、実行しよう としました。	ドライバの状態を確認してください。

■ 通信エラー履歴

通信エラーは、最新のものから順に 10 個まで RAMに保存されます。次のどれかを行なうと、保存されている通 信エラー履歴を取得・消去できます。

- RS-485 通信のモニタコマンドで、通信エラー履歴を取得する。
- RS-485 通信のメンテナンスコマンドで、通信エラー履歴を消去する。
- MEXEO2の RS-485 通信モニタで、通信エラー履歴を取得・消去する。

重要ドライバの電源を切ると、通信エラー履歴は消去されます。

3 故障の診断と処置

速度の設定や接続を誤ると、モーター、ドライバが正常に動作しないことがあります。

モーターが正常に運転できないときはこの章をご覧になり、適切に対処してください。それでも正常に運転できないときは、最寄りのお客様ご相談センターにご連絡ください。

現象	予想される原因	
	電源が正しく接続されていない。	電源の接続を確認してください。
	FWD入力とREV入力の両方が OFF になっている。	13 + 5 + 5 + 4 + 7 + 7 + 7 + 7 + 7 + 7 + 7 + 7 + 7
モーターが回転しない。	FWD入力とREV入力の両方が ONに なっている。	とちらか斤万をONILUCSたさい。
	ALM LED(赤)が点滅している。	保護機能がはたらいてアラームが発生しています。 133 ページをご覧になり、アラームを解除してください。
	電磁ブレーキ付モーターの場合、電 磁ブレーキが解放されない。	MB-FREE入力を ONにしてください。
	FWD入力とREV入力の接続を間違えている、または正しく接続されていない。	FWD入力とREV入力の接続を確認してください。モーターは FWD入力が ONのときに CW方向、REV入力が ON のときに CCW方向へ回転します。
指定した方向とは逆に回転する。	コンビタイプ・平行軸ギヤヘッドで、減 速比が 30、50、100 のギヤを使用し ている。	コンビタイプ・平行軸ギヤヘッドで、減速比が 30、50、 100のギヤは、ギヤ出力軸とモーター出力軸の回転方向 が逆になります。FWD入力とREV入力の操作を逆にして ください。
	コンビタイプ・中空軸フラットギヤヘッド	●コンビタイプ・中空軸フラットギヤヘッドは、ギヤ出力軸と モーター出力軸の回転方向が逆になります。FWD入力 とREV入力の操作を逆にしてください。
		 見る方向を確認していさい。コンピダイノ・中空軸ノラダ トギヤヘッドの場合、ギヤヘッドを見る方向によって、回 転方向が変わります。
	モーター(ギヤヘッド)出力軸と負荷軸 に心ズレが出ている。	モーター(ギヤヘッド)出力軸と負荷軸の結合状態を確認し てください。
 ●モーターの動作が安定しない。 ●振動が大きい。 	ノイズの影響を受けている。	モーター、ドライバ、および運転に必要な外部機器だけで 運転を確認してください。ノイズの影響が確認できたとき は、次の対策を施してください。 ・ノイズ発生源から隔離する。 ・配線を見直す。
		・フェライトコアを装着する。
モーターが瞬時停止しない。	STOP-MODE入力が ONになってい る。	モーターを瞬時停止させるときは、STOP-MODE入力を OFFにしてください。
	慣性負荷が大きい。	負荷慣性を小さくするか、回生抵抗を接続してください。
電磁ブレーキが保持されない。	MB-FREE入力が ONになっている。	MB-FREE入力を OFFにしてください。

重要 • アラームが発生しているときは、アラームの内容を確認してください。

• OPX-2A、MEXE02、および RS-485 通信で入出力信号をモニタできます。入出力信号の配線状態の確認などにご利用ください。

故障の診断と処置

7 資料

規格・CEマーキングについて説明しています。

もくじ

1	仕様		140
	1.1	仕 様	
	1.2	一般仕様	
	1.3	外形図	
2	法令	·規格	143
	2.1	UL規格、CSA規格	
	2.2	EU指令	
	2.3	韓国電波法	
	2.4	RoHS指令	
3	EMC	指令に適合させる設置・配線方法…	145

1 仕様

1.1 仕様

定格トルク、瞬時最大トルク、定格回転速度、速度制御範囲は、ギヤヘッドを組み付けていない状態における値です。 ● 品名の□には、減速比を表わす数字が入ります。

• 品名の■には、接続ケーブルの長さを表わす数字が入ります。

■ 標準タイプ

品名	コンビタイプ・ 平行軸ギヤヘッド	BLE23AR⊡S∎	BLE23CR□S■	BLE46AR⊡S∎	BLE46CR□S■	BLE512AR⊡S∎	BLE512CR□S■	
	コンビタイプ・ 中空軸フラットギヤヘッド	BLE23AR□F■	BLE23CR□F■	BLE46AR□F■	BLE46CR□F■	BLE512AR□F■	BLE512CR□F■	
	丸シャフトタイプ	BLE23ARA	BLE23CRA	BLE46ARA∎	BLE46CRA■	BLE512ARA	BLE512CRA■	
定格出	カ(連続)	30	W	60	W	120) W	
	定格電圧	単相 100-120 V	単相 200-240 V 三相 200-240 V	単相 100-120 V	単相 200-240 V 三相 200-240 V	単相 100-120 V	単相 200-240 V 三相 200-240 V	
	電圧許容範囲			-15 ·	~ +10%		·	
高波	定格周波数		50/60 Hz					
電源 入力	周波数許容範囲		±5%					
,,,,	定格入力電流	1.3 A	単相 0.8 A 三相 0.45 A	2.0 A	単相 1.2 A 三相 0.7 A	3.3 A	単相 2.0 A 三相 1.2 A	
	最大入力電流	3.5 A	単相 2.1 A 三相 1.2 A	4.5 A	単相 2.6 A 三相 1.5 A	8.2 A	単相 4.4 A 三相 2.5 A	
制御	電圧	DC24 V						
電源	電圧許容範囲	-15 ~ +20%						
定格トルク		0.1	N∙m	0.2	N∙m	0.4	N∙m	
瞬時最大トルク*1		0.2	N∙m	0.4	N∙m	0.8 N·m		
定格回転速度		3000 r/min						
速度制御範囲		100 ~ 4000 r/min(アナログ設定時) 80 ~ 4000 r/min(デジタル設定時 1 r/min単位で設定)*2						

*1 瞬時最大トルクの使用時間は約5秒以内です。

*2 RS-485 通信、OPX-2Aまたは MEXE02を使用したときに適用される仕様です。

■ 電磁ブレーキ付タイプ

	コンビタイス 平行軸ギヤ	プ・ マヘッド	BLE23AMR□S■	BLE23CMR□S■	BLE46AMR□S■	BLE46CMR□S■
品名	コンビタイン 中空軸フラ	ץ. ットギヤヘッド	BLE23AMR□F■	BLE23CMR□F■	BLE46AMR□F■	BLE46CMR□F■
	丸シャフトタ	マイプ	BLE23AMRA■	BLE23CMRA■	BLE46AMRA■	BLE46CMRA■
定格出	力(連続)		30	W	60	W
	定格電圧		単相 100-120 V	単相 200-240 V 三相 200-240 V	単相 100-120 V	単相 200-240 V 三相 200-240 V
	電圧許容筆	も囲		-15 ~	+10%	
雪泥	定格周波数	<u>ل</u>		50/6	0 Hz	
电源 入力	周波数許容	驿範囲		±5	5%	
	定格入力電	記流	1.3 A	単相 0.8 A 三相 0.45 A	2.0 A	単相 1.2 A 三相 0.7 A
	最大入力電	〕流	3.5 A	単相 2.1 A 三相 1.2 A	4.5 A	単相 2.6 A 三相 1.5 A
制御	電圧			DC2	24 V	
電源	電圧許容筆	Ď囲		-15 ~	+20%	
定格ト	ルク		0.1	N∙m	0.2	N∙m
瞬時最	大トルク*1		0.2	N∙m	0.4	N∙m
定格回	転速度			3000	r/min	
速度制	御範囲		80 ~ 4	100 ~ 4000 r/min 1000 r/min(デジタル設	n(アナログ設定時) と定時 1 r/min単位で言	投定)*2
電磁ブ	レーキ部	形式		無励磁作動型、ドラ	イバによる自動制御	
*3		静摩擦トルク	0.1	N·m	0.2	N·m

*1 瞬時最大トルクの使用時間は約5秒以内です。

*2 RS-485 通信、**OPX-2A**または **MEXE02**を使用したときに適用される仕様です。

*3 電源の ON/OFFでの起動と停止は、電磁ブレーキの異常摩耗を起こしますので、おこなわないでください。

	コンビタイプ 平行軸ギヤ	プ・ マヘッド	BLE512AMR⊡S■	BLE512CMR⊡S■
品名	コンビタイプ 中空軸フラ	ፇ. ットギヤヘッド	BLE512AMR□F■	BLE512CMR□F■
	丸シャフトタ	マイプ	BLE512AMRA	BLE512CMRA
定格出	出力(連続)		120	W
	定格電圧		単相 100-120 V	単相 200-240 V 三相 200-240 V
	電圧許容範	ð囲	-15 ~	+10%
雷泥	定格周波数	¢	50/6	0 Hz
电心入力	周波数許容	驿範囲	±5	%
,,,,	定格入力電	〕流	3.3 A	単相 2.0 A 三相 1.2 A
	最大入力電	፤ 流	8.2 A	単相 4.4 A 三相 2.5 A
制御	電圧		DC2	24 V
電源	電圧許容範	õ囲	-15 ~	+20%
定格ト	・ルク		0.4	N·m
瞬時量	長大トルク ∗1	1	0.8	N·m
定格回	回転速度		3000	r/min
速度制	削御範囲		100 ~ 4000 r/min 80 ~ 4000 r/min (デジタル設	(アナログ設定時) に定時 1 r/min単位で設定)*2
電磁フ	ブレーキ部	形式	無励磁作動型、ドラ	イバによる自動制御
*3		静摩擦トルク	0.4	N·m

*1 瞬時最大トルクの使用時間は約5秒以内です。

*2 RS-485 通信、**OPX-2A**または **MEXE02**を使用したときに適用される仕様です。

*3 電源の ON/OFFでの起動と停止は、電磁ブレーキの異常摩耗を起こしますので、おこなわないでください。

1.2 一般仕様

項目	3	モーター部	ドライバ部		
	周囲温度	0~+50 °C(溴	夏結のないこと)		
	周囲湿度	85%以下(結	露のないこと)		
庙田搢愔	標高	海抜 100	00 m以下		
使用垛境	雰囲気	腐食性ガス、塵埃のないこと。放射性物質、	磁場、真空などの特殊環境での使用は不可。		
	振 動	連続的な振動や過度の衝撃が加わらないこと 周波数範囲:10 ~ 55Hz、片振幅:0.15mm 3	JIS C 60068-2-6 正弦波振動試験方法に準拠 帚引方向:3 方向(X、Y、Z) 掃引回数:20 回		
皮方理培	周囲温度	−25 ~ +70 °C(凍結のないこと)		
床1于 垛 坞	周囲湿度	85%以下(結	露のないこと)		
翈匛垜垷	標高	海抜 300	00 m以下		
保護等級	保護等級 IP65(丸シャフトタイプの取付面、コネクタ部を除く) IP20				

1.3 外形図

質量:0.7 kg

2 法令·規格

この製品は、UL規格、CSA規格の認証を取得し、低電圧指令とEMC指令にもとづいて CEマーキングを貼付しています。

認証品名はモーター品名とドライバ品名です。

2.1 UL規格、CSA規格

	適用規格	認証機関	規格ファイル No.
モーター *	UL 1004-1 CSA C22.2 No.100	UL	E335369
ドライバ	UL 61800-5-1		E171462
- 両-劫 カニフ III	(CCA担地,105(A))		

* 耐熱クラス UL/CSA規格:105(A)

2.2 EU指令

■ CEマーキング

- 低電圧指令
 - •この製品は、機器組み込み用です。
 - IT配電系統では使用できません。
 - 製品は、筐体内に設置し、人の手が触れられないようにしてください。
 - モーター、ドライバの保護接地端子は確実に接地してください。
 - モーターケーブルや電源ケーブルなどの動力系ケーブルと信号系のケーブル(CN3、CN5 ~ CN8)は、二重 絶縁で分離してください。

適用規格

モーター: EN 60034-1、EN 60034-5、EN 60664-1、EN 60950-1 ドライバ: EN 60950-1、EN 61800-5-1

設置条件(EN規格)

モーター *1	ドライバ	_			
機器組み込み	機器組み込み				
過電圧カテゴリー:Ⅲ *2	過電圧カテゴリー:Ⅱ				
汚損度:3	汚損度:2		*1	*1 耐熱クラスEN規格:120	*1 耐熱クラスEN規格:120(E)
感電保護:クラス I 機器	感電保護:クラス I 機器	;	*2	*2 EN 60950-1 適用時は、	*2 EN 60950-1 適用時は、過電圧カテゴリー I

• EMC指令

この製品は、146ページ「設置・配線例」でEMC試験を実施しています。最終的な機械装置のEMCへの適合性は、 モーター・ドライバと一緒に使用される他の制御システム機器、電気部品の構成、配線、配置状態、危険度など によって変わってきますので、お客様ご自身で機械装置のEMC試験を行なって確認していただく必要があります。

適用規格

EMI	Emission Tests	EN 55011 group1 classA EN 61000-6-4、EN 61800-3
EMS	Immunity Tests	EN 61000-6-2、EN 61800-3

ご注意:この製品は、住宅に電力を供給する低電圧配電線への接続、及び住宅環境での使用を意図していません。 低電圧配電線に接続、または住宅環境で使用すると周囲の機器の無線受信に影響する場合があります。

UL規格、CSA規格、EN規格で要求される温度試験は、放熱板付きの状態で行なっています。 放熱板のサイズと材質は下表のとおりです。

モーター品名	サイズ(mm)	厚さ(mm)	材質
BLEM23	115×115*		
BLEM46	135×135	5	アルミニウム合金
BLEM512	165×165		

2.3 韓国電波法

この製品は韓国電波法にもとづいて KCマークを貼付しています。

2.4 RoHS指令

RoHS指令(2011/65/EU)の規制値を超える物質は含有していません。
3 EMC指令に適合させる設置・配線方法

BLEシリーズは機器組み込み用の部品として設計・製造されています。EMC指令では、この製品が組み込まれた お客様の機械装置での適合が要求されます。

ここでご紹介するモーター、ドライバの設置・配線方法は、お客様の機械装置の EMC指令への適合に有効な、 基本的な設置・配線方法について説明したものです。

最終的な機械装置の EMC指令への適合性は、モーター、ドライバと一緒に使用される他の制御システム機器、 電気部品の構成、配線、配置状態、危険度などによって変わってきますので、お客様ご自身で機械装置の EMC試験を行なって、確認していただく必要があります。

BLEシリーズから周辺の制御システム機器への EMI、および BLEシリーズの EMSに対して有効な対策を施さないと、 機械装置の機能に重大な障害を引き起こすおそれがあります。

BLEシリーズは、次の設置・配線方法を施すことで、EMC指令への適合が可能になります。

■ ACラインフィルタの接続

ドライバから発生したノイズが、電源ラインを介して外部に伝播するのを防止するため、ACラインフィルタをAC入 カラインに挿入してください。ACラインフィルタは、次の製品、または相当品を使用してください。

メーカー	単相 100-120 V、単相 200-240 V用	三相 200-240 V用
双信電機株式会社	HF2010A-UPF	HF3010C-SZA、NFU3010C-Z1
Schaffner EMC	FN2070-10-06	FN3025HP-10-71

- ACラインフィルタの過電圧カテゴリーはⅡです。
- ACラインフィルタは、できるだけドライバの近くに取り付けてください。
- 入力ケーブルと出力ケーブルが筐体の盤面から浮かないよう、ケーブルクランプなどで確実に固定してください。
- ACラインフィルタを接地する線は、できるだけ太く、最短距離で接地してください。
- AC入力側のケーブル(AWG18~14:0.75~2.0 mm²以上)とACラインフィルタの出力ケーブル(AWG18~14:0.75~2.0 mm²以上)は、並行に配線しないでください。並行に配線すると、筐体内のノイズが浮遊容量を介して直接電源ケーブルに結合するため、ACラインフィルタの効果が低減することがあります。

■ 外部電源の接続

外部電源は、EMC指令に適合した電源を使用してください。

配線にはシールドケーブルを使用し、最短距離で配線してください。シールドケーブルの接地方法は「電源ケーブルの配線」をご覧ください。

■ 接地方法

接地した箇所に電位差が生じないよう、モーター、ドライバ、ACラインフィルタ、および電源ケーブル(シールドケー ブル)を接地する線は、できるだけ太く、最短距離で接地してください。接地ポイントには、広く、太く、均一な導 電面を使用してください。接地方法は 30 ページをご覧ください。

■ 電源ケーブルの配線

電源ケーブルには AWG18 ~ 14(0.75 ~ 2.0 mm²) 以上のシールドケーブルを使用し、最短距離で配線してくだ さい。シールドケーブルはケーブルの被覆を剥き、全周と接触する金属製のケーブルクランプで接地するか、 またはドレインワイヤー線を接地してください。 シールドケーブル を接地し、シールドに電位差が生じないようにしてください。

■ 設置・配線についての注意事項

- モーター、ドライバと周辺の制御システム機器のアース間に電位差が生じないよう、直接接地してください。
- リレーや電磁スイッチを一緒に使用するときは、ACラインフィルタや CR回路でサージを吸収してください。
- ケーブルは最短距離で配線し、余った部分を巻いたり、束ねないでください。
- モーターケーブルや電源ケーブルなどの動力系ケーブルと、信号系のケーブルは別々に分け、100 mm以上 離して配線してください。動力系のケーブルと信号系のケーブルが交差するときは、直角に配線してください。
 また、ACラインフィルタのAC入力側ケーブルと出力側ケーブルは離して配線してください。
- モーターとドライバの間を延長するときは、付属または別売の接続ケーブルを使用してください。EMCテストは 当社の接続ケーブルを使用して行なっています。

■ 設置・配線例

図は標準タイプです。

*1 接続ケーブルは 20 mまで評価しています。接続ケーブルは 3 本まで接続できます。

*2 シールドケーブル

*3 非シールドケーブル

■ 静電気についての注意事項

静電気によって、ドライバが誤動作したり破損することがあります。 静電気による製品の破損を防ぐため、モーター、ドライバは必ず接地してください。 ドライバ前面の設定器やスイッチを操作するとき以外は、電源を投入した状態でドライバに近づいたり、触れない でください。

ドライバのスイッチを変更するときは、必ず絶縁ドライバを使用してください。

製品と組み合わせて使用するオプション(別売)などについて説明しています。

もくじ

1	ケーブル /周辺機器	148
2	関連商品(別売)	

ケーブル /周辺機器

■ 接続ケーブル

モーターとドライバ間を延長するときに使用してください。最大20.4mまで延長できます。可動接続ケーブルも用 意しています。 接続ケーブルは3本まで接続できます。

品名 **CC01BLEMR** CC02BLEMR **CC03BLEMR** CC05BLEMR CC07BLEMR **CC10BLEMR** CC15BLEMR CC20BLEMR

標準タイプ

 可動接続ケーブル

●接続ケーブル		●可動接続ケー	● 可動接続ケーブル	
長さ	品名	長さ	品名	
1 m	CC01BLE	1 m	CC01BLER	
2 m	CC02BLE	2 m	CC02BLER	
3 m	CC03BLE	3 m	CC03BLER	
5 m	CC05BLE	5 m	CC05BLER	
7 m	CC07BLE	7 m	CC07BLER	
10 m	CC10BLE	10 m	CC10BLER	
15 m	CC15BLE	15 m	CC15BLER	
20 m	CC20BLE	20 m	CC20BLER	
		-		

電磁ブレーキ付タイプ

•

接続ケーブル		● 可動接続ケーブル	
長さ	品名	長さ	
1 m	CC01BLEM	1 m	C
2 m	CC02BLEM	2 m	C
3 m	CC03BLEM	3 m	C
5 m	CC05BLEM	5 m	C
7 m	CC07BLEM	7 m	C
10 m	CC10BLEM	10 m	C
15 m	CC15BLEM	15 m	C
20 m	CC20BLEM	20 m	C

■ データ設定器

運転データやパラメータを設定したり、モニタとしてもお使いいただけます。

品名: OPX-2A

■ サポートソフト用通信ケーブル

サポートソフト MEXE02をインストールしたパソコンとドライバを接続するときは、必ずお買い求めください。 PCインターフェースケーブルとUSBケーブルの2本1組です。パソコンとの接続はUSBになります。

品名: CC05IF-USB(5 m)

MEXE02は WEBサイトからダウンロードできます。また、メディアでの配布も行なっています。 詳しくは WEBサイトからのご請求、またはお近くの支店、営業所にお問い合わせください。

■ RS-485 通信ケーブル

RS-485 通信コネクタ(CN7、CN8)に接続して、ドライバ間を接続できます。 品名: CC002-RS4(0.25 m)

■ DINレール取付プレート

ドライバをDINレールに取り付けるときは、DINレール取付プレートを使用してください。 DINレールはレール幅 35 mmのものをお使いください。

品 名: PADP03

■ 回生抵抗

巻き下げ運転などの上下駆動や、大慣性の急激な起動・停止が頻繁に繰り返されるときに使用してください。 品名: EPRC-400P

カップリング、取付用金具は、当社のWEBサイトでご確認いただけます。 合わせてご覧ください。

https://www.orientalmotor.co.jp/

2 関連商品(別売)

■ ネットワークコンバータ

NETC01-CC(CC-Link Ver.1.1 対応) NETC02-CC(CC-Link Ver.2 対応) NETC01-M2(MECHATROLINK-亚対応) NETC01-M3(MECHATROLINK-亚対応) NETC01-ECT(EtherCAT対応)

BLEシリーズ FLEX RS-485 通信タイプを CC-Linkシステムや MECHATROLINKシステム、EtherCATシステムでお 使いになる場合、ネットワークコンバータを介して接続すると、各種の通信プロトコルを RS-485 通信プロトコルに 変換してドライバに送信できます。また、ドライバから出力されるアラームなども、RS-485 通信プロトコルから各種 の通信プロトコルに変換して、マスタ局に送信できます。

例:ネットワークコンバータ NETC01-CCとの接続例

- このマニュアルの一部または全部を無断で転載、複製することは、禁止されています。
 損傷や紛失などにより、マニュアルが必要なときは、最寄りの支店または営業所に請求してください。
- マニュアルに記載されている情報、回路、機器、および装置の利用に関して産業財産権上の問題が生じても、当社は一切の 責任を負いません。
- 製品の性能、仕様および外観は改良のため予告なく変更することがありますのでご了承ください。
- マニュアルには正確な情報を記載するよう努めていますが、万一ご不審な点や誤り、記載もれなどにお気づきの点がありました
 ら、最寄りのお客様ご相談センターまでご連絡ください。
- Orientalmotor と GEED は、日本その他の国におけるオリエンタルモーター株式会社の登録商標または商標です。 Modbusは Schneider Automation Inc.の登録商標です。 CC-Linkは CC-Link協会の登録商標です。 MECHATROLINKは MECHATROLINK協会の登録商標です。 EtherCAT®は、ドイツ Beckhoff Automation GmbHによりライセンスされた特許取得済み技術であり登録商標です。 EtherCAT® is registered trademark and patented technology, licensed by Beckhoff Automation GmbH, Germany. その他の製品名、会社名は各社の登録商標または商標です。このマニュアルに記載の他社製品名は推奨を目的としたもので、 それらの製品の性能を保証するものではありません。オリエンタルモーター株式会社は、他社製品の性能につきましては一切 の責任を負いません。

© Copyright ORIENTAL MOTOR CO., LTD. 2012

2021年10月制作

オリエンタルモーター株式会社				
お問い合わせ窓口(フリーコールです。携帯・PHSからもご利用いただけます。)				
技術的なお問い合わせ・訪問・お見積・ご注文 お客様ご相談センター <u>受付時間 平日/9:00~19:00</u> 「EE 0120-925-410 FAX 0120-925-601	CC-Link・MECHATROLINKなどのFAネットワークや Modbus RTUに関するお問い合わせ ネットワーク対応製品専用ダイヤル TEL 0120-914-271受付時間 平日/9:00 ~ 17:30 故障かな?と思ったときの検査修理窓口 アフターサービスセンター 受付時間 平日/9:00 ~ 17:30 TEL 0120-911-271 FAX 0120-984-815			
WEBサイトでもお問い合わせやご注文を受け付けています。 https://www.orientalmotor.co.jp/				