Oriental motor

5 相ステッピングモーター RK I シリーズ / RK I シリーズ搭載 電動アクチュエータ <u>(FLEX)</u> 位置決め機能内蔵タイプ

ユーザーズマニュアル

はじめに	
 設置と接続	
運転の種類と設定	ī
I/O 制御	ī
Modbus RTU 制御 (RS-485 通信)	ī
FA ネットワーク制御	ī
 OPX-2A による操作	ī
点検とトラブルの処置	
ケーブル・周辺機器	

お買い上げいただきありがとうございます。

このマニュアルには、製品の取り扱いかたや安全上の注意事項を示しています。

- マニュアルをよくお読みになり、製品を安全にお使いください。
- •お読みになった後は、いつでも見られるところに必ず保管してください。

1	はじめ	ات	10
2	製品の構	概要	11
3	システム	ム構成	13
4	安全上の	のご注意	14
5	使用上の	のお願い	17
6	仕様		20
7	法令·規	格	22
	7-1	UL 規格	
	7-2	CE マーキング	
	7-3	韓国電波法	
	7-4	RoHS 指令	
8	準備		
	8-1	製品の確認	
	8-2	品名の見方 (ユニット品名)	
	8-3	品名の見方 (単体品名)	
	8-4	銘板の情報	
	8-5	モーターとドライバの組み合わせ	
	8-6	各部の名称と機能	

2 設置と接続

1	設置		. 36
	1-1	設置場所	36
	1-2	モーターの設置	36
	1-3	負荷の取り付け	37
	1-4	許容ラジアル荷重と許容アキシアル荷重	38
	1-5	ドライバの設置	40
2	接続		. 41
	2-1	接続例	41
	2-2	モーター、ドライバの接地	42
	2-3	主電源の接続	43
	2-4	DC24 V 電源・電磁ブレーキの接続	44
	2-5	入出力信号の接続	45
	2-6	データ設定器の接続	48
	2-7	RS-485 通信ケーブルの接続	48
	2-8	ノイズ対策	49
	2-9	EMC への適合	50
3	入出力	言号の説明	. 52
	3-1	ダイレクト I/O の割り付け	52
	3-2	ネットワーク I/O の割り付け	56
	3-3	入力信号	60
	3-4	出力信号	65

3-5	センサ入力70
3-6	汎用信号 (R0 ~ R15)

3 運転の種類と設定

1	ガイダ	ンス	74
2	設定と調整		
	2-1	分解能	
	2-2	運転電流	
	2-3	停止電流	
	2-4	加減速レートと加減速時間	79
	2-5	速度フィルタ	
	2-6	移動平均フィルタ	
	2-7	エンコーダ付モーターを使用する場合	
3	運転の	種類と機能一覧	85
4	位置決	め運転	86
	4-1	運転データ	
	4-2	位置決め運転の起動方法	
	4-3	運転機能	91
5	原点復	帰運転	95
	5-1	原点復帰運転の詳細	
	5-2	動作シーケンス	
	5-3	位置プリセット	
6	連続運	転	
	6-1	運転データ	
	6-2	連続運転の起動方法	
	6-3	変速運転	
7	その他	の運転	
	7-1	JOG 運転	
	7-2	テスト運転	
	7-3	停止動作	
8	座標管	理	111
	8-1	座標位置管理	111
	8-2	ラウンド機能	111
9	運転デ	ータ	113
10	パラメ	ータ	114
	10-1	パラメーター覧	
	10-2	I/O パラメータ	115
	10-3	モーターパラメータ	116
	10-4	運転パラメータ	117
	10-5	原点復帰パラメータ	117
	10-6	アラームパラメータ	118
	10-7	ワーニングパラメータ	118
	10-8	座標パラメータ	119

10-9	共通パラメータ	
10-10	I/O 機能 [入力] パラメータ	120
10-11	I/O 機能 [出力] パラメータ	121
10-12	I/O 機能[RS-485] パラメータ	121
10-13	通信パラメータ	123

4 I/O 制御

1	ガイダン	ンス126
2	運転デ-	ータ
3	パラメ-	ータ
	3-1	パラメーター覧
	3-2	I/O パラメータ130
	3-3	モーターパラメータ131
	3-4	運転パラメータ
	3-5	原点復帰パラメータ131
	3-6	アラームパラメータ132
	3-7	ワーニングパラメータ
	3-8	座標パラメータ132
	3-9	共通パラメータ
	3-10	I/O 機能[入力] パラメータ
	3-11	I/O 機能[出力] パラメータ
	3-12	I/O 機能[RS-485]パラメータ134
	3-13	通信パラメータ135
4	タイミ	ングチャート

5 Modbus RTU 制御 (RS-485 通信)

2 通信仕様 1- 3 スイッチの設定 1! 4 RS-485 通信の設定 1! 5 通信方式と通信タイミング 1! 5-1 通信方式 1 5-2 通信タイミング 1 6 メッセージ 1 6-1 クエリ 1 6-2 レスポンス 1 7 ファンクションコード 1 7-1 保持レジスタの読み出し(03h) 1 7-3 診断(08h) 1 7-4 複数の保持レジスタへの書き込み(10h) 1	1	ガイダ	ンス	144
3 スイッチの設定 1! 4 RS-485 通信の設定 1! 5 通信方式と通信タイミング 1! 5-1 通信方式 1 5-2 通信タイミング 1 6 メッセージ 1 6-1 クェリ 1 6-2 レスポンス 1 7 ファンクションコード 1 7-1 保持レジスタの読み出し(03h) 1 7-2 保持レジスタへの書き込み(06h) 1 7-4 複数の保持レジスタへの書き込み(10h) 1	2	通信仕様	様	149
4 RS-485 通信の設定 1 5 通信方式と通信タイミング 1 5-1 通信方式 1 5-2 通信タイミング 1 6 メッセージ 1 6-1 クエリ 1 6-2 レスポンス 1 7 ファンクションコード 1 7-1 保持レジスタの読み出し(03h) 1 7-2 保持レジスタへの書き込み(06h) 1 7-3 診断(08h) 1 7-4 複数の保持レジスタへの書き込み(10h) 1	3	スイッ	チの設定	151
5 通信方式と通信タイミング 1 5-1 通信方式 1 5-2 通信タイミング 1 6 メッセージ 1 6-1 クエリ 1 6-2 レスポンス 1 7 ファンクションコード 1 7.1 保持レジスタの読み出し(03h) 1 7-2 保持レジスタへの書き込み(06h) 1 7-3 診断(08h) 1 7-4 複数の保持レジスタへの書き込み(10h) 1	4	RS-485	5 通信の設定	154
5-1 通信方式	5	通信方法	式と通信タイミング	155
5-2 通信タイミング 1 6 メッセージ 1 6-1 クエリ 1 6-2 レスポンス 1 7 ファンクションコード 1 7-1 保持レジスタの読み出し(03h) 1 7-2 保持レジスタへの書き込み(06h) 1 7-3 診断(08h) 1 7-4 複数の保持レジスタへの書き込み(10h) 1		5-1	通信方式	
6 メッセージ 1 6-1 クエリ 1 6-2 レスポンス 1 7 ファンクションコード 16 7.1 保持レジスタの読み出し(03h) 16 7-2 保持レジスタへの書き込み(06h) 16 7-3 診断(08h) 16 7-4 複数の保持レジスタへの書き込み(10h) 16		5-2	通信タイミング	155
6-1 クエリ	6	メッセ・	ージ	156
6-2 レスポンス		6-1	クエリ	156
7 ファンクションコード		6-2	レスポンス	158
 7-1 保持レジスタの読み出し(03h)	7	ファン	クションコード	
 7-2 保持レジスタへの書き込み(06h)1 7-3 診断(08h)1 7-4 複数の保持レジスタへの書き込み(10h)1 		7-1	保持レジスタの読み出し(03h)	160
7-3診断 (08h)17-4複数の保持レジスタへの書き込み (10h)1		7-2	保持レジスタへの書き込み(06h)	161
7-4 複数の保持レジスタへの書き込み(10h)1		7-3	診断(08h)	
		7-4	複数の保持レジスタへの書き込み(10h)	163

8	レジスタアドレス一覧164		
	8-1	動作コマンド	
	8-2	メンテナンスコマンド	
	8-3	モニタコマンド	
	8-4	パラメータ R/W コマンド	
9	グルー	プ送信	
10	運転の	設定例	
	10-1	位置決め運転	
	10-2	連続運転	
	10-3	原点復帰運転	
11	通信異	常の検出	
	11-1	通信エラー	
	11-2	アラームとワーニング	
12	タイミ	ングチャート	

6 FA ネットワーク制御

1	スイッ	ッチの設定	
	1-1	プロトコル	
	1-2	号機番号(スレーブアドレス)	
	1-3	通信速度	
	1-4	終端抵抗	
2	CC-Li	ink 通信で制御する場合	
	2-1	ガイダンス	
	2-2	基本的な操作手順	
	2-3	NETC01-CC のリモートレジスター覧	
	2-4	6 軸接続モードのリモート I/O の割り付け	
	2-5	12 軸接続モードのリモート I/O の割り付け	
3	MECH	HATROLINK 通信で制御する場合	
	3-1	ガイダンス	
	3-2	基本的な操作手順	
	3-3	NETC01-M2 のフィールドマップ	
	3-4	NETC01-M3 のフィールドマップ	213
	3-5	通信フォーマット	214
4	リモー	− ト I/O の詳細	
	4-1	ドライバへの入力	
	4-2	ドライバからの出力	217
5	命令日	コード一覧	
	5-1	グループ機能	
	5-2	メンテナンスコマンド	
	5-3	モニタコマンド	
	5-4	運転データ	
	5-5	ユーザーパラメータ	

7 OPX-2A による操作

1	OPX-2	Α の概要	
	1-1	各部の名称と機能	
	1-2	表示部の見方	
	1-3	OPX-2A のエラー表示	
2	画面遷	移	
3	モニタ	モード	
	3-1	モニタモードの概要	
	3-2	モニタ項目	
4	データ	モード	
	4-1	設定項目	
	4-2	設定例	
	4-3	指定した運転データの初期化	
	4-4	全運転データの初期化	
5	パラメ	ータモード	
	5-1	設定例	
	5-2	パラメーター覧	
	5-3	パラメータの初期化	
6	テスト	モード	
	6-1	テストモードの概要	
	6-2	ダイレクト I/O テスト	
	6-3	JOG 運転	
	6-4	データ No. 選択運転	
	6-5	原点復帰運転	
	6-6	位置プリセット	
	6-7	エンコーダカウンタプリセット	
	6-8	ティーチング	
7	コピー	モード	
	7-1	コピーモードの概要	
	7-2	コピーモードの異常	

8 点検とトラブルの処置

1	点検·伢	守	258
	1-1	点検	
	1-2	保証	
	1-3	廃棄	
2	アラー	ムとワーニング	259
	2-1	アラーム	
	2-2	ワーニング	
	2-3	通信エラー	
3	故障の	診断と処置	

9 ケーブル・周辺機器

1	ケーブ	۱ <i>レ</i>	. 266
	1-1	モーターケーブル	266
	1-2	入出力信号用ケーブル	268
	1-3	サポートソフト用通信ケーブル	268
	1-4	RS-485 通信ケーブル	268
2	周辺機	······	. 269
	2-1	データ設定器	269
	2-2	サージ電圧吸収用 CR 回路	269
	2-3	CR 回路モジュール	269

取扱説明書の構成、製品の概要、仕様、規格、各部の名称と機能などについて説明しています。

◆もくじ

1	はじめに 10			
2	製品	製品の概要11		
3	シフ	ペテム構成	13	
4	安全	≧上のご注意	14	
5	使用上のお願い17			
6	仕桟	ŧ	20	
7	法令	♪•規格	22	
7-	1	UL規格	22	
7-2	2	CEマーキング	22	
7-3	3	韓国電波法	23	
7-4	4	RoHS指令	23	
8	準備	ŧ	24	
8-	1	製品の確認	24	
8-2	2	品名の見方(ユニット品名)	25	
8-3	3	品名の見方(単体品名)	26	
8-4	4	銘板の情報	27	
8-5	5	モーターとドライバの組み合わせ	28	
8-6	5	各部の名称と機能	31	

■ お使いになる前に

製品の取り扱いは、電気・機械工学の専門知識を持つ有資格者が行なってください。 お使いになる前に、14ページ「4 安全上のご注意」をよくお読みのうえ、正しくお使いください。また、本文中の警告・注意・ 重要に記載されている内容は、必ずお守りください。 この製品は、一般的な産業機器への組み込み用として設計・製造されています。その他の用途には使用しないでください。 この警告を無視した結果生じた損害の補償については、当社は一切その責任を負いませんので、あらかじめご了承ください。

■ 関連する取扱説明書

取扱説明書については、当社の WEBサイトからダウンロードしていただくか、支店・営業所にお問い合わせください。 https://www.orientalmotor.co.jp/

• RK II シリーズ /RK II シリーズ搭載電動アクチュエータ ユーザーズマニュアル (本書)

電動アクチュエータについては、次の取扱説明書をお読みください。

- 取扱説明書 アクチュエータ編
- 電動アクチュエータ 機能設定編

■ 用語と単位について

モーターと電動アクチュエータでは使用する用語や単位が異なります。本書ではモーターの用語を使って説明しています。 電動アクチュエータを使用する場合は、用語を置き換えてお読みください。

	モーター	電動アクチュエータ
	トルク	推力
	慣性モーメント	質量
	回転	移動
用語	CW方向	FWD方向
	CCW方向	RVS方向
	回転速度	速度
	分解能	最小移動量
出合	N∙m	N
=111	kHz/s	m/s ²

2 製品の概要

この製品は、位置決め機能を内蔵したドライバと、5相ステッピングモーターによるユニット製品です。

I/O制御、Modbus RTU制御 (RS-485 通信) 、およびネットワークコンバータを使用した FAネットワーク制御に対応しています。

運転データやパラメータは、当社のサポートソフト **MEXE02**、データ設定器 **OPX-2A**、および RS-485 通信のどれかで設定します。

■主な特徴

● 省エネルギー

モーターの損失を大幅に低減し、低発熱、省エネルギーを実現しました。 発熱が大幅に抑えられたことで、従来お使いいただけなかった高速域での長時間運転も可能になりました。

● 密着取り付けが可能な小型・薄型ドライバ

コンパクトサイズのドライバで、制御盤や装置の小型化や省スペース化に貢献します。 ドライバは密着取り付けも可能なため、限られたスペースを有効に活用できます。

かんたん配線

入出力信号の接続には、スクリューレスタイプのコネクタを採用しました。 モーターは専用のコネクタ付ケーブルでかんたんに接続できます。

● 3つの運転パターン

位置決め運転、原点復帰運転、および連続運転を実行できます。運転データは64点まで設定でき、多点位置決めも可能です。

Modbus RTUに対応(RS-485 通信)

上位システムから運転データやパラメータを設定したり、運転の実行・停止などを指令できます。 マスタ1 台に対して、最大31 台のドライバを接続できます。

● 低振動

高性能マイクロステップドライバを採用し、低速運転時でも振動が極めて少ない滑らかな運転を実現しました。

● 電磁ブレーキの自動制御(電磁ブレーキ付タイプのみ)

ドライバが自動で電磁ブレーキを制御するため、制御信号の入力やラダー設計の手間を省けます。

● アラーム、ワーニング機能を搭載

過熱、接続不良、運転操作の誤りなどからドライバを保護するアラーム(保護機能)と、アラームが発生する前に警告を出 力するワーニング(警告機能)が備わっています。

■ 周辺機器

運転データやパラメータは、MEXEO2、OPX-2A、および RS-485 通信のどれかで設定します。必要に応じて、次の周辺機 器をご用意ください。

• MEXE02 WEBサイトからダウンロードできます。

MEXE02 を使用する場合は、パソコンとドライバを接続するためのサポートソフト用通信ケーブル CC05IF-USBが必要です。必ずお買い求めください。

• OPX-2A.....別途お買い求めください。

📕 関連商品

ネットワークコンバータを介して接続すると、さまざまなネットワークで使用できるようになります。

ネットワークコンバータ品名	対応可能なネットワーク
NETC01-CC	CC-Link Ver.1.1
NETC02-CC	CC-Link Ver.2
NETC01-M2	MECHATROLINK- II
NETC01-M3	MECHATROLINK-III
NETC01-ECT	EtherCAT

■ 機能一覧

メイン機能

外部インターフェース

補助機能

【パラメータで設定】 • 脱調検出機能 • 停止動作 原点復帰機能 ・モーター機能 STOP入力時の停止動作 原点オフセット 脱調検出動作 運転電流 オーバートラベル 外部センサ信号検出 脱調検出幅 停止電流 エンコーダ分解能 速度フィルタ 移動平均フィルタ • I/O機能 保護機能 座標設定 アラーム検出 ワーニング検出 分解能(電子ギヤ) 入力機能 ラウンド機能 入力接点 モーター回転方向 出力機能

1 はじめに

3 システム構成

- ※2 パソコンはお客様側でご用意ください。ドライバとの接続には、当社のサポートソフト用通信ケーブルを使用してください。
- ※3 当社でご用意している周辺機器です。

4 安全上のご注意

ここに示した注意事項は、製品を安全に正しくお使いいただき、お客様や他の人々への危害や損傷を未然に防止するため のものです。内容をよく理解してから製品をお使いください。

表示の説明

⚠警告	この警告事項に反した取り扱いをすると、死亡または重傷を負う場合がある内容を示しています。	
⚠注意	この注意事項に反した取り扱いをすると、傷害を負うまたは物的損害が発生する場合がある内容を示 しています。	
重要	製品を正しくお使いいただくために、お客様に必ず守っていただきたい事項を、本文中の関連する取り扱い項目に記載しています。	

図記号の説明

\bigcirc	してはいけない「禁止」内容を示しています。
У	

必ず実行していただく「強制」内容を示していま す。

	⚠警告
	爆発性雰囲気、引火性ガスの雰囲気、腐食性の雰囲気、水のかかる場所、および可燃物のそばでは使用しない。 火災・感電・けがの原因になります。
	通電状態で移動、設置、接続、点検の作業をしない。 感電の原因になります。
	通電中はドライバに触れない。 火災・感電の原因になります。
	ドライバフロントパネルの <u>^</u> <u>^</u> マークで示された端子は高電圧がかかるため、通電中は触れない。 火災・感電の原因になります。
\bigcirc	電磁ブレーキ付モーターのブレーキ機構を、制動・安全ブレーキとして使用しない。 けが・装置破損の原因になります。
)	ケーブルを無理に曲げたり、引っ張ったり、挟み込まない。 火災・感電の原因になります。
	運転中はモーターを無励磁にしない。 モーターが停止し、保持力がなくなるため、けが・装置破損の原因になります。
	通電中はドライバの接続端子に触れない。また、接続作業や点検は、電源を切り、CHARGE LEDが消灯して から行なう。 感電の原因になります。
	製品を分解・改造しない。 けが・装置破損の原因になります。
	設置、接続、運転・操作、点検・故障診断の作業は、適切な資格を有する人が行なう。 火災・感電・けが・装置破損の原因になります。
	昇降装置に使用するときは、可動部の位置保持対策を行なう。 けが・装置破損の原因になります。
	ドライバのアラーム(保護機能)が発生すると、モーターは停止し、保持力がなくなるため、可動部を保持す る対策を行なう。 けが・装置破損の原因になります。
U	ドライバのアラーム (保護機能)が発生したときは、原因を取り除いた後でアラーム (保護機能)を解除する。 原因を取り除かずに運転を続けると、モーター、ドライバが誤動作して、けが・装置破損の原因になります。
	製品は筐体内に設置する。 感電・けがの原因になります。
	製品はクラス I 機器のため、設置するときは、製品に触れないようにするか、接地する。 感電の原因になります。
	ドライバの電源入力電圧は、定格範囲を守る。 火災・感電の原因になります。

$\mathbf{\Lambda}$	芶女	土
$\angle! $	言	

接続図にもとづき、確実に接続する。 火災・感電の原因になります。 停電したときはドライバの電源を切る。 けが・装置破損の原因になります。

⚠注意		
\odot	製品の仕様値を超えて使用しない。 感電・けが・装置破損の原因になります。	
	指や物を製品の開口部に入れない。 火災・感電・けがの原因になります。	
	運転中や停止後しばらくの間は製品に触らない。 やけどの原因になります。	
	ドライバに接続されたケーブルを無理に曲げたり引っ張らない。 破損の原因になります。	
	出力軸やケーブルを持たない。 けがの原因になります。	
	可燃物を製品の周囲に置かない。 火災・やけどの原因になります。	
	通風を妨げる障害物を製品の周囲に置かない。 装置破損の原因になります。	
	ドライバのデータ設定器コネクタ(CN4)と RS-485 通信コネクタ(CN6/CN7)は絶縁されていないため、電 源のプラス側を接地するときは、マイナス側を接地した機器(パソコンなど)を接続しない。 これらの機器とドライバが短絡して、破損するおそれがあります。	
	運転中は回転部(出力軸)に触らない。 けがの原因になります。	
	絶縁抵抗測定、絶縁耐圧試験を行なうときは、端子に触れない。 感電の原因になります。	
	モーターの回転部(出力軸)にカバーを設ける。 けがの原因になります。	
	モーターとドライバは指定された組み合わせで使用する。 火災の原因になります。	
	DC24 V電源は、一次側と強化絶縁された電源を使用する。 感電の原因になります。	
	装置の故障や動作の異常が発生したときに、装置全体が安全な方向へはたらくよう、非常停止装置または非 常停止回路を外部に設置する。 けがの原因になります。	
0	電源を投入するときは、ドライバの入力信号をすべて OFFにする。 けが・装置破損の原因になります。	
	手動で可動部を動かすときは、モーターを無励磁にする。 励磁状態のまま作業すると、けがの原因になります。	
	異常が発生したときは、ただちに運転を停止して、ドライバの電源を切る。 火災・感電・けがの原因になります。	
	ドライバのスイッチは、絶縁ドライバで調整する。 感電の原因になります。	
	モーターは、正常な運転状態でも表面温度が70 ℃を超えることがあるため、運転中のモー ターに接近できるときは、図の警告ラベルをはっきり見える位置に貼る。 やけどの原因になります。 警告ラベル	

ドライバには、取り扱い上の警告が表示されています。 ドライバを取り扱うときは、必ず表示の内容を守ってください。

材質:PET

5 使用上のお願い

製品をお使いいただくうえでの制限やお願いについて説明します。

● モーターとドライバは、必ず当社のケーブルを使用して接続してください

次の場合は、当社のケーブルを必ず別途お買い求めください。ケーブルの品名は266 ページでご確認ください。

- 可動ケーブルを使用するとき
- 3 mよりも長いケーブルを使用するとき
- ケーブルが付属してないユニット品を購入したとき
- 絶縁抵抗測定、絶縁耐圧試験を行なうときは、モーターとドライバを切り離してください
 モーターとドライバを接続した状態で、絶縁抵抗測定、絶縁耐圧試験を行なうと、製品が破損する原因になります。
- 出力軸に強い衝撃を与えないでください

エンコーダ付モーターの出力軸には、光学式エンコーダが組み付けられています。エンコーダの損傷を防ぐため、モーター を搬送したり、負荷を取り付けるときは、出力軸へ強い衝撃を与えないように扱ってください。

- ラジアル荷重とアキシアル荷重は許容値以下で使用してください
 許容値を超えたラジアル荷重やアキシアル荷重が加わった状態で運転を続けると、軸受け(ボールベアリング)が破損する
 原因になります。必ず許容値内のラジアル荷重とアキシアル荷重で運転してください。詳細は38ページをご覧ください。
- モーターのケース温度
 - ドライバには過熱から保護する機能がありますが、モーター自体にはそのような機能がありません。使用周囲温度、運転速度、運転デューティなどの運転条件によっては、モーターケースの表面温度が100 ℃を超える場合があります。モーターの軸受け(ボールベアリング)の寿命劣化を抑えるため、モーターケースの表面温度は100 ℃以下で使用してください。
 - ・ ギヤードタイプは、ギヤ部のグリースや部材の劣化を防ぐため、ギヤ部のケース温度は70 ℃以下で使用してください。
 - エンコーダ付モーターの場合、エンコーダを保護するため、モーターケースの表面温度は85 ℃以下で使用してください。
- 停止時の保持トルク

モーターの停止時は、ドライバのカレントダウン機能によって保持トルクが低下します。モーターを選定するときは、カ タログで停止時保持トルクを確認してください。

● 電磁ブレーキを制動・安全ブレーキとして使用しないでください

電磁ブレーキをモーターの制動停止に使用しないでください。電磁ブレーキのブレーキハブが著しく磨耗して、制動力が 低下します。電磁ブレーキは無励磁作動型のため、停電時などに負荷を保持するのに役立ちますが、負荷を確実に保持す る機構ではありません。安全ブレーキとして使用しないでください。電磁ブレーキで負荷を保持するときは、モーターの 停止後に行なってください。

漏れ電流対策

ドライバの動力線と他の動力線間、大地間、およびモーター間には浮遊容量が存在し、これを通して高周波漏れ電流が流れ、 周辺の機器に悪影響を与えることがあります。これは、ドライバのスイッチング周波数、ドライバとモーター間の配線長 などに左右されます。漏電ブレーカを設置するときは、次のような高周波対策品を使用してください。 三菱電機株式会社 NVシリーズ

ノイズ対策

ノイズ対策については、49ページ「2-8 ノイズ対策」をご覧ください。

● NVメモリへのデータ保存

データをNVメモリに書き込んでいる間、および書き込み後5秒以内は、DC24 V電源を切らないでください。書き込みが 正常に終了せず、EEPROM異常のアラームが発生する原因になります。NVメモリの書き換え可能回数は、約10万回です。

● 電源投入時のモーター励磁

この製品は、DC24 V電源と主電源を投入するとモーターが励磁します。電源投入時にモーターを無励磁にしたいときは、 AWO入力をダイレクト I/Oまたはネットワーク I/Oに割り当てて制御してください。

● プラス側を接地した電源を接続するときの注意

ドライバのデータ設定器コネクタ (CN4) と RS-485 通信コネクタ (CN6/CN7) は絶縁されていません。電源のプラス側を 接地するときは、マイナス側を接地した機器 (パソコンなど)を接続しないでください。これらの機器とドライバが短絡して、 破損するおそれがあります。データの設定などには、**OPX-2A**をお使いください。

ギャードモーターのグリース

ギャードモーターからまれに、少量のグリースがにじみ出ることがあります。グリース漏れによる周囲環境の汚染が問題 になるときは、定期点検時にグリースのにじみを確認してください。または油受けなどの損害防止装置を取り付けてくだ さい。油漏れによって、お客様の装置や製品などに不具合を発生させる原因になります。

出力軸の回転方向

出荷時設定では、出力軸は図のように回転します。回転方向は、パラメータで変更できます。

• 位置(移動量)をプラスの値に設定した場合 • 位置(移動量)をマイナスの値に設定した場合

ギヤードモーターの場合、モーター出力軸に対するギヤ出力軸の回転方向は、ギヤの種類や減速比によって異なります。 表でご確認ください。

ギヤの種類	減速比	モーター出力軸に対するギヤ出力軸の回転方向
TC キャレー て	3.6、7.2、10	同方向
13+1-1	20、30	逆方向
FCギヤード	全減速比	同方向
PSギヤード	全減速比	同方向
ハーモニックギヤード	全減速比	逆方向

● ギヤードタイプの瞬時最大トルク

ギヤードタイプは、必ず瞬時最大トルク以下の負荷で運転してください。瞬時最大トルクを超えた負荷が加わると、ギヤ が破損します。

■ 接続ケーブル使用時の注意点

当社のケーブルを使用する際は、次の点にご注意ください。

コネクタを挿入するとき

コネクタ本体を持って、まっすぐ確実に差し込んでください。コネクタが傾いたまま差し込むと、端子が破損したり、接 続不良の原因になります。

● コネクタを抜くとき

コネクタのロック部分を解除しながら、まっすぐ引き抜いてください。ケーブルを持って引き抜くと、コネクタが破損す る原因になります。

● ケーブルの曲げ半径

ケーブルの曲げ半径は、ケーブル径の6 倍以上で使用してください。 リード リード線部分を曲げたり、クランプなどで固定しないでください。 コネクタが破損するおそれがあります。

● ケーブルの固定方法

ケーブルを固定するときは、コネクタの近くを図のように2か所で固定するか、幅広のクランプで固定するなど、コネクタ にストレスがかからない対策を施してください。

■ ドライバ仕様

入力信号	フォトカプラ入力 入力信号電圧:11.4 ~ 26.4 V		
出力信号	フォトカプラ・オープンコレクタ出力 外部使用条件:DC30 V 10 mA以下		

■ 一般仕様

• モーター

		• -10 ~ +50 ℃(凍結しないこと)	
	周囲温度	• 標準タイプ エンコーダ付は0 ~ +50 ℃(凍結しないこと)	
体田理培		• ハーモニックギヤードタイプは0 ~ +40 ℃(凍結しないこと)	
使用現現	湿度	85 %以下(結露しないこと)	
	高度	海抜1,000 m以下	
	雰囲気	腐食性ガス、塵埃がないこと。水、油が直接かからないこと。	
	周囲温度	-20~+60 ℃(凍結しないこと)	
伊 方理培	湿度	85 %以下(結露しないこと)	
1木仔圾児	高度	海抜3,000 m以下	
	雰囲気	腐食性ガス、塵埃がないこと。水、油が直接かからないこと。	
	周囲温度	–20~+60 ℃(凍結しないこと)	
态法理持	湿度	85 %以下(結露しないこと)	
荆还垛垷	高度	海抜3,000 m以下	
	雰囲気	腐食性ガス、塵埃がないこと。水、油が直接かからないこと。	
保護等級	IP20		
	DC500 Vメガ	ーを次の場所に印加したとき、100 MΩ以上あること。	
絶縁抵抗	• ケースーモー	-ター巻線間	
	● ケース – 電磁	ダブレーキ巻線間	
	規定の電圧を沿	欠の場所に1 分間印加しても異常がないこと。	
絶縁耐圧	・ケースーモー	-ター巻線間 AC1.5 kV 50/60 Hz	
	●ケース-電磁	ダブレーキ巻線間 AC1.5 kV 50/60 Hz	

• ドライバ

	周囲温度	0~+55 ℃(凍結しないこと)※
体田理培	湿度	85 %以下(結露しないこと)
使用泉境	高度	海抜1,000 m以下
	雰囲気	腐食性ガス、塵埃がないこと。水、油が直接かからないこと。
	周囲温度	-25 ~ +70 °C (凍結しないこと)
促方理培	湿度	85 %以下(結露しないこと)
1木1子垛坞	高度	海抜3,000 m以下
	雰囲気	腐食性ガス、塵埃がないこと。水、油が直接かからないこと。
	周囲温度	–25 ~ +70 ℃(凍結しないこと)
榆洋理培	湿度	85 %以下(結露しないこと)
制还垛垷	高度	海抜3,000 m以下
	雰囲気	腐食性ガス、塵埃がないこと。水、油が直接かからないこと。
保護等級	IP10	
	DC500 Vメガ	ーを次の場所に印加したとき、100 ΜΩ以上あること。
絶縁抵抗	• 保護接地端子	一電源端子間
	• 入出力信号端	子-電源端子間
	規定の電圧を次	の場所に1 分間印加しても異常がないこと。
絶縁耐圧	• 保護接地端子	電源端子間 AC1.5 kV 50/60 Hz
	• 入出力信号端	子-電源端子間 AC1.8 kV 50/60 Hz

※ 放熱板(材質:アルミニウム、200×200×2 mm相当以上)に取り付けた場合。

7-1 UL規格

UL規格に関する認証情報については、APPENDIX UL Standards and CSA Standards for RKI Seriesでご確認ください。

7-2 CEマーキング

この製品は、次の指令にもとづいてマーキングを実施しています。

■ 低電圧指令

設置条件

項目	モーター	ドライバ
過電圧カテゴリー	Π	
汚損度	2	
保護等級	IP20	IP10
感電保護	クラス I	

• IT配電系統では使用できません。

• モーターケーブルや電源ケーブルなどの動力系ケーブルと、信号系のケーブルは、二重絶縁で分離してください。

• 駆動条件によっては、ドライバの放熱板が90 ℃を超えることがあります。次のことを守ってください。

・必ず試運転を行ない、ドライバの温度を確認してください。

・可燃物のそばでドライバを使用しないでください。

・ドライバに触れないでください。

• 配線用遮断器は、ENまたは IEC規格適合品を使用してください。

• ドライバには、EN規格で規定されるモーター過負荷保護とモーター過熱保護は備わっていません。

• ドライバには、地絡保護回路は備わっていません。配線するときは、23ページ「地絡保護を考慮した電源への配線例」 に従ってください。また、次のことを考慮してください。

・漏電遮断器:定格感度電流30 mA

・過電圧カテゴリーⅢの電源に接続する場合は絶縁トランスを使用し、絶縁トランスの二次側(単相は N)を接地する。 ・故障ループインピーダンス:表の値以下

ドライバの電源仕様	故障ループインピーダンス
単相100-120 V	500 Ω
単相200-240 V	1,000 Ω

● 地絡保護を考慮した電源への配線例

単相100-120 V、単相200-240 Vの場合

• TN配電系統

■ EMC指令

適合についての詳細は、50ページ[2-9 EMCへの適合]をご覧ください。

7-3 韓国電波法

この製品は韓国電波法にもとづいて KCマークを貼付しています。

7-4 RoHS指令

この製品は規制値を超える物質は含有していません。

8 準備

確認していただきたい内容や、各部の名称と機能について説明します。

8-1 製品の確認

次のものがすべて揃っていることを確認してください。不足したり破損している場合は、お買い求めの支店・営業所までご 連絡ください。

• モーター

- モーター.....1台
- モーター用ケーブル1本(接続ケーブルが付属している場合)
- 電磁ブレーキ用ケーブル.....1本(接続ケーブルが付属している電磁ブレーキ付の場合)
- 平行キー.....1 個(ギヤードタイプの場合; PKE543-TSを除く)
- モーター取付用ねじ (M4)4本 (PKE564-TSに付属)
- モーター取付用ねじ(M8)4本(PKE596-TSに付属)
- 安全にお使いいただくために1 部
- APPENDIX UL Standards and CSA Standards for RKI Series......1部

• ドライバ

 ドライバ 	1台
• CN1 用コネクタ(4 ピン)	1個
• CN3 用コネクタ(3 ピン)	1個
• CN5 用コネクタ (5 ピン)	1個
• CN8 用コネクタ (9 ピン)	1個
• CN9 用コネクタ (7 ピン)	1個
• 安全にお使いいただくために	1部

8-2 品名の見方(ユニット品名)

1	シリーズ名	RKIシリーズ
2	5相	
3	モーター取付角寸法	4 :42 mm 6 :60 mm 9 :85 mm (ギヤードタイプは90 mm)
4	モーターケース長さ	
5	形状	A:片軸仕様 M:電磁ブレーキ付B:両軸仕様 R:エンコーダ付
6	電源入力	A:単相100-120 ∨ C:単相200-240 ∨
7	ドライバの種類	D:位置決め機能内蔵タイプ
8	ギヤの種類	TS:TSギヤード FC:FCギヤード PS:PSギヤード HS:ハーモニックギヤード なし:標準
9	減速比	
10	出力軸の方向※1※2	L:L軸(左) R:R軸(右)
11	識別※1	A:中実軸
12	接続ケーブル長さ	数字:付属の接続ケーブル長さ(m) なし:接続ケーブルは付属していません。

※1 FCギヤードタイプのみ。

※2 モーターケーブル引出口側から見た出力軸の方向を表わしています。

品名の見方(単体品名) 8-3

モーターとドライバの品名は、それぞれ製品の銘板に記載された品名で確認してください。 銘板の見方については27ページ[8-4 銘板の情報]をご覧ください。

● 標準タイプ ● ギヤードタイプ

 PKE
 5
 4
 3
 4
 5
 6
 2

 1
 2
 3
 4
 5
 6
 7

1	シリーズ名	PKE:RKIシリーズ モーター
2	5相	
3	モーター取付角寸法	4 :42 mm 6 :60 mm 9 :85 mm(ギヤードタイプは90 mm)
4	モーターケース長さ	
5	形状	A:片軸仕様 B:両軸仕様 M:電磁ブレーキ付 R:エンコーダ付
6	モーター仕様	C:AC電源入力仕様
7	追番	
8	ギヤの種類	TS:TSギヤード FC:FCギヤード PS:PSギヤード HS:ハーモニックギヤード
9	減速比	
10	出力軸の方向※1 ※2	L:L軸(左) R:R軸(右)
11	識別※1	A:中実軸

※1 FCギヤードタイプのみ。

※2 モーターケーブル引出口側から見た出力軸の方向を表わしています。

■ ドライバ

 $\frac{\mathbf{RKSD}}{1} \quad \frac{\mathbf{5}}{2} \quad \frac{\mathbf{07}}{3} \quad - \quad \frac{\mathbf{A}}{4} \quad \frac{\mathbf{D}}{5}$

1	シリーズ名	RKSD:RKⅡシリーズ ドライバ
2	5相	
3	定格電流	
4	電源入力	A:単相100-120 ∨ C:単相200-240 ∨
5	種類	D:位置決め機能内蔵タイプ

8-4 銘板の情報

■ モーター

■ ドライバ

8-5 モーターとドライバの組み合わせ

お買い求めの製品の品名は、パッケージのラベルに記載された品名で確認してください。 モーターとドライバの品名は、各製品の銘板に記載された品名で確認してください。

- ・ 品名の ■には、A(単相100-120 V)または C(単相200-240 V)が入ります。
- ・ 品名の ■には、 (1年間100-120 V) または C(単間200-240 V)が入ります。
 ・ 接続ケーブルが付属している場合、品名の Oにはケーブルの長さ(-1、-2、-3)が入ります。

● 標準タイプ(片軸)

● 標準タイプ(両軸)

ドライバ品名	モーター品名	品名
	PKE543AC	RKS543A■DO
RKSD503-∎D	PKE544AC	RKS544A∎DO
	PKE545AC	RKS545A■DO
	PKE564AC	RKS564A∎DO
	PKE566AC	RKS566A■DO
	PKE569AC	RKS569A■DO
RKSD507-∎D	PKE596AC	RKS596A∎D⊖
	PKE599AC	RKS599A■D O
	PKE5913AC	RKS5913A∎D ⊖

品名	モーター品名	ドライバ品名
RKS543B■DO	PKE543BC	
RKS544B∎D⊖	PKE544BC	RKSD503-∎D
RKS545B■DO	PKE545BC	
RKS564B■DO	PKE564BC	
RKS566B■DO	PKE566BC	
RKS569B■D○	PKE569BC	
RKS596B∎D⊖	PKE596BC	
RKS599B■D ○	PKE599BC	
RKS5913B∎D ⊖	PKE5913BC	

● 標準タイプ(電磁ブレーキ付)

ドライバ品名	モーター品名	品名
	PKE543MC	RKS543M∎D⊖
RKSD503-■D	PKE544MC	RKS544M∎DO
	PKE545MC	RKS545M∎D⊖
	PKE564MC	RKS564M∎DO
	PKE566MC	RKS566M∎D⊖
	PKE569MC	RKS569M■D ○
KKSD507-∎D	PKE596MC	RKS596M∎D ⊖
	PKE599MC	RKS599M■D O
	PKE5913MC	RKS5913M■DO

● 標準タイプ(エンコーダ付)

品名	モーター品名	ドライバ品名
RKS543R∎D2○	PKE543RC2	RKSD503-∎D
RKS544R■D2 〇	PKE544RC2	
RKS545R∎D2 ○	PKE545RC2	
RKS564R■D2 ○	PKE564RC2	
RKS566R∎D2 ○	PKE566RC2	
RKS569R■D2 ○	PKE569RC2	
RKS596R∎D2 ○	PKE596RC2	
RKS599R■D2 ○	PKE599RC2	
RKS5913R■D2 ○	PKE5913RC2	

● TSギヤードタイプ(片軸)

ドライバ品名	モーター品名	品名
	PKE543AC-TS3.6	RKS543A■D-TS3.6 〇
	PKE543AC-TS7.2	RKS543A∎D-TS7.2 ○
RKSD503-■D	PKE543AC-TS10	RKS543A■D-TS10○
	PKE543AC-TS20	RKS543A∎D-TS20○
	PKE543AC-TS30	RKS543A■D-TS30○
	PKE564AC-TS3.6	RKS564A∎D-TS3.6○
	PKE564AC-TS7.2	RKS564A■D-TS7.2 ○
	PKE564AC-TS10	RKS564A∎D-TS10⊖
	PKE564AC-TS20	RKS564A■D-TS20 ○
	PKE564AC-TS30	RKS564A∎D-TS30⊖
KK3D307-ED	PKE596AC-TS3.6	RKS596A■D-TS3.6 〇
	PKE596AC-TS7.2	RKS596A■D-TS7.2 ○
	PKE596AC-TS10	RKS596A■D-TS10○
	PKE596AC-TS20	RKS596A■D-TS20○
	PKE596AC-TS30	RKS596ABD-TS30O

● TSギヤードタイプ(両軸)

品名	モーター品名	ドライバ品名	
RKS543B■D-TS3.6 ○	PKE543BC-TS3.6		
RKS543B∎D-TS7.2 ○	PKE543BC-TS7.2		
RKS543B■D-TS10○	PKE543BC-TS10	RKSD503-∎D	
RKS543B■D-TS20○	PKE543BC-TS20		
RKS543B■D-TS30 ○	PKE543BC-TS30		
RKS564B∎D-TS3.6 ○	PKE564BC-TS3.6		
RKS564B■D-TS7.2 ○	PKE564BC-TS7.2		
RKS564BED-TS10O	PKE564BC-TS10		
RKS564B■D-TS20○	PKE564BC-TS20		
RKS564B∎D-TS30⊖	PKE564BC-TS30		
RKS596B■D-TS3.6 〇	PKE596BC-TS3.6	KKSD507-	
RKS596B■D-TS7.2 ○	PKE596BC-TS7.2		
RKS596B■D-TS10 ○	PKE596BC-TS10		
RKS596B■D-TS20 ○	PKE596BC-TS20	-	
RKS596B■D-TS30 ○	PKE596BC-TS30		

● TSギヤードタイプ(電磁ブレーキ付)

品名	モーター品名	ドライバ品名
RKS543M∎D-TS3.6○	PKE543MC-TS3.6	
RKS543M■D-TS7.2○	PKE543MC-TS7.2	
RKS543M∎D-TS10○	PKE543MC-TS10	RKSD503-∎D
RKS543M■D-TS20 ○	PKE543MC-TS20	
RKS543M∎D-TS30 ○	PKE543MC-TS30	
RKS564M■D-TS3.6〇	PKE564MC-TS3.6	
RKS564M∎D-TS7.2○	PKE564MC-TS7.2	
RKS564M■D-TS10○	PKE564MC-TS10	
RKS564M∎D-TS20⊖	PKE564MC-TS20	
RKS564M■D-TS30 〇	PKE564MC-TS30	
RKS596M∎D-TS3.6○	PKE596MC-TS3.6	
RKS596M■D-TS7.2○	PKE596MC-TS7.2	
RKS596M∎D-TS10○	PKE596MC-TS10	
RKS596M■D-TS20○	PKE596MC-TS20	
RKS596MBD-TS30O	PKE596MC-TS30	

● FCギヤードタイプ(片軸)

品名	モーター品名	ドライバ品名
RKS545A■D-FC7.2LAO	PKE545AC-FC7.2LA	
RKS545AED-FC7.2RAO	PKE545AC-FC7.2RA	
RKS545ABD-FC10LAO	PKE545AC-FC10LA	
RKS545ABD-FC10RAO	PKE545AC-FC10RA	
RKS545ABD-FC20LAO	PKE545AC-FC20LA	KK2D202-
RKS545ABD-FC20RAO	PKE545AC-FC20RA	
RKS545ABD-FC30LAO	PKE545AC-FC30LA	
RKS545ABD-FC30RAO	PKE545AC-FC30RA	
RKS566A■D-FC7.2LAO	PKE566AC-FC7.2LA	
RKS566AED-FC7.2RAO	PKE566AC-FC7.2RA	
RKS566ABD-FC10LAO	PKE566AC-FC10LA	
RKS566AmD-FC10RAO	PKE566AC-FC10RA	
RKS566A ■D-FC20LA O	PKE566AC-FC20LA	KKSD507-ED
RKS566A D -FC20RAO	PKE566AC-FC20RA	
RKS566A=D-FC30LAO	PKE566AC-FC30LA	
RKS566AED-FC30RAO	PKE566AC-FC30RA	

● PSギヤードタイプ(片軸)

● PSギヤードタイプ(両軸)

品名	モーター品名	ドライバ品名	品名	モーター品名	ドライバ品名
RKS545A■D-PS5○	PKE545AC-PS5		RKS545B■D-PS5 ○	PKE545BC-PS5	
RKS545A∎D-PS7.2○	PKE545AC-PS7.2		RKS545B∎D-PS7.2 ○	PKE545BC-PS7.2	
RKS545A■D-PS10○	PKE545AC-PS10		RKS545B■D-PS10 ○	PKE545BC-PS10	
RKS543AmD-PS25O	PKE543AC-PS25	KK3D303-=D	RKS543B∎D-PS25⊖	PKE543BC-PS25	KK3D303-∎D
RKS543A■D-PS36〇	PKE543AC-PS36		RKS543B■D-PS36 ○	PKE543BC-PS36	
RKS543AmD-PS50O	PKE543AC-PS50		RKS543B∎D-PS50⊖	PKE543BC-PS50	
RKS566A■D-PS5○	PKE566AC-PS5		RKS566B■D-PS5 ○	PKE566BC-PS5	
RKS566AED-PS7.2O	PKE566AC-PS7.2		RKS566B■D-PS7.2○	PKE566BC-PS7.2	
RKS566A■D-PS10○	PKE566AC-PS10		RKS566B■D-PS10 ○	PKE566BC-PS10	
RKS564AmD-PS25O	PKE564AC-PS25		RKS564B∎D-PS25⊖	PKE564BC-PS25	
RKS564A■D-PS36 〇	PKE564AC-PS36		RKS564B■D-PS36 ○	PKE564BC-PS36	
RKS564A■D-PS50 ○	PKE564AC-PS50		RKS564B■D-PS50 ○	PKE564BC-PS50	
RKS599A■D-PS5 ○	PKE599AC-PS5	KK3D307-ED	RKS599B■D-PS5 ○	PKE599BC-PS5	KK3D307-BD
RKS599A■D-PS7.2 ○	PKE599AC-PS7.2		RKS599B■D-PS7.2 ○	PKE599BC-PS7.2	
RKS599A=D-PS100	PKE599AC-PS10		RKS599B■D-PS10○	PKE599BC-PS10	
RKS596A■D-PS25 ○	PKE596AC-PS25		RKS596B■D-PS25 ○	PKE596BC-PS25	
RKS596AED-PS36O	PKE596AC-PS36		RKS596B∎D-PS36⊖	PKE596BC-PS36	
RKS596ABD-PS50O	PKE596AC-PS50		RKS596B■D-PS50 ○	PKE596BC-PS50	

● PSギヤードタイプ(電磁ブレーキ付)

品名	モーター品名	ドライバ品名
RKS545M■D-PS5○	PKE545MC-PS5	
RKS545M■D-PS7.2○	PKE545MC-PS7.2	
RKS545M■D-PS10○	PKE545MC-PS10	
RKS543M■D-PS25 ○	PKE543MC-PS25	KK5D505- = D
RKS543M■D-PS36 ○	PKE543MC-PS36	
RKS543M■D-PS50 ○	PKE543MC-PS50	
RKS566M∎D-PS5⊖	PKE566MC-PS5	
RKS566M■D-PS7.2○	PKE566MC-PS7.2	
RKS566MED-PS10O	PKE566MC-PS10	
RKS564M■D-PS25○	PKE564MC-PS25	
RKS564M∎D-PS36⊖	PKE564MC-PS36	
RKS564M■D-PS50 ○	PKE564MC-PS50	
RKS599M∎D-PS5⊖	PKE599MC-PS5	
RKS599M■D-PS7.2○	PKE599MC-PS7.2	
RKS599M■D-PS10○	PKE599MC-PS10	
RKS596M■D-PS25 ○	PKE596MC-PS25	
RKS596M∎D-PS36⊖	PKE596MC-PS36	
RKS596M■D-PS50○	PKE596MC-PS50	

● ハーモニックギヤードタイプ(片軸)

品名	モーター品名	ドライバ品名
RKS543A∎D-HS50⊖	PKE543AC-HS50	
RKS543A■D-HS100○	PKE543AC-HS100	KK2D202-
RKS564A∎D-HS50○	PKE564AC-HS50	
RKS564A■D-HS100O	PKE564AC-HS100	
RKS596A∎D-HS50○	PKE596AC-HS50	KK2D207-■D
RKS596A■D-HS100○	PKE596AC-HS100	

● ハーモニックギヤードタイプ(両軸)

品名	モーター品名	ドライバ品名	
RKS543B∎D-HS50⊖	PKE543BC-HS50		
RKS543B■D-HS100○	PKE543BC-HS100	KKSD203-	
RKS564B∎D-HS50⊖	PKE564BC-HS50		
RKS564B■D-HS100○	PKE564BC-HS100		
RKS596B∎D-HS50 ○	PKE596BC-HS50	KK2D201-ED	
RKS596B■D-HS1000	PKE596BC-HS100		

● ハーモニックギヤードタイプ(電磁ブレーキ付)

品名	モーター品名	ドライバ品名	
RKS543M■D-HS50〇	PKE543MC-HS50		
RKS543M∎D-HS100⊖	PKE543MC-HS100	KK3D303-■D	
RKS564M■D-HS50〇	PKE564MC-HS50		
RKS564M∎D-HS100⊖	PKE564MC-HS100		
RKS596M■D-HS50 〇	PKE596MC-HS50	KK3D307-■D	
RKS596M■D-HS1000	PKE596MC-HS100		

8-6 各部の名称と機能

分類	名称	説明	参照先
LED		• PWR(緑):DC24 V電源が投入されているときに点灯します。	
	PWR/ALM LED	• ALM(赤):アラーム(保護機能)が発生すると点滅します。点滅回数 を数えると、アラームの内容を確認できます。	P.259
		• C-DAT (緑):RS-485 通信による上位システムとの通信が正常に行なわれているときに点滅または点灯します。	
	C-DAT/C-ERR LED	• C-ERR(赤): RS-485 通信による上位システムとの通信に異常が発生すると点灯します。	_
	CHARGE LED (赤)	主電源が投入されているときに点灯します。主電源を切った後、内 部の残留電圧が安全なレベルまで低下すると消灯します。	-
スイッチ	号機設定スイッチ (ID)	RS-485 通信で制御するときに使用してください。機能設定スイッチ (SW1)の No.1 と併用して、RS-485 通信の号機番号を設定します。 出荷時設定:0	P.152 P.188
	終端抵抗設定スイッチ (TERM.)	RS-485 通信で制御するときに使用してください。RS-485 通信の終 端抵抗 (120 Ω) を設定します。 出荷時設定:OFF	P.153 P.189
	機能設定スイッチ (SW1)	 RS-485 通信で制御するときに使用してください。 No.1: 号機設定スイッチ (ID) と併用して、号機番号を設定します。 出荷時設定: OFF No.2: RS-485 通信のプロトコルを設定します。 出荷時設定: OFF 	P.151 P.188
	通信速度設定スイッチ (BAUD)	RS-485 通信で制御するときに使用してください。RS-485 通信の通 信速度を設定します。 出荷時設定:7	P.152 P.189
	モーターコネクタ(CN2)	モーターを接続します。	P.41
	データ設定器コネクタ(CN4)	MEXE02 をインストールしたパソコンまたは OPX-2Aを接続します。	P.48
	センサ信号コネクタ(CN5)	センサ信号を接続します。	P.45
コネクタ	RS-485 通信コネクタ (CN6/CN7)	RS-485 通信ケーブルを接続します。	P.48
	入力信号コネクタ(CN8)	入力信号を接続します。	P.45
	出力信号コネクタ(CN9)	出力信号を接続します。	P.45
	エンコーダコネクタ(CN10)	エンコーダを接続します。	P.42
	DC24 V電源入力端子 (CN1-24V)	ドライバの制御用電源を接続します。 + :+DC24 V電源入力 ー :電源 GND	P.44
端子	電磁ブレーキ接続端子 (CN1-MB1/MB2)	電磁ブレーキケーブルのリード線を接続します。 MB1:電磁ブレーキー (黒) MB2:電磁ブレーキ+ (白)	P.44
	主電源入力端子(CN3)	主電源を接続します。 L:ライブ N:ニュートラル	P.43
	保護接地端子 🔔	AWG16 ~ 14 (1.25 ~ 2.0 mm²)の接地線で接地してください。	P.42

■ モーター

● 標準タイプ 電磁ブレーキ付

● 標準タイプ エンコーダ付

2 設置と接続

製品の設置方法、負荷の取付方法、接続方法、および入出力信号について説明しています。

◆もくじ

1	設置	<u>_</u>	36
	1-1	設置場所	36
	1-2	モーターの設置	36
	1-3	負荷の取り付け	37
	1-4	許容ラジアル荷重と許容アキシアル荷重	.38
	1-5	ドライバの設置	40
2	接続		41
	2-1	接続例	41
	2-2	モーター、ドライバの接地	.42
	2-3	主電源の接続	.43
	2-4	DC24 V電源・電磁ブレーキの接続	.44
	2-5	入出力信号の接続	.45
	2-6	データ設定器の接続	.48
	2-7	RS-485 通信ケーブルの接続	.48
	2-8	ノイズ対策	49
	2-9	EMCへの適合	.50
3	入出	うたい しゅうしゅう しゅうしゅう しんしゅう しんしょう しんしょ しんしょ	52
	3-1	ダイレクト I/Oの割り付け	52
	3-2	ネットワーク I/Oの割り付け	56
	3-3	入力信号	.60
	3-4	出力信号	.65
	3-5	センサ入力	.70
	3-6	汎用信号(R0~R15)	.71

モーター、ドライバの設置場所、および設置方法について説明します。

1-1 設置場所

モーター、ドライバは、機器組み込み用に設計、製造されています。風通しがよく、点検が容易な次のような場所に設置 してください。

- 屋内に設置された筐体内(換気口を設けてください)
- 使用周囲温度 モーター:-10~+50 ℃(凍結しないこと)
 - エンコーダ付タイプ:0 ~ +50 ℃ (凍結しないこと) ハーモニックギヤードタイプ:0 ~ +40 ℃ (凍結しないこと) ドライバ:0 ~ +55 ℃ (凍結しないこと)
- 使用周囲湿度 85%以下(結露しないこと)
- 爆発性雰囲気、有害なガス(硫化ガスなど)、および液体のないところ
- 直射日光が当たらないところ
- 塵埃や鉄粉などの少ないところ
- 水(雨や水滴)、油(油滴)、およびその他の液体がかからないところ
- 塩分の少ないところ
- 連続的な振動や過度の衝撃が加わらないところ
- 電磁ノイズ(溶接機、動力機器など)が少ないところ
- 放射性物質や磁場がなく、真空でないところ
- 海抜 1,000 m以下

1-2 モーターの設置

モーターの設置方向に制限はありません。放熱性や振動防止を考慮し、できるだけ強固な金属面へ確実に取り付けてください。**PKE564-TS**と **PKE596-TS**は、付属のねじで固定してください。

締付トルクの値は推奨値です。取り付ける金属板の設計条件に合わせて、適切なトルクで締め付けてください。

● 設置方法 A

● 設置方法 B

1
● ねじサイズ・締付トルク・設置方法

タイプ	品名	ねじの呼び	締付トルク (N·m)	有効ねじ深さ (mm)	設置方法
	PKE54	M3	1	4.5	А
標準	PKE56	M4	2		D
	PKE59	M6	3	_	В
	PKE54	M4	2	8	А
TSギヤード	PKE56	M4	2		В
	PKE59	M8	4	_	
FC キャー で	PKE54	M4	2		В
	PKE56	M5	2.5	_	
	PKE54	M4	2	8	
PSギヤード	PKE56	M5	2.5	10	А
	PKE59	M8	4	15	
	PKE54	M4	2	8	
ハーモニックギヤード	PKE56	M5	2.5	10	A
	PKE59	M8	4	-	В

1-3 負荷の取り付け

負荷をモーターに取り付ける方法について説明します。

- 出力軸と負荷を連結するときは、心出し、ベルトのテンション、プーリーの平行度などに注意してくだ さい。また、カップリングやプーリーのねじは確実に締め付けてください。
- カップリングやプーリーを出力軸に取り付けるときは、出力軸や軸受け(ボールベアリング)に損傷を与えないでください。
- 出力軸を改造したり、機械加工をしないでください。軸受け(ボールベアリング)が損傷して、モーター が破損する原因になります。
- 平行キーを出力軸から取り外すときに、ハンマーなどで強い力を加えないでください。出力軸や軸受け (ボールベアリング)が破損する原因になります。
- エンコーダ付モーターの出力軸には、光学式エンコーダが組み付けられています。エンコーダの損傷を 防ぐため、モーターを搬送したり、負荷を取り付けるときは、出力軸へ強い衝撃を与えないように扱っ てください。

● カップリング連結のとき

出力軸と負荷の軸中心線を一直線にしてください。

- ベルト連結のとき
 - 出力軸と負荷の回転軸を平行にしてください。
 - 出力軸と負荷の回転軸を、両プーリーの中心を結ぶ線に対して直角にしてください。
- ギヤ連結のとき
 - 出力軸とギヤ軸を平行にしてください。
 - ギヤ歯面の中心を正しく噛み合わせてください。

● キー締結のとき(ギヤードモーター)

キーみぞ加工された出力軸と負荷を結合するときは、負荷側にキーみぞ加工をして、付属のキーで負荷と出力軸を固定し てください。

● フランジ面に取り付けるとき(ハーモニックギヤードタイプ)

ハーモニックギヤードタイプ(PKE596 を除く)は、フランジ面にある負荷取付用ねじ穴を使用して、負荷を直接ギヤに取り 付けることができます。

モーター品名	ねじの呼び	ねじの本数	締付トルク (N·m)	有効ねじ深さ (mm)
PKE543	M3	6	1.4	5
PKE564	M4	6	2.5	6

● 負荷をフランジ面に取り付ける場合、出力軸のキーみぞを併用して負荷を固定することはできません。
 ● モーターを取り付けている金属板やねじと、負荷が干渉しないように設計してください。

1-4 許容ラジアル荷重と許容アキシアル荷重

ラジアル荷重とアキシアル荷重は、許容値以下にしてください。

重要

ラジアル荷重やアキシアル荷重が許容値を超えると、繰り返し荷重によって、出力軸や軸受け(ボールベアリング)が疲労破損にいたる原因になります。

(memo) PSギャードタイプは、ラジアル荷重またはアキシアル荷重のどちらかが作用した場合に、寿命が 20,000 時間を満たす値を許容値としています。

	T 0 00		許容ラジアル荷重(N)				許容アキシアル荷重	
シイノ	モーター品名	减迷比		出刀幣	出た 「「「」」	い 印 離		(N)
			0 mm	5 mm	10 mm	15 mm	20 mm	
	PKE54		35	44	58	85	-	15
標準	PKE56	-	90	100	130	180	270	30
	PKE59		260	290	340	390	480	60
		3.6、7.2、10	20	30	40	50	-	1 5
	PKE34	20、30	40	50	60	70	-	15
TC ギャー ト	PKE56	3.6、7.2、10	120	135	150	165	180	40
13+ 1- 1		20、30	170	185	200	215	230	
	PKE59	3.6、7.2、10	300	325	350	375	400	150
		20、30	400	450	500	550	600	150
	PKE54	合试进出	180	200	220	250	-	100
	PKE56	土阀还比	270	290	310	330	350	200
PSギヤード		5	70	80	95	120	-	
		7.2	80	90	110	140	-	
		10	85	100	120	150	-	100
	FRED4	25	120	140	170	210	-	
		36	130	160	190	240	-	
		50	150	170	210	260	-	

2 設置と接続

			許容ラジアル荷重(N)					赤のフィンフリ共手
タイプ	モーター品名	減速比		出力	軸先端からの	D距離		計谷アキンアル何里 (NI)
			0 mm	5 mm	10 mm	15 mm	20 mm	(1 1)
		5	170	200	230	270	320	
		7.2	200	220	260	310	370	
	DVE56	10	220	250	290	350	410	200
	FRESO	25	300	340	400	470	560	200
		36	340	380	450	530	630	
DS ゼカード		50	380	430	500	600	700	
rs+r=r	PKE59	5	380	420	470	540	630	600
		7.2	430	470	530	610	710	
		10	480	530	590	680	790	
		25	650	720	810	920	1070	
		36	730	810	910	1,040	1,210	
		50	820	910	1,020	1,160	1,350	
N T =	PKE54		180	220	270	360	510	220
ハーモ <u>ー</u> ック ギヤード	PKE56	全減速比	320	370	440	550	720	450
+r=r	PKE59		1,090	1,150	1,230	1,310	1,410	1,300

■ ハーモニックギヤードタイプの許容モーメント荷重

アームやテーブルをフランジ面に取り付けるときに、偏 心荷重が加わる場合は、次の計算式でモーメント荷重を 算出してください。

モーメント荷重は、表の許容値を超えないでください。 L:出力フランジ中心からの距離(m) F:外力(N)

モーメント荷重:M(N·m) = F × L

モーター品名	許容モーメント 荷重 (N·m)
PKE543	5.6
PKE564	11.6

1-5 ドライバの設置

ドライバは、空気の対流による放熱や、筐体への熱伝導による放熱を前提として設計されています。熱伝導効果が高い、 平滑な金属板(材質:アルミニウム、200×200×2 mm相当)に取り付けてください。

ドライバは、筐体や他の機器から水平・垂直方向へ25 mm以上離して設置してください。ドライバを2 台以上設置するとき は、水平方向へ20 mm、垂直方向へ25 mm以上離してください。水平方向は、密着させることもできます。その場合は 周囲温度0 ~ 40 ℃、停止電流50 %以下でご使用ください。

ドライバを筐体内に設置するときは、2本のねじ(M4:付属していません)を使用して、取付穴を固定してください。

(memo) • ドライバを汚損度3 の環境で使用する場合は、IP54 以上の筐体内に設置してください。

- ドライバの周囲には、発熱量やノイズが大きい機器を設置しないでください。
- ドライバは、コントローラや他の熱に弱い機器の下側に設置しないでください。
- ドライバの周囲温度が55 ℃を超えるときは、換気条件を見直してください。また、停止電流を60 % に設定した場合は、周囲温度50 ℃以下でご使用ください。停止電流については78 ページをご覧ください。
- ドライバは、必ず垂直(縦位置)に設置してください。

外形図(単位:mm)

質量:0.8 kg

2 設置と接続

2 接続

ドライバとモーター、入出力信号、電源の接続方法、および接地方法について説明します。 また、ノイズ対策や、EMCに適合させる設置・配線方法についても説明します。

 ・感電防止のため、配線が終わるまでは電源を入れないでください。
 ・モーターコネクタ(CN2)、主電源入力端子(CN3)には高電圧がかかります。通電中は触れない でください。火災・感電の原因になります。

2-1 接続例

- ・コネクタは確実に接続してください。コネクタの接続が不完全だと、動作不良を起こしたり、モーター やドライバが破損する原因になります。
 - 電源を再投入したりコネクタを抜き差しするときは、電源を切り、CHARGE LEDが消灯してから行なってください。残留電圧によって感電するおそれがあります。
 - ドライバの電源ケーブルは、他の電源ラインやモーターケーブルと同一の配管内に配線しないでください。ノイズによって誤動作するおそれがあります。
 - 電磁ブレーキ用ケーブルのリード線には極性がありますので、正しく接続してください。極性を逆にして接続すると、電磁ブレーキが正常に動作しません。
- (memo) コネクタを抜くときは、指でコネクタのラッチ部分を押しながら引き抜いてください。
 - モーターを可動部分に取り付けるときは、可動ケーブルを使用してください。品名は266 ページでご 確認ください。

■ 標準タイプ 電磁ブレーキ付モーターの場合

- ※1 モーターとドライバ間の配線距離は20 m以下にしてください。
- ※2 付属または別売りです。

■ 標準タイプ エンコーダ付モーターの場合

- ※1 モーターとドライバ間の配線距離は20 m以下にしてください。
- ※2 付属または別売りです。

2-2 モーター、ドライバの接地

■ モーターの接地

モーターの保護接地端子を確実に接地してください。

- 接地線:AWG18(0.75 mm²)以上
- ねじサイズ:M4
- 締付トルク:1.2 N·m

接地するときは丸形端子を使用し、座金を入れたねじで固定してください。 接地線や圧着端子は付属していません。

■ ドライバの接地

ドライバの保護接地端子を必ず接地してください。

- 接地線:AWG16~14(1.25~2.0 mm²)
- ねじサイズ:M4
- 締付トルク:1.2 N·m

どちらの保護接地端子を接地しても構いません。接地しない端子はサービス端子です。 モーターと接続してモーターを接地させるなど、必要に応じてお使いください。 接地線は、溶接機や動力機器などと共用しないでください。 接地するときは、丸形端子を使用して、ドライバの近くに固定してください。

保護接地端子 (片方を接地する。)

2 設置と接続

2-3 主電源の接続

CN3 用コネクタ(3ピン)を使用して、電源を主電源入力端子(CN3)に接続します。

• 電源を再投入したりコネクタを抜き差しするときは、電源を切り、CHARGE LEDが消灯してから行なってください。残留電圧によって感電するおそれがあります。

ドライバの電源ケーブルは、他の電源ラインやモーターケーブルと同一の配管内に配線しないでください。ノイズによって誤動作するおそれがあります。

■ 結線方法

- 適用リード線: AWG16~14(1.25~2.0 mm²)
- 被覆剥き長さ:10 mm
- 1. マイナスドライバで橙色のボタンを押したまま、リード線を挿入します。
- 2. リード線を挿入したら、ボタンを離してリード線を固定します。

ピンアサイン

ピン No.	表示	内容	
1	NC	使用しません。	
2	L	・ テ 電 酒 ち 拉 结 し キ オ	
3	N	土电線で按応しより。 	

電源電流容量

品名	単相100-120 V -15~+10 % 50/60 Hz	単相200-240 V -15~+10 % 50/60 Hz
PKE543	2.1 A以上	1.3 A以上
PKE544 PKE545	1.9 A以上	1.2 A以上
PKE564	4.0 A以上	2.4 A以上
PKE566	3.8 A以上	2.4 A以上
PKE569	4.0 A以上	2.5 A以上
PKE596	4.9 A以上	3.0 A以上
PKE599 PKE5913	3.5 A以上	2.2 A以上

2-4 DC24 V電源・電磁ブレーキの接続

CN1 用コネクタ(4 ピン)を使用して、DC24 V電源と電磁ブレーキを接続します。 DC24 V電源はドライバの制御回路用電源です。必ず接続してください。

■ 結線方法

- 適用リード線:AWG28~16(0.08~1.25 mm²)
- 被覆剥き長さ:7 mm
- 1. リード線を CN1 用コネクタに挿入し、マイナスドライバでねじを締め付けます。
- 2. CN1 用コネクタを CN1 に差し込み、ねじを締め付けます。

ピンアサイン

表示	内容			
24V+				
24V-	DC24 V電源を接続します。 			
MB1	電磁ブレーキ用-入力(黒)			
MB2	電磁ブレーキ用+入力(白)			

24V+ —	Ę
MB1 —	
MB2 —	E
	\square

■ 電源容量

品名	電源電圧	電流容量		
		電磁ブレーキなし	電磁ブレーキ付	
PKE54	DC24 V±5 %%		0.3 A以上	
PKE56		0.2 A以上	0.5 A以上	
PKE59			0.7 A以上	

※ モーターとドライバ間を15~20 mに延長するときは、DC24 V±4 %の電源を使用してください。

(memo) DC24 V電源を再投入するときは、電源を切り1 秒以上経過してから行なってください。

2-5 入出力信号の接続

■ 結線方法

- 適用リード線:AWG26~20(0.14~0.5 mm²)
- 被覆剥き長さ:8 mm
- 1. マイナスドライバで橙色のボタンを押したまま、リード線を挿入します。
- 2. リード線を挿入したら、ボタンを離してリード線を固定します。

📕 ピンアサイン

● センサ信号(CN5)

ピン No.	信号名	内容	
1	+LS	+側リミットセンサ入力	d m⊂→— 1
2	–LS	-側リミットセンサ入力	
3	HOMES	機械原点センサ入力	
4	SLIT	スリットセンサ入力	
5	IN-COM2	センサ用コモン	

● 入力信号(CN8)

ピン No.	信号名	内容※	
1	IN0	制御入力0(HOME)	
2	IN1	制御入力1 (START)	[d_ Ⅲ(¬)— 1
3	IN2	制御入力2(M0)	
4	IN3	制御入力3(M1)	
5	IN4	制御入力4(M2)	
6	IN5	制御入力5(FREE)	
7	IN6	制御入力6(STOP)	<u>q uc</u> 9
8	IN7	制御入力7(ALM-RST)	
9	IN-COM1	入力信号用コモン	

※ ()内は初期値です。

• 出力信号(CN9)

ピン No.	信号名	内容※	
1	OUT0	制御出力0(HOME-P)	
2	OUT1	制御出力1(MOVE)	
3	OUT2	制御出力2(AREA1)	
4	OUT3	制御出力3(READY)	
5	OUT4	制御出力4(WNG)	
6	OUT5	制御出力5(ALM)	
7	OUT-COM	出力信号用コモン	

※ ()内は初期値です。

■ 電流シンク出力回路との接続例(NPN仕様)

※ ()内は初期値です。

(memo) • 入力信号は DC24 Vでお使いください。

- 出力信号は DC12 ~ 24 V、10 mA以下でお使いください。電流値が10 mAを超えるときは、外部抵抗 R0 を接続して、10 mA以下にしてください。
- 出力信号の飽和電圧は最大3 Vです。

2 設置と接続

■電流ソース出力回路との接続例(PNP仕様)

(**memo**) • 入力信号は DC24 Vでお使いください。

- 出力信号は DC12 ~ 24 V、10 mA以下でお使いください。電流値が10 mAを超えるときは、外部抵 抗 RO を接続して、10 mA以下にしてください。
- 出力信号の飽和電圧は最大3 Vです。

2-6 データ設定器の接続

サポートソフト用通信ケーブルまたは **OPX-2A**のケーブルを データ設定器コネクタ (CN4) に接続します。

▲注意

ドライバのデータ設定器コネクタ (CN4) と RS-485 通信コネクタ (CN6/CN7) は絶縁されていません。電源のプラス側を接地するときは、マイナス側を接地した機器 (パソコンなど)を接続しないでください。これらの機器とドライバが短絡して、破損するおそれがあります。

2-7 RS-485 通信ケーブルの接続

製品を RS-485 通信で制御するときに接続します。RS-485 通信ケーブルを CN6 または CN7 に接続してください。 空いた方のコネクタで、別のドライバと接続できます。当社でもドライバ間接続用のケーブルを用意しています。品名は 268 ページでご確認ください。また、市販の LANケーブル (シールド付ストレート) でもドライバ同士を接続できます。

• 内部入力回路

■ ピンアサイン

ピン No.	信号名	内容	
1	N.C.	未使用	
2	GND	GND	
3	TR+	RS-485 通信用信号(+)	
4	N.C.	土体田	
5	N.C.		۲, ۱.
6	TR-	RS-485 通信用信号(-)	ە ان ت
7	N.C.	土庙田	
8	N.C.	不厌用	

2 設置と接続

2-8 ノイズ対策

ノイズには、外部からドライバに侵入してドライバを誤動作させるノイズ、およびドライバから放射されて周辺の機器を 誤動作させるノイズの2 種類があります。

外部から侵入するノイズに対しては、ドライバの誤動作を防ぐ対策を実施してください。特に信号ラインはノイズの影響 を受けやすいため、十分な対策が必要です。

ドライバから放射されるノイズに対しては、ノイズを抑制する対策を実施してください。

■ ノイズ対策の方法

ノイズ対策の方法には、主に次の3種類があります。

● ノイズの抑制

- リレーや電磁スイッチを使用するときは、ノイズフィルタや CR回路でサージを吸収してください。
- モーターとドライバ間を延長するときは、当社のケーブルを使用してください。モーターから放射されるノイズを抑制 する効果があります。品名は266ページでご確認ください。
- アルミなどの金属板でドライバを覆ってください。ドライバから放射されるノイズを遮蔽する効果があります。

● ノイズの伝播の防止

- ノイズフィルタをドライバの電源ケーブルに接続してください。
- モーターケーブルや電源ケーブルなどの動力系ケーブルと信号系ケーブルは100 mm以上離し、束ねたり、平行に配線 しないでください。動力系ケーブルと信号系ケーブルが交差するときは、直角に交差させてください。
- 電源ケーブルや信号系ケーブルにはツイストペアシールドケーブルを使用してください。
- ケーブルは最短で配線し、長すぎて余った部分を巻いたり、束ねないでください。
- 多点接地にすると接地部のインピーダンスが下がるため、ノイズを遮断する効果が上がります。ただし、接地した箇所に電位差が生じないよう、安定した電位に接地してください。
- ケーブルを接地するときは、シールドの全周と接触できる金属製のシールドケーブル ケーブルクランプを使用し、できるだけ製品の近くに接地してくだ さい。

● ノイズの伝播による影響の抑制

ノイズが伝播しているケーブルをフェライトコアに巻きつけてください。伝播したノイズがドライバに侵入したり、ドラ イバから放出されることを防止します。フェライトコアの効果がみられる周波数帯は、一般的に1 MHz以上です。お使い になるフェライトコアの周波数特性を確認してください。フェライトコアによるノイズ減衰の効果を高める場合は、ケー ブルを多めに巻きつけてください。

■ ノイズ対策部品

• ノイズフィルタ

 次のノイズフィルタ(または相当品)を電源ラインに接続してください。電源ラインを通じて伝播するノイズを防ぎます。 ノイズフィルタは、できるだけドライバの近くに取り付けてください。

メーカー	品番	
双信電機株式会社	HF2010A-UPF	
Schaffner EMC	FN2070-10-06	

- ノイズフィルタの入出力ケーブルには AWG18 (0.75 mm²)以上の線を使用し、ケーブルが浮かないようケーブルクランプなどで確実に固定してください。
- ノイズフィルタの入出力ケーブルは十分に離し、並行に配線しないでください。ケーブル間の距離が近かったり、並行 に配線すると、筐体内のノイズが浮遊容量を介して電源ケーブルに結合してしまい、ノイズ抑制効果が低減します。
- ノイズフィルタを接地する線は、できるだけ太く、最短距離で接地してください。
- 筐体内でノイズフィルタを接続する場合は、ノイズフィルタの入力ケーブルを長く配線しないでください。ノイズ抑制 効果が低減します。

• サージアレスタ

サージアレスタは、交流電源ラインとアース間、および交流電源ライン間で発生する雷サージのサージ電圧を低減させる 効果があります。次のサージアレスタを接続してください。

メーカー	品番	
双信電機株式会社	LT-C12G801WS	
岡谷電機産業株式会社	R·A·V-781BWZ-4	

要 装置の耐圧試験を行なうときは、サージアレスタを取り外してください。サージアレスタが破損する原因 になります。

■ 当社のノイズ対策部品

品名は269 ページでご確認ください。

サージキラー

リレー接点部で発生するサージを抑制する効果があります。リレーや電磁スイッチをお使いになる場合に接続してください。サージキラーには、サージ電圧吸収用 CR回路と、CR回路モジュールの2 種類があります。

2-9 EMCへの適合

モーター、ドライバから周辺の制御システム機器への EMI、およびモーター、ドライバの EMSに対して有効な対策を施さ ないと、機械装置の機能に重大な障害を引き起こすおそれがあります。モーター、ドライバは、次の設置・配線方法を施す ことで、EMCへの適合が可能になります。

オリエンタルモーターは、51ページ「設置・配線例」に従って、モーター、ドライバの EMC試験を実施しています。 EMCの適合性は、次に説明する内容にもとづいて設置・配線し、お客様の責任で機械の EMCの適合性を確認していただく 必要があります。

⚠注意

この製品は、住宅に電力を供給する低電圧配電線への接続、および住宅環境での使用を意図して いません。低電圧配電線に接続、または住宅環境で使用すると、周囲の機器の無線受信に影響す る場合があります。

● ノイズフィルタの接続

ノイズの影響が大きいときは、ノイズフィルタを接続してください。詳細は49ページをご覧ください。

● サージアレスタの接続

50ページをご覧ください。

● DC24 V電源の接続

DC24 V電源は、EMCに適合した電源を使用してください。配線にはツイストペアシールドケーブルを使用してください。 配線方法は49 ページ「ノイズの伝播の防止」をご覧ください。

● モーターケーブルの接続

モーターとドライバ間を延長するときは、当社のケーブルを使用してください。品名は266ページでご確認ください。

● 信号ケーブルの接続

49ページ「ノイズの伝播の防止」をご覧ください。

- 接地方法
 - 接地した箇所に電位差が生じないよう、モーター、ドライバ、およびノイズフィルタを接地する線は、できるだけ太く、 最短距離で接地してください。
 - 接地ポイントには、広く、太く、均一な導電面を使用してください。
 - モーター、ドライバは、保護接地端子を接地してください。接地方法は42ページをご覧ください。

) ドライバは、静電気に敏感な部品を使用しています。静電気によってドライバが誤動作したり破損するお それがあるため、取り扱いの際は静電防止対策を行なってください。 2 設置と接続

3 入出力信号の説明

このマニュアルでは、I/O信号を次のように記載しています。

- ダイレクト I/O:入力信号コネクタ (CN8) および出力信号コネクタ (CN9) からアクセスする I/O
- ネットワーク I/O:RS-485 通信でアクセスする I/O

紹介するパラメータは、MEXE02、OPX-2A、および RS-485 通信のどれかで設定してください。

3-1 ダイレクト I/Oの割り付け

■ 入力端子への割り付け

パラメータで、次表の入力信号を CN8 の入力端子 IN0 ~ IN7 に割り付けることができます。 入力信号の詳細は60 ページをご覧ください。

ダイレクト I/O信号名	初期値	ダイレクト I/O信号名	初期値
IN0	3:HOME	IN4	50:M2
IN1	4:START	IN5	16:FREE
IN2	48:M0	IN6	18:STOP
IN3	49:M1	IN7	24:ALM-RST

割付 No.	信号名	機能			
0	未使用	入力端子を使用しないときに設定します。			
1	FWD	+方向の連続運転を実行します。			
2	RVS	- 方向の連続運転を実行します。			
3	HOME	原点復帰運転を実行します。			
4	START	位置決め運転を実行します。			
5	SSTART	順送り位置決め運転を実行します。			
6	+JOG	+方向の JOG運転を実行します。			
7	-JOG	−方向の JOG運転を実行します。			
8	MS0				
9	MS1				
10	MS2				
11	MS3	ライレンド位直次の連邦を关门しより。			
12	MS4				
13	MS5				
16	FREE	モーターを無励磁にして、電磁ブレーキを解放します。			
17	AWO	モーターの励磁 /無励磁を切り替えます。			
18	STOP	モーターを停止させます。			
24	ALM-RST	現在アラームをリセットします。			
25	P-PRESET	位置プリセットを実行します。			
27	HMI	MEXE02 や OPX-2Aの機能制限を解除します。			
32	RO				
33	R1				
34	R2				
35	R3				
36	R4				
37	R5	∥ル用信与です。 №-400 週間で削脚するこさに使用します。			
38	R6				
39	R7				
40	R8				
41	R9				

割付 No.	信号名	機能
42	R10	
43	R11	
44	R12	
45	R13	が用信号です。 K3-405 通信で削削するとさに使用しよす。
46	R14	
47	R15	
48	MO	
49	M1	
50	M2	6 つのビットを使って、運転データ No を選切します
51	M3	10 フのビットを使うし、運転ナータ NO.を迭折しまり。
52	M4	
53	M5	-

関連するパラメータ

MEXEO2 ツリー表	示	パラメータ	7名		内容		初期値
		IN0 入力機能運	選択				3:HOME
		IN1 入力機能運	選択			4:START	
		IN2 入力機能運	選択				48:M0
I/O機能[入力]		IN3 入力機能運	選択	次表の入力信号を入力端子 IN0 ~ IN7 に割り付 けます。			49:M1
		IN4 入力機能運	選択				50:M2
		IN5 入力機能選択 IN6 入力機能選択					16:FREE
							18:STOP
		IN7 入力機能運	選択				24:ALM-RST
0:未使用	7:	-JOG	16:FR	EE	33:R1	40:R8	47:R15
1:FWD	8:	MSO	17:A\	NO	34:R2	41:R9	48:M0
2:RV/S	9:	MS1	18:ST	OP	35:R3	42:R10	49:M1

2:RVS	9:MS1	18:STOP	35:R3	42:R10	49:M1
3:HOME	10:MS2	24:ALM-RST	36:R4	43:R11	50:M2
4:START	11:MS3	25:P-PRESET	37:R5	44:R12	51:M3
5:SSTART	12:MS4	27:HMI	38:R6	45:R13	52:M4
6:+JOG	13:MS5	32:R0	39:R7	46:R14	53:M5

(memo) • 同じ入力信号を複数の入力端子に割り当てないでください。複数の入力端子に割り当てたときは、どこ かの端子に入力があれば、機能が実行されます。

• ALM-RST入力と P-PRESET入力は、OFFから ONになったときに実行されます。

• HMI入力は、入力端子に割り当てられなかったときは常時 ONになります。また、ダイレクト I/Oとネッ トワーク I/Oの両方に割り当てたときは、両方とも ONにならないと機能しません。

■ 入力信号の接点設定の切り替え

パラメータで、入力端子 IN0 ~ IN7 の接点設定を切り替えることができます。

関連するパラメータ

MEXE02 ツリー表示	パラメータ名	内容	初期値
	IN0 入力接点設定		0
	IN1 入力接点設定		
	IN2 入力接点設定	 入力端子 INO ~ IN7 の接点設定を切り替えます。	
	IN3 入力接点設定	【設定範囲】 0:A接点(N.O.)	
1701成形[八八]]	IN4 入力接点設定		
	IN5 入力接点設定	1:B接点(N.C.)	
	IN6 入力接点設定		
	IN7 入力接点設定		

■ 出力端子への割り付け

パラメータで、次表の出力信号を CN9 の出力端子 OUT0 ~ OUT5 に割り付けることができます。 出力信号の詳細は65 ページをご覧ください。

ダイレクト I/O信号名		初期値	ダイレクト I/O信号名	初期値				
OUT0		70:HOME-P	OUT3	67:READY				
OUT1		68:MOVE OUT4 66:W		66:WNG				
OUT2		73:AREA1	OUT5	65:ALM				
割付 No.	信号名		機能					
0	未使用	出力端子を使用しない	ときに設定します。					
1	FWD_R	FWDに対する応答をと	出力します。					
2	RVS_R	RVSに対する応答を出	力します。					
3	HOME_R	HOMEに対する応答を	出力します。					
4	START_R	STARTに対する応答を	出力します。					
5	SSTART_R	SSTARTに対する応答	を出力します。					
6	+JOG_R	+JOGに対する応答を	出力します。					
7	-JOG_R	-JOGに対する応答を	出力します。					
8	MS0_R							
9	MS1_R							
10	MS2_R		広体を出去します					
11	MS3_R	10120~10122 [23] 9 3	加合を正力します。					
12	MS4_R							
13	MS5_R							
16	FREE_R	FREEに対する応答を出	出力します。					
17	AWO_R	AWOに対する応答を	出力します。					
18	STOP_R	STOPに対する応答を	出力します。					
32	RO							
33	R1							
34	R2							
35	R3							
36	R4							
37	R5							
38	R6							
39	R7	 汎田信号 PO ~ P15 の	い状能を出力します					
40	R8		れ感を回力しよう。					
41	R9							
42	R10							
43	R11							
44	R12							
45	R13							
46	R14							
47	R15							
48	M0_R							
49	M1_R							
50	M2_R	M0~M5に対する応	答を出力します。					
51	M3_R							
52	M4_R							
53	M5_R							
60	+LS_R	+LSに対する応答を出	力します。					
61	-LS_R	-LSに対する応答を出た	カします。					
62	HOMES_R	HOMESに対する応答	を出力します。					
63	SLIT_R	SLITに対する応答を出力します。						

割付 No.	信号名	機能
65	ALM	ドライバのアラーム状態を出力します。(B接点)
66	WNG	ドライバのワーニング状態を出力します。
67	READY	ドライバの運転準備が完了したときに出力されます。
68	MOVE	モーターが動作中のときに出力されます。
70	HOME-P	モーターが原点にあるときに出力されます。
72	TIM	モーター出力軸が7.2°回転するたびに出力されます。
73	AREA1	モーターがエリア1の範囲内にあるときに出力されます。
74	AREA2	モーターがエリア2の範囲内にあるときに出力されます。
75	AREA3	モーターがエリア3の範囲内にあるときに出力されます。
80	S-BSY	ドライバが内部処理状態のときに出力されます。
82	MPS	主電源の投入状態を出力します。
83	STEPOUT	偏差に異常があるときに出力されます。
84	O.H.	過熱のワーニングが発生すると出力されます。
85	ZSG	エンコーダから ENC-Z信号が入力されると、ドライバから出力されます。
86	MBC	電磁ブレーキの制御状態を出力します。

関連するパラメータ

MEXE02 ツリー表	リー表示 パラメータ名			内容		初期値		
		OUT0 出力機能	能選択				70:HOME-P	
		OUT1 出力機能	能選択					68:MOVE
1/〇楼部[山中]		OUT2 出力機能	能選択	次表の	出力信号を出力端子		: [73:AREA1
1/し成能[山/]]		OUT3 出力機能	能選択	割り付	けます。			67:READY
		OUT4 出力機能	能選択					66:WNG
		OUT5 出力機能	能選択				65:ALM	
0:未使用	10	:MS2_R	35:R3		45:R13	61:-LS_R	74	:AREA2
1:FWD_R	11	:MS3_R	36:R4		46:R14	62:HOMES_R	75	:AREA3
2:RVS_R	12	:MS4_R	37:R5		47:R15	63:SLIT_R	80	:S-BSY
3:HOME_R	13	:MS5_R	38:R6		48:M0_R	65:ALM	82:MPS	
4:START_R	16	:FREE_R	39:R7		49:M1_R	66:WNG	83	:STEPOUT
5:SSTART_R	17	':AWO_R 40:R8			50:M2_R	67:READY 8		:О.Н.
6:+JOG_R	18	SISTOP_R 41:R9			51:M3_R	68:MOVE	85	:ZSG
7:-JOG_R	32	:RO	42:R10		52:M4_R	70:HOME-P	86	:MBC
8:MS0_R	33	:R1	43:R11		53:M5_R	72:TIM		
9:MS1_R	34	:R2	44:R12		60:+LS_R	73:AREA1		

3-2 ネットワーク I/Oの割り付け

I/O機能を RS-485 通信に割り付けます。

■ 入力信号の割り付け

パラメータで、次表の入力信号をネットワーク I/Oの NET-IN0 ~ NET-IN 15 に割り付けることができます。 NET-IN0 ~ NET-IN 15 の配置については、各プロトコルを参照してください。

割付 No.	信号名	機能	設定範囲
0	未使用	入力端子を使用しないときに設定します。	-
1	FWD	+方向の連続運転を実行します。	0:減速停止
2	RVS	- 方向の連続運転を実行します。	1:運転
3	HOME	原点復帰運転を実行します。	
4	START	位置決め運転を実行します。	
5	SSTART	順送り位置決め運転を実行します。	
6	+JOG	+方向の JOG運転を実行します。	
7	-JOG	-方向の JOG運転を実行します。	
8	MSO		0:割作なし 1:運転開始
9	MS1		
10	MS2	I/Oパラメータで設定した運転データ No.のダイ	
11	MS3	レクト位置決め運転を実行します。	
12	MS4		
13	MS5		
16	FREE	モーターを無励磁にして、電磁ブレーキを解放し ます。	0:動作なし 1:電磁ブレーキ解放 +モーター無励磁
17	AWO	モーターの励磁 /無励磁を切り替えます。	0:モーター励磁 1:モーター無励磁
18	STOP	モーターを停止させます。	0:動作なし 1:運転停止
24	ALM-RST	アラームをリセットします。	0:動作なし
25	P-PRESET	位置プリセットを実行します。	1:実行
27	HMI	MEXE02 や OPX-2A の機能制限を解除します。	0:機能制限 1:機能制限解除
32	RO		
33	R1		
34	R2		
35	R3		
36	R4		
37	R5		
38	R6		
39	R7	汎用信号です。	0:OFF
40	R8	RS-485 通信で制御するときに使用します。	1:ON
41	R9		
42	R10		
43	R11		
44	R12		
45	R13		
46	R14		
47	R15		

割付 No.	信号名	機能	設定範囲
48	MO		
49	M1		
50	M2	6つのビットのON/OFFを組み合わせて、運転 データNoを選択します。組み合わせの詳細は	
51	M3	- リージ NO.を選択しより。 組み ロクロの 詳細は 61ページをご覧ください。	「.○N (運転データ No.は0 ~ 63 まで選択可能)
52	M4		
53	M5		

関連するパラメータ

MEXE02 ツリー表	示	パラメ	-9名		内	容		初期値	
		NET-IN0 入力機能選択						48:M0	
		NET-IN1 入力	機能選択				49:M1		
		NET-IN2 入力	機能選択					50:M2	
		NET-IN3 入力	機能選択					4:START	
		NET-IN4 入力	機能選択					3:HOME	
		NET-IN5 入力	機能選択					18:STOP	
		NET-IN6 入力	機能選択					16:FREE	
	,	NET-IN7 入力	機能選択	次	表の入力信号を NET	-IN0~NET-IN 15	5	24:ALM-RST	
I/O	J	NET-IN8 入力機能選択			割り付けます。			8:MS0	
		NET-IN9 入力機能選択						9:MS1	
		NET-IN10 入力機能選択						10:MS2	
		NET-IN11 入力機能選択						5:SSTART	
		NET-IN12入力機能選択						6:+JOG	
		NET-IN13 入力機能選択						7:-JOG	
		NET-IN14 入力	」機能選択					1:FWD	
		NET-IN15 入力機能選択						2:RVS	
								1	
0:未使用	7:	-JOG	16:FREE		33:R1	40:R8	47	7:R15	
1:FWD	8:	MSO	17:AWO		34:R2	41:R9	48	3:M0	
2:RVS	9:	MS1 18:STOP			35:R3	42:R10	49	9:M1	
3:HOME	10):MS2 24:ALM-RST			36:R4	43:R11	50):M2	
4:START	11	:MS3 25:P-PRESET			37:R5	44:R12	51	:M3	
5:SSTART	12	:MS4	MS4 27:HMI		38:R6	45:R13	52	2:M4	
6:+JOG	13	3:MS5 32:R0			39:R7	46:R14	53	3:M5	

・同じ入力信号を複数の入力端子に割り当てないでください。複数の入力端子に割り当てたときは、どれ か入力があれば機能が実行されます。

• ALM-RST入力と P-PRESET入力は、OFFから ONになったときに実行されます。

• HMI入力は、入力端子に割り当てられなかったときは常時 ONになります。また、ダイレクト I/Oとネッ トワーク I/Oの両方に割り当てたときは、両方とも ONにならないと機能しません。

■ 出力信号の割り付け

パラメータで、次の出力信号をネットワーク I/Oの NET-OUT0 ~ NET-OUT 15 に割り付けることができます。 NET-OUT0 ~ NET-OUT 15 の配置については、各プロトコルを参照してください。

割付 No.	信号名	機能	読み出し内容
0	未使用	出力端子を使用しないときに設定します。	-
1	FWD_R	FWDに対する応答を出力します。	
2	RVS_R	RVSに対する応答を出力します。	
3	HOME_R	HOMEに対する応答を出力します。	
4	START_R	STARTに対する応答を出力します。	
5	SSTART_R	SSTARTに対する応答を出力します。	
6	+JOG_R	+JOGに対する応答を出力します。	
7	-JOG_R	-JOGに対する応答を出力します。	
8	MS0_R		
9	MS1_R		
10	MS2_R		
11	MS3_R		
12	MS4_R		
13	MS5_R		
16	FREE_R	FREEに対する応答を出力します。	
17	AWO _R	AWOに対する応答を出力します。	
18	STOP_R	STOPに対する応答を出力します。	
32	RO		
33	R1		
34	R2		
35	R3		
36	R4		0:OFF
37	R5		1:ON
38	R6		
39	R7	 汎用信号 R0 ~ R15 の状態を出力します。	
40	R8		
41	R9		
42	R10		
43	R11		
44	R12		
45	R13		
46	R14		
47	R15		
48	100_R		
49 50			
50		M0 ~ M5 に対する応答を出力します。	
52			
52	M4_R		
60	+IS R	+ISに対する応答を出力します	
61	-IS R		
62	HOMES R	HOMESに対する応答を出力します。	
63	SLIT R	SLITに対する応答を出力	
			0:アラームなし
65	ALM	ドフィバのアフームを出力します。(A接点) 	1:アラーム発生中
66	WNG	ドライバのワーニングを出力します。	0:ワーニングなし 1:ワーニング発生中
67	READY	ドライバの運転準備が完了すると出力されます。	0:運転不可 1:運転準備完了

割付 No.	信号名	機能	読み出し内容	
68	MOVE	モーターが動作中のときに出力されます。	0:モーター停止 1:モーター動作中	
70	HOME-P	モーターが原点にあるときに出力されます。	0:原点以外 1:原点位置	
72	TIM	モーター出力軸が7.2°回転するたびに出力されます。	0:OFF 1:ON	
73	AREA1	モーターがエリア1の範囲内にあるときに出力されます。		
74	AREA2	モーターがエリア2の範囲内にあるときに出力されます。	0:エリア範囲外	
75	AREA3	モーターがエリア3の範囲内にあるときに出力されます。		
80	S-BSY	ドライバの内部処理中に出力されます。	0:OFF	
82	MPS	主電源の投入状態を出力します。	1:ON	
83	STEPOUT	偏差に異常があるときに出力されます。	0:偏差異常なし 1:偏差異常発生中	
84	O.H.	過熱のワーニングが発生すると出力されます。	0:過熱のワーニングなし 1:過熱のワーニング発生中	
85	ZSG	エンコーダから ENC-Z信号が入力されると、ドライバから 出力されます。	0:ENC-Z入力なし 1:ENC-Z入力あり	
86	MBC	電磁ブレーキの制御状態を出力します。	0:電磁ブレーキ保持 1:電磁ブレーキ解放	

関連するパラメータ

MEXE02 ツリー表	示	パラ	メータ名	内	初期値		
		NET-OUT0 出	力機能選択			48:M0_R	
		NET-OUT1 出	力機能選択		49:M1_R		
		NET-OUT2 出	力機能選択			50:M2_R	
		NET-OUT3 出	力機能選択			4:START_R	
		NET-OUT4 出	力機能選択			70:HOME-P	
		NET-OUT5 出	力機能選択			67:READY	
		NET-OUT6 出	力機能選択			66:WNG	
	1	NET-OUT7 出	力機能選択	次表の出力信号を	NET-OUT0 \sim	65:ALM	
1/ 0 俄 肥 [K3-403	1	NET-OUT8 出	力機能選択	NET-OUT 15 に害	削り付けます。	80:S-BSY	
		NET-OUT9 出	力機能選択			73:AREA1	
		NET-OUT10	出力機能選択		74:AREA2		
		NET-OUT11	出力機能選択		75:AREA3		
		NET-OUT12	出力機能選択		72:TIM		
		NET-OUT13 出力機能選択			68:MOVE		
		NET-OUT14	出力機能選択		0:未使用		
		NET-OUT15	出力機能選択		83:STEPOUT		
			-		-		
0:未使用	10	:MS2_R	35:R3	45:R13	61:-LS_R	74:AREA2	
1:FWD_R	11	:MS3_R	36:R4	46:R14	62:HOMES_R	75:AREA3	
2:RVS_R	12	:MS4_R	37:R5	47:R15	63:SLIT_R	80:S-BSY	
3:HOME_R	13	:MS5_R	38:R6	48:M0_R	65:ALM	82:MPS	
4:START_R	16	FREE_R	39:R7	49:M1_R	66:WNG	83:STEPOUT	
5:SSTART_R	17	':AWO_R	40:R8	50:M2_R	67:READY	84:O.H.	
6:+JOG_R	18	STOP_R	41:R9	51:M3_R	68:MOVE	85:ZSG	
7:-JOG_R	32	RO	42:R10	52:M4_R	70:HOME-P	86:MBC	
8:MS0_R	33	:R1	43:R11	53:M5_R	72:TIM		
9:MS1_R	34	:R2	44:R12	60:+LS_R	73:AREA1		

3-3 入力信号

ドライバの入力信号は、すべてフォトカプラ入力です。

- ダイレクト I/O.....A接点の I/O:「ON:通電」「OFF:非通電」
 B接点の I/O:「ON:非通電」「OFF:通電」
- ネットワーク I/O [ON:1] [OFF:0]

入力信号の優先順位

各入力信号には優先順位があり、次の順序になります。複数の入力信号を同時に入力したときは、優先度の高いものが実 行されます。

FREE> AWO> STOP>運転信号(START、HOME、FWDなど)

📕 内部回路図

	4.4 kΩ [] 1 kΩ ⊈Δ≠ζ
	4.4 kΩ 1 kΩ 4.4 kΩ
IN2入7]0	4.4 kΩ []1 kΩ ⊈Δ≠ζ
	4.4 kΩ 1 kΩ 4.4 kΩ
1114人刀0	4.4 kΩ 1 kΩ 4.4 kΩ
INSX/] 0	4.4 kΩ 1 kΩ 4.4 kΩ
	4.4 kΩ 1 kΩ 4.4 kΩ
	44 ko 11 ko $\sqrt{1}$
IN-COM1 ○	

M0~M5入力

M0~M5のON/OFFを組み合わせて、位置決め運転や連続運転の運転データ No.を選択します。

運転データ No.	M5	M4	M3	M2	M1	MO	運転データ No.	M5	M4	M3	M2	M1	MO
0	OFF	OFF	OFF	OFF	OFF	OFF	32	ON	OFF	OFF	OFF	OFF	OFF
1	OFF	OFF	OFF	OFF	OFF	ON	33	ON	OFF	OFF	OFF	OFF	ON
2	OFF	OFF	OFF	OFF	ON	OFF	34	ON	OFF	OFF	OFF	ON	OFF
3	OFF	OFF	OFF	OFF	ON	ON	35	ON	OFF	OFF	OFF	ON	ON
4	OFF	OFF	OFF	ON	OFF	OFF	36	ON	OFF	OFF	ON	OFF	OFF
5	OFF	OFF	OFF	ON	OFF	ON	37	ON	OFF	OFF	ON	OFF	ON
6	OFF	OFF	OFF	ON	ON	OFF	38	ON	OFF	OFF	ON	ON	OFF
7	OFF	OFF	OFF	ON	ON	ON	39	ON	OFF	OFF	ON	ON	ON
8	OFF	OFF	ON	OFF	OFF	OFF	40	ON	OFF	ON	OFF	OFF	OFF
9	OFF	OFF	ON	OFF	OFF	ON	41	ON	OFF	ON	OFF	OFF	ON
10	OFF	OFF	ON	OFF	ON	OFF	42	ON	OFF	ON	OFF	ON	OFF
11	OFF	OFF	ON	OFF	ON	ON	43	ON	OFF	ON	OFF	ON	ON
12	OFF	OFF	ON	ON	OFF	OFF	44	ON	OFF	ON	ON	OFF	OFF
13	OFF	OFF	ON	ON	OFF	ON	45	ON	OFF	ON	ON	OFF	ON
14	OFF	OFF	ON	ON	ON	OFF	46	ON	OFF	ON	ON	ON	OFF
15	OFF	OFF	ON	ON	ON	ON	47	ON	OFF	ON	ON	ON	ON
16	OFF	ON	OFF	OFF	OFF	OFF	48	ON	ON	OFF	OFF	OFF	OFF
17	OFF	ON	OFF	OFF	OFF	ON	49	ON	ON	OFF	OFF	OFF	ON
18	OFF	ON	OFF	OFF	ON	OFF	50	ON	ON	OFF	OFF	ON	OFF
19	OFF	ON	OFF	OFF	ON	ON	51	ON	ON	OFF	OFF	ON	ON
20	OFF	ON	OFF	ON	OFF	OFF	52	ON	ON	OFF	ON	OFF	OFF
21	OFF	ON	OFF	ON	OFF	ON	53	ON	ON	OFF	ON	OFF	ON
22	OFF	ON	OFF	ON	ON	OFF	54	ON	ON	OFF	ON	ON	OFF
23	OFF	ON	OFF	ON	ON	ON	55	ON	ON	OFF	ON	ON	ON
24	OFF	ON	ON	OFF	OFF	OFF	56	ON	ON	ON	OFF	OFF	OFF
25	OFF	ON	ON	OFF	OFF	ON	57	ON	ON	ON	OFF	OFF	ON
26	OFF	ON	ON	OFF	ON	OFF	58	ON	ON	ON	OFF	ON	OFF
27	OFF	ON	ON	OFF	ON	ON	59	ON	ON	ON	OFF	ON	ON
28	OFF	ON	ON	ON	OFF	OFF	60	ON	ON	ON	ON	OFF	OFF
29	OFF	ON	ON	ON	OFF	ON	61	ON	ON	ON	ON	OFF	ON
30	OFF	ON	ON	ON	ON	OFF	62	ON	ON	ON	ON	ON	OFF
31	OFF	ON	ON	ON	ON	ON	63	ON	ON	ON	ON	ON	ON

START入力

位置決め運転を開始する信号です。 運転データ No.を選択した後、START入力を ONにすると、位置決め運転が始まります。

関連するパラメータ

MEXE02 ツリー表示	パラメータ名	内容	初期値
アラーム	原点復帰未完了 アラーム	座標が確定していない状態で位置決め運転を開始したとき に、アラームを発生させるかを設定します。 【設定範囲】 0:無効 1:有効	0

(memo) 運転速度が0 Hzのデータで位置決め運転を開始すると、運転データ異常のアラームが発生します。

SSTART入力

順送り位置決め運転(89ページ)を開始する信号です。 SSTARTを ONにするたびに、次の運転データ No.の位置決め運転を行ないます。運転データ No.を選択する操作が省ける ため、位置決めを順番に行ないたいときに便利な機能です。

関連するパラメータ

MEXE02 ツリー表示	パラメータ名	内容	初期値
アラーム	原点復帰未完了 アラーム	座標が確定していない状態で位置決め運転を開始したとき に、アラームを発生させるかを設定します。 【設定範囲】 0:無効 1:有効	0

(memo) 運転速度が0 Hzのデータで位置決め運転を開始すると、運転データ異常のアラームが発生します。

MS0 ~ MS5 入力

ダイレクト位置決め運転(88ページ)を開始する信号です。

MSO ~ MS5 入力のどれかを ONにすると、それぞれの入力に対応した運転データ No.の位置決め運転を行ないます。 MSO ~ MS5 入力のどれかを ONにするだけで位置決め運転を行なえるため、運転データ No.を選択する操作が省けます。

関連する/	パラメータ
-------	-------

MEXE02 ツリー表示	パラメータ名	内容	初期値
アラーム	原点復帰未完了 アラーム	座標が確定していない状態で位置決め運転を開始したと きに、アラームを発生させるかを設定します。 【設定範囲】 0:無効 1:有効	0
	MS0 運転 No.選択	MSO ~ MS5 入力に対応させる運転データ No.を設定し ます。 【設定範囲】 運転データ No.0 ~ 63	0
	MS1 運転 No.選択		1
	MS2 運転 No.選択		2
1/0	MS3 運転 No.選択		3
	MS4 運転 No.選択		4
	MS5 運転 No.選択		5

(memo) 運転速度が0 Hzのデータで位置決め運転を開始すると、運転データ異常のアラームが発生します。

■ HOME入力

原点復帰運転(95 ページ)を開始する信号です。

HOME入力をONにすると、原点復帰運転が始まります。原点復帰運転が終了してモーターが停止すると、HOME-P出力がONになります。

関連す	้ ไ	パラ	Х	ータ
-----	-----	----	---	----

MEXE02 ツリー表示	パラメータ名	内容	初期値
原点復帰	原点復帰方法	原点復帰方法を設定します。 【 <mark>設定範囲】</mark> 0:2 センサ方式 1:3 センサ方式	1
	原点復帰運転速度	原点復帰運転の運転速度を設定します。 【設定範囲】 1~ 1,000,000 Hz	1,000
	原点復帰加減速	原点復帰運転の加減速レート(加減速時間)を設定します。 【設定範囲】 1~1,000,000(1=0.001 ms/kHzまたは1=0.001 s)※	30,000

MEXE02 ツリー表示	パラメータ名	内容	初期値
	原点復帰起動速度	原点復帰運転の起動速度を設定します。 【設定範囲】 1~ 1,000,000 Hz	100
	原点復帰オフセット	原点からのオフセット量を設定します。 【設定範囲】 -8,388,608 ~ 8,388,607 step	0
原点復帰	原点復帰開始方向	原点検出の開始方向を設定します。 【設定範囲】 0:-側 1:+側	1
	原点復帰 SLITセンサ 検出	原点復帰時に SLIT入力を併用するかを設定します。 【 <mark>設定範囲】</mark> 0:無効 1:有効	0
	原点復帰 TIM信号 検出	原点復帰時に TIM (ZSG) 出力を併用するかを設定します。 【設定範囲】 0:無効 1:TIM信号有効 2:ZSG信号有効	0
	2 センサ原点復帰 戻り量	2 センサ方式の原点復帰運転で、リミットセンサから脱出 した後の移動量を設定します。 【設定範囲】 0 ~ 32,767 step	200

※ 「加減速単位」パラメータで、加減速レート(ms/kHz)か加減速時間(s)を選択できます(初期値:加減速レート)。

FWD入力、RVS入力

連続運転(102ページ)を開始する信号です。

運転データ No.を選択した後、FWD入力または RVS入力を ONにすると、選択した運転データ No.の運転速度で連続運転 が始まります。FWD入力または RVS入力が ONの間、連続運転を行ないます。 FWD入力を ONにしたときは+方向、RVS入力を ONにしたときは-方向へ回転します。 減速停止中、同じ回転方向の信号が ONになると、モーターは再加速して運転を続けます。

FWD入力と RVS入力が両方とも ONになると、モーターは減速停止します。

連続運転中に運転データ No.を変更すると、変更した運転データ No.の速度に変速します。

■ +JOG入力、-JOG入力

JOG運転(107 ページ)を開始する信号です。 +JOG入力を ONにすると+方向、–JOG入力を ONにすると-方向へ JOG運転を行ないます。

関連するパラメータ

MEXE02 ツリー表示	パラメータ名	内容	初期値
運転	JOG移動量	JOG運転の移動量を設定します。 【設定範囲】 1~ 8,388,607 step	1
	JOG運転速度	JOG運転の運転速度を設定します。 【設定範囲】 1~ 1,000,000 Hz	1,000
	JOG加減速	JOG運転の加減速レート(加減速時間)を設定します。 【設定範囲】 1~1,000,000(1=0.001 ms/kHzまたは1=0.001 s)※	30,000
	JOG起動速度	JOG運転の起動速度を設定します。 【設定範囲】 0 ~ 1,000,000 Hz	100

※ 「加減速単位」パラメータで、加減速レート (ms/kHz) か加減速時間 (s) を選択できます (初期値:加減速レート)。

STOP入力

STOP入力を ONにすると、モーターが停止します。 位置決め運転中に STOP入力を ONにしたときは、残りの移動量はクリアされます。停止動作については109 ページをご 覧ください。

関連するパラメータ

MEXE02 ツリー表示	パラメータ名	内容	初期値
I/O	STOP入力停止方法	 STOP入力でモーターを停止させたときの、モーターの 停止方法を設定します。 【設定範囲】 0:即停止 1:減速停止 2:即停止+カレントオフ 3:減速停止+カレントオフ 	1

AWO入力

AWO入力をONにするとモーターの電流が遮断され、モーターは無励磁状態になります。電磁ブレーキ付モーターの場合は、電磁ブレーキが保持のままです。

AWO入力を OFFにすると、モーターが励磁されます。

FREE入力

FREE入力をONにすると、モーターの電流が遮断されます。モーターの保持力がなくなるため、手動で出力軸を動かせる ようになります。電磁ブレーキ付の場合は、電磁ブレーキも解放されます。

負荷を垂直に設置しているときは、FREE入力を ONにしないでください。保持力がなくなって負荷が落下する原因になります。

P-PRESET入力

指令位置とフィードバック位置をプリセットする信号です。

P-PRESET入力を OFFから ONにすると、指令位置とフィードバック位置が「プリセット位置」パラメータで設定した値になります (ONエッジで有効)。

ただし、次の条件のときは、プリセットは実行されません。

- アラームの発生中
- モーターの動作中

関連するパラメータ

MEXE02 ツリー表示	パラメータ名	内容	初期値
座標	プリセット位置	プリセット位置を設定します。 【設定範囲】 –8,388,608 ~ 8,388,607 step	0

ALM-RST入力

アラームが発生するとモーターが停止します。このとき、ALM-RST入力を OFFから ONにすると、アラームが解除されま す (ONエッジで有効)。必ず、アラームが発生した原因を取り除き、安全を確保してから、アラームを解除してください。 なお、ALM-RST入力では解除できないアラームもあります。アラームの内容については260ページをご覧ください。

HMI入力

HMI入力をONにすると、MEXEO2 や OPX-2Aの機能制限を解除します。OFFにすると、機能が制限されます。制限される機能は次のとおりです。

- 1/0テスト
- テスト運転
- ティーチング
- パラメータの書き込み、ダウンロード、初期化

Memo HMI入力は、入力端子に割り当てられなかったときは常時 ONになります。また、ダイレクト I/Oとネットワーク I/Oの両方に割り当てたときは、両方とも ONにならないと機能しません。

3-4 出力信号

ドライバの出力信号はフォトカプラ・オープンコレクタ出力です。

- ダイレクト I/O.....A接点の I/O:「ON:通電」「OFF:非通電」
 B接点の I/O:「ON:非通電」「OFF:通電」
- ネットワーク I/O [ON:1] [OFF:0]

■ 内部出力回路

ALM出力

アラームの内容については260 ページをご覧ください。

● ダイレクト I/Oの場合

アラームが発生すると、ALM出力が OFFになります。同時にドライバの ALM LEDが点滅し、モーターへの電流が遮断されて、モーターは停止します。ALM出力は B接点(ノーマルクローズ)です。

● ネットワーク I/Oの場合

アラームが発生すると、ALM出力がONになります。同時にドライバのALM LEDが点滅し、モーターへの電流が遮断されて、 モーターは停止します。ALM出力は A接点(ノーマルオープン)です。

関連するパラメータ

MEXE02 ツリー表示	パラメータ名	内容	初期値
アラーム	原点復帰未完了アラーム	座標が確定していない状態で位置決め運転を開始し たときに、アラームを発生させるかを設定します。 【設定範囲】 0:無効 1:有効	0
通信	通信タイムアウト	RS-485 通信の通信タイムアウトの発生条件を設定し ます。0 のときは、ドライバは通信タイムアウトの発 生条件を監視しません。 【設定範囲】 0 ~ 10,000 ms	0
	通信異常アラーム	RS-485 通信異常アラームの発生条件を設定します。 設定した回数だけ RS-485 通信異常が発生すると、 通信異常アラームになります。 【設定範囲】 1~10回	3
座標	脱調検出動作	脱調を検出したときの動作を設定します。 【設定範囲】 0:動作なし 1:ワーニング出力 2:アラーム出力	0

■ WNG出力

ワーニングが発生すると、WNG出力がONになります。ワーニングの内容については262ページをご覧ください。

関連するパラメータ

MEXE02 ツリー表示	パラメータ名	内容	初期値
ワーニング	過熱ワーニング	主回路過熱のワーニングの発生条件を設定します。 【設定範囲】 40 ~ 85 ℃	85
	過電圧ワーニング	過電圧のワーニングの発生条件を設定します。※ 【設定範囲】 120 ~ 450 V	435
	不足電圧ワーニング	不足電圧のワーニングの発生条件を設定します。※ 【設定範囲】 120 ~ 280 V	120
座標	脱調検出動作	脱調を検出したときの動作を設定します。 【設定範囲】 0:動作なし 1:ワーニング出力 2:アラーム出力	0

※ 整流された電流(脈流)をコンデンサで平滑にした後のドライバ内部電圧になります。入力電圧を内部電圧に変換する場合は、次の式で換算してください。
 単相100-120 Vドライバ:内部電圧 = 2 × (√2 × 入力電圧 – 1)
 単相200-240 Vドライバ:内部電圧 = √2 × 入力電圧 – 1

■ READY出力

運転準備が完了すると、READY出力が ONになります。READY出力が ONになってから、運転開始指令をドライバに入力 してください。次のすべての条件が満たされると、READY出力が ONになります。

- 運転を開始する入力がすべて OFF
- FREE入力、AWO入力、および STOP入力が OFF
- アラームが発生していない
- モーターが動作していない
- OPX-2Aでテスト運転、ダウンロード、初期化、またはティーチングが実行されていない
- MEXE02 でテスト機能、ダウンロード、またはティーチングが実行されていない
- RS-485 通信で Configurationコマンド、全データ初期化コマンド、および NVメモリー括読み出しコマンドが実行さ れていない

■ HOME-P出力

「HOME-P出力機能選択」パラメータの設定に応じて、HOME-P出力が ONになります。 座標の確定については111 ページをご覧ください。

● 「HOME-P出力機能選択」パラメータが「原点出力」のとき

MOVE出力が OFFで、ドライバの指令位置が原点にあるとき、HOME-P出力が ONになります。ただし、ドライバの座標 が確定してないときは OFFのままです。

● 「HOME-P出力機能選択」パラメータが「原点復帰完了出力」のとき

ドライバの指令位置に関係なく、ドライバの座標が確定すると、HOME-P出力が ONになります。したがって原点復帰運転の終了後やプリセット後に ONになります。いったん ONになった HOME-P出力は、座標が未確定状態になるまで OFF になりません。

関連するパラメータ

MEXE02 ツリー表示	パラメータ名	内容	初期値
		HOME-P出力を出力させるタイミングを設定します。	
I/O	HOME-P出力機能選択	【設定範囲】 0:原点出力 1:原点復帰完了出力	0

MOVE出力

モーターの動作中、MOVE出力が ONになります。

関連するパラメータ

MEXE02 ツリー表示	パラメータ名	内容	初期値
1/0	MOVE出力最小時間	MOVE出力の最小 ON時間を設定します。 ここで設定した時間以上モーターが動作すれば、 MOVE出力は ONになります。 【設定範囲】	0

AREA1 ~ AREA3 出力

モーターが設定したエリアの範囲内にあるとき、AREA出力が ONになります。 モーターの停止中でも、モーターが範囲内にあるときは ONになります。

関連するパラメータ

MEXE02 ツリー表示	パラメータ名	内容	初期値
1/0	AREA1 +方向位置	AREA1 ~ AREA3 の+方向位置を設定します。	
	AREA2 +方向位置	【設定範囲】	
	AREA3 +方向位置	-8,388,608 ~ 8,388,607 step	0
	AREA1 -方向位置	AREA1 ~ AREA3 の-方向位置を設定します。	0
	AREA2 -方向位置	【設定範囲】	
	AREA3 一方向位置	-8,388,608 ~ 8,388,607 step	

「AREA+方向位置」パラメータ < 「AREA – 方向位置」パラメータの場合

AREA出力が ONになる条件: モーターの位置≤ AREA+方向位置、または モーターの位置≥ AREA – 方向位置

AREA出力 OFF

ON

AREA+方向位置 AREA一方向位置

「AREA+方向位置|パラメータ>「AREA-方向位置|パラメータの場合

AREA出力が ONになる条件: AREA-方向位置≦モーターの位置≦ AREA+方向位置 ON AREA出力 OFF AREA+方向位置 AREA一方向位置

「AREA+方向位置」パラメータ = 「AREA – 方向位置」パラメータの場合

AREA出力が ON条件:モーターの位置 = AREA – 方向位置 = AREA + 方向位置

(memo) AREA1 ~ AREA3 出力の ON条件であるモーター位置とは、指令位置のことです。

TIM出力

モーターの励磁状態が励磁原点のとき、TIM出力が ONになります。モーターは、ドライバに電源が投入されたときに励磁 原点にリセットされます。

TIM出力は、内部発振パルスに同期して、モーター出力軸が7.2°回転するたびに ONになります。 機械装置の機械原点を検出するときに、原点センサと TIM出力で AND回路を構成すると、原点センサ内でのモーター停止 位置のばらつきが抑えられ、より正確な機械原点を検出できます。

モーターの分解能が500 P/Rのときの出力例 1 2 3 4 5 6 7 8 9 10 20 ON 内部発振パルス OFF -ター出力軸7.2°回転 ON TIM出力 OFF モーターの動き (memo) • TIM出力は、運転速度が500 Hz以下にならないと、正常に ONになりません。 • TIM出力を使用するときは、モーター出力軸が7.2℃の整数倍で停止するよう、位置(移動量)または分解 能を設定してください。

S-BSY出力

ドライバが内部処理状態のときに ONになります。ドライバは次の場合に内部処理状態になります。

• RS-485 通信でメンテナンスコマンドを実行中

MPS出力

ドライバの主電源が投入されているときに、ONになります。

STEPOUT出力

エンコーダを接続すると使用でき、偏差の異常を知らせます。

フィードバック位置とドライバの指令位置との偏差が、「脱調検出幅」パラメータの設定値に達すると出力されます。 STEPOUT出力を使用するときは、「脱調検出」パラメータを「有効」に設定してください。

関連するパラメータ

MEXE02 ツリー表示	パラメータ名	内容	初期値
座標	脱調検出	脱調検出機能の有効 /無効を設定します。 【設定範囲】 0:無効 1:有効	0
	脱調検出幅	脱調検出の判定条件を、指令位置とエンコーダ位置 の偏差(角度)で設定します。 【設定範囲】 1 ~ 3,600(1=0.1°)	72
	脱調検出動作	脱調を検出したときの動作を設定します。 【設定範囲】 0:動作なし 1:ワーニング出力 2:アラーム出力	0

O.H.出力

過熱のワーニングが発生すると、O.H.出力が ONになります。ワーニング状態から回復すると、O.H.出力は自動で OFFに なります。

■ ZSG出力

エンコーダを接続したときに使用します。

エンコーダから ENC-Z入力がドライバに入力されると、ドライバから ZSG出力が出力されます。通常、ENC-Z入力は、モー ター出力軸が1回転するたびに入力されます。

(memo) • ENC-Z入力が1 ms以上 ONにならないと、ZSG出力は正常に出力されません。 • ZSG出力は最大で3 msの遅れがあります。停止位置の確認用としてお使いください。

MBC出力

電磁ブレーキが解放状態のとき、MBC出力が ONになります。

■ レスポンス出力

レスポンス出力は、対応する入力信号の ON/OFF状態を出力する信号です。 入力信号と出力信号の対応は表のとおりです。

入力信号	出力信号
FWD	FWD_R
RVS	RVS_R
HOME	HOME_R
START	START_R
SSTART	SSTART_R
+JOG	+JOG_R
–JOG	-JOG_R
MSO	MS0_R
MS1	MS1_R

出力信号
MS2_R
MS3_R
MS4_R
MS5_R
FREE_R
AWO_R
STOP_R
M0_R
M1_R

入力信号	出力信号
M2	M2_R
M3	M3_R
M4	M4_R
M5	M5_R
+LS	+LS_R
–LS	-LS_R
HOMES	HOMES_R
SLIT	SLIT_R

3-5 センサ入力

■ 内部入力回路

+LS入力、-LS入力

リミットセンサからの入力です。+LS入力は+側センサ、-LS入力は-側センサになります。

- 原点復帰時……………+LS入力または LS入力が検出されると、「原点復帰方法」パラメータの設定に従って、原点復帰運 転を行ないます。
- 原点復帰以外ハードウェアオーバートラベルを検出し、モーターを停止させます。ハードウェアオーバートラベルについては109ページをご覧ください。

関連するパラメータ

MEXE02 ツリー表示	パラメータ名	内容	初期値
I/O	ハードウェア オーバートラベル	±LS入力によるハードウェアオーバートラベル検出の有 効 /無効を設定します。 【設定範囲】 0:無効 1:有効	1
	オーバートラベル 動作	オーバートラベルが発生したときのモーターの停止方法 を設定します。 【設定範囲】 0:即停止 1:減速停止	0
	±LS接点設定	±LS入力の入力接点を設定します。 【設定範囲】 0:A接点 (N.O.) 1:B接点 (N.C.)	0

HOMES入力

[原点復帰方法]パラメータを3 センサ方式に設定したときの、機械原点センサ(HOMEセンサ)の入力です。 原点復帰運転については95 ページをご覧ください。

関連するパラメータ

MEXE02 ツリー表示	パラメータ名	内容	初期値
I/O	HOMES接点設定	HOMES入力の入力接点を設定します。 【設定範囲】 0: A接点 (N.O.) 1:B接点 (N.C.)	0

SLIT入力

スリット付センサなどを使用するときに接続してください。 原点復帰運転時、SLIT入力を併用すると、より正確に原点を検出できます。 原点復帰運転については95ページをご覧ください。

関連するパラメータ

MEXE02 ツリー表示	パラメータ名	内容	初期値
		SLIT入力の入力接点を設定します。	
I/O	SLIT接点設定	【設定範囲】 0:A接点(N.O.) 1:B接点(N.C.)	0

3-6 汎用信号(R0~R15)

R0 ~ R15 は、RS-485 通信で制御できる汎用信号です。 R0 ~ R15 を使用すると、ドライバを通して、上位システムから外部機器の入出力信号を制御できます。ドライバのダイレ クト I/Oを I/Oユニットのように使用できます。 以下に、汎用信号の設定例を示します。

● 上位システムから外部機器に出力する場合

汎用信号 R0 を OUT0 出力と NET-IN0 に割り付けます。 NET-IN0 を1 にすると OUT0 出力が ONになり、0 にすると OUT0 出力が OFFになります。

● 外部機器の出力を上位システムに入力する場合

汎用信号 R1 を IN7 入力と NET-OUT15 に割り付けます。 外部機器から IN7 入力を ONにすると NET-OUT15 が1 になり、IN7 入力を OFFにすると NET-OUT15 が0 になります。 IN7 入力の接点は、「IN7 入力接点設定」パラメータで設定できます。

3 運転の種類と設定

運転機能や、パラメータの詳細について説明しています。

◆もくじ

1 ガイ	′ダンス	74
2 設定	こと調整	77
2-1	分解能	77
2-2	運転電流	78
2-3	停止電流	78
2-4	加減速レートと加減速時間	79
2-5	速度フィルタ	80
2-6	移動平均フィルタ	80
2-7	エンコーダ付モーターを使用する場合	81
3 運動	の種類と機能一覧	85
4 位置	記決め運転	86
4-1	運転データ	
4-2	位置決め運転の起動方法	87
4-3		
	建虹機能	91
5 原点	_{建転機能} 夏 <mark>復帰運転</mark>	91 95
5 原点 5-1	連転機能 「復帰運転 原点復帰運転の詳細	91 95 95
5 原点 5-1 5-2	_{連転機能} 復帰運転 原点復帰運転の詳細 動作シーケンス	91 95 95 98
5 原点 5-1 5-2 5-3	_{連転機能} 復帰運転 原点復帰運転の詳細 動作シーケンス 位置プリセット	91 95 98 98
5 原点 5-1 5-2 5-3 6 連約	_{連転機能} 復帰運転 原点復帰運転の詳細 動作シーケンス 位置プリセット 証	91 95 98 101 102
5 原点 5-1 5-2 5-3 6 連約 6-1	連転機能 復帰運転 原点復帰運転の詳細 動作シーケンス… 位置プリセット 運転 運転データ	91 95 95 98 101 102 102
5 原点 5-1 5-2 5-3 6 連網 6-1 6-2	_{連転機能} 「復帰運転 原点復帰運転の詳細 動作シーケンス 位置プリセット 「運転 運転データ 連続運転の起動方法	91 95 95 98 101 102 102 103

7 その	D他の運転	107
7-1 7-2 7-3	JOG運転 テスト運転 停止動作	107 108 109
8 座橋	票管理	111
8-1 8-2	座標位置管理 ラウンド機能	111 111
9 運車	豆データ	113
10 パラ	ラメータ	114
10-1	パラメーター覧	114
10-2	I/Oパラメータ	115
10-3	モーターパラメータ	116
10-4	運転パラメータ	117
10-5	原点復帰パラメータ	117
10-6	アラームパラメータ	118
10-7	ワーニングパラメータ	118
10-8	座標パラメータ	119
10-9	共通パラメータ	120
10-10	I/O機能[入力]パラメータ	120
10-11	I/O機能[出力] パラメータ	121
10-12	I/O機能[RS-485]パラメータ	121
10-13	通信パラメータ	123

1 ガイダンス

はじめてお使いになるときはここをご覧になり、運転のながれについてご理解ください。 ここでは、MEXEO2 を使用して位置決め運転を実行する方法を説明します。

■出荷時設定の確認

出荷時設定
P/R(0.72°/step)
(定格電流を100 %とする)
3入時のモーター位置

モーターを動かすときは周囲の状況を確認し、安全を確保してから運転してください。

STEP 1 運転の準備をします

1. 図を参照して、ドライバに配線します。DC24 V電源は必ず接続してください。

※1 付属または別売りです。

※2 当社でご用意しています。別途お買い求めください。

MEXE02 を起動し、ドライバの主電源を投入します。
 MEXE02 の起動方法や使い方については、MEXE02 の取扱説明書をご覧ください。

STEP 2 MEXEO2 で運転データを設定します

1. MEXE02 で、運転データ No.1 の運転データを次のように設定します。

	運転方式	位置 [step]	運転速度 [Hz]	運転機能	ドウェル時間 [s]	順送り位置決め	加速 [ms/kHz] or [s]	減速 [ms/kHz] or [s]
No.0	INC(インクリメンタル)	0	1000	単独	0.000	無効	30.000	30.000
No.1	INC(インクリメンタル)	1000	2000	単独	0.000	無効	20.000	20.000

 直面左側にあるショートカットボタンから、[ティーチング・リモート運転]をクリックします。

 ティーチング・リモート運転のウィンドウが表示されます。

nexe02 - [新規1]		
👻 ファイル(F) 編集(E) 移動(N	(M) 表示(V) 通信(C) ツール(T) ウィンドウ(W) ヘルプ(H)	- 8 ×
🍈 💣 🔚 💊 🕒 🖪		
□ BK2 位置決助機能内蔵 [AC]	- ↓ 新規1 - ティーチング・リモート連転	
□. データ	「「「「「」」」「「」」「「」」」「」」「」」「」」「」」「」」「」」「」」「	
運車云データ		
□ パラメータ	No.0 指令位置(CPOS) 0 [step] AWO ALM	
	No.1 指令速度 0 [Hz] □ FREE □ MOVE	
- 運転	No.2STOP	
原点復帰	No.3	
- 75-4	No.4 現在のアラーム アラームリセット エンコーダブリセット	
	No.5 00.アラームなし	
— 共通	No.6	
I/O機能[入力]		
I/O機能[出力]	No.8 X金平A Y XNO. (位置 [step] 0	
	No.9 (立実法中の資料用的) 加速 [mg/kHz]の[s] 1000 1000	
	No.10 12(注意, 0, 0) 基本(#) / 2 12(注意, 0, 0) = 12(12(12(12(12(12(12(12(12(12(12(12(12(1	
	No.11	
	- No.12 原点(復)帝連舉	
7里郫3	No.13 ディーチング	
全 ティーチング・リモート運転	No.14 運転データNo. 0 ☆	
ŧ.	位置確定 ドライバへ反映 ABS(アブソリュート) マ	
□ ステータス,I/Oモニタ		
1000000000000000000000000000000000000		
47 アラームモニタ		
4 ワーニングモニタ	No.19 最小移動量 1 会 [step]	
485通信モニタ	No.20 - ソフトリミット 原点 + ソフトリミット	
🔀 波形モニタ	No.21 -8388608 [step] 8388607 [step]	
テスト	No.22	
	No.23 (CPOS-1) (CPOS+1) (CPOS+1)	
P		
		h.

3 運転の種類と設定

3. [ティーチング・リモート運転を開始する]をクリックし、警告ウィンドウの[はい]をクリックします。

<u> 1</u> 新規1 - ティーチン	ング・リモート運転	(mail		5	×
- 🖂 ティーチング・リモー	ト運転を開始する	警告	8		
ドライバステータスー		· 🔺	ティーチング・リモート運転を開始します。		
指令位置(CPOS)			よろしいですか?	UTPUT	
指令速度			(はい(Y) いいえ(N)		
エンコーダカウンタ			u [step]		

編集したデータをドライバに書き込みます。
 「全データの書き込み(PC→製品)」をクリックし、[OK]をクリックしてください。
 運転データ No.1 の内容がドライバに書き込まれます。

同期方法選択	-
同期方法を選択してください。	
同期方法	
 ○ 全テータの読み出し(製品 -> PC) ○ ヘデータの読み出し(製品 -> PC) 	
 差分子ータの書き込み(PC -> 製品) 	
OK キャンセル]

5. 運転データ No.1 を選択します。

2里駅テータNo.	1 (位果 [step]	10
	IIIII [step] 運転速度 [Hz]	20
位置決め運転	肋始 加速 [ms/kHz] or [s]	20.0
	減速 [ms/kHz] or [s]	20.0

STEP 3 モーターを運転します

[位置決め運転開始]をクリックします。
 警告ウィンドウが表示されるので、[はい]をクリックしてください。
 モーターが位置決め運転を行ないます。

)運転 運転データNo.	1 🛋	運転方式	警告	X	C
位置決め運転開始		位置 [step] 運転速度 [Hz] 加速 [ms/kHz] or [s] 減20		位置決め運転を開始します。 よろしいですか?	000 000 000 000
原点復帰運転					

2. MEXE02 で指令位置が1000 になっていること、モーター出力軸が1000 step分回転していることを確認します。 分解能を初期値のまま動作させた場合、1000 stepはモーター出力軸2 回転相当になります。

2	新規1* - ティーチング・リモート運転					—
ſ	▼ ティーチング・リモート 運転を開始する					
	- ドライバステータス 	1000		INPUT	OUTPUT	
	指 中间值 (CFO3)	1000	[step]	AWO	ALM	
	指令速度	0	[Hz]	FREE	MOVE	
	エンコーダカウンタ	0	[step]	STOP		

3. 「ティーチング・リモート運転を開始する」のチェックを外して、ティーチング・リモート運転を終了します。

以上で、位置決め運転は終了です。

2 設定と調整

モーター、ドライバの機能を調整・設定する方法について説明します。パラメータを変更したときに、変更した値が反映されるタイミングはパラメータによって異なります。詳細は114ページをご覧ください。

2-1 分解能

ギヤードモーターやアクチュエータなど、機構と組み合わせて使用するときに、分解能を設定してください。 「電子ギヤ A」「電子ギヤ B」パラメータを設定すると、モーター出力軸1 回転あたりの分解能を設定できます。 算出して得られた値は、次の設定範囲に収めてください。 分解能の設定範囲:200 ~ 200,000 P/R

分解能 = 500 × <u>電子ギヤB</u> 電子ギヤA

関連するパラメータ

MEXE02 ツリー表示	パラメータ名	内容	初期値
		電子ギヤの分母を設定します。	
	電子ギヤA	【設定範囲】	1
座標		1~65,535	
	電子ギヤ B	電子ギヤの分子を設定します。 【 <mark>設定範囲】</mark> 1~ 65,535	1

• TIM出力を使用するときは、分解能を50の整数倍に設定してください。

■ 電子ギヤA / Bの算出方法

ここでは、ボールねじと回転テーブルを例として、電子ギヤA/Bの算出方法を説明します。

● 例)ボールねじの場合

ボールねじのリード 最小移動量 減速比	:10 mm :0.01 mm :1(モーターとボールねじ間に減速機構がないものとします。)
メカ上の分解能 = 5	00 × <u>電子ギヤB</u> = <u>ボールねじのリード</u> × 減速比 電子ギヤA = <u>最小移動量</u>
この例では 5	00 × <mark>電子ギヤB</mark> = <u>10 mm</u> × 1 電子ギヤA = <u>0.01 mm</u> × 1
よって	<u>電子ギヤB</u> = <u>10</u> = <u>2</u> 電子ギヤA = <u>5</u> = <u>1</u>

したがって、電子ギヤA=1、電子ギヤB=2となり、分解能は1,000 P/Rになります。

例)回転テーブルの場合

1回転の移動量	:360°				
最小移動量	:0.01°				
減速比	:7.2(減速	恵比が7.2 のキ	ドヤードモ-	-ターを	使用)
メカ上の分解能	= 500 ×	電子ギヤB 電子ギヤA	= <u>1回転の</u> 最小税)移動量 多動量	×減速比
この例では	500 ×	<u>電子ギヤB</u> 電子ギヤA	$=\frac{360^{\circ}}{0.01^{\circ}}$	$\times \frac{1}{7.2}$	
よって		電子ギヤB 電子ギヤA	$=\frac{360}{36}=$	10	

したがって、電子ギヤ A=1、電子ギヤ B=10 となり、分解能は5,000 P/Rになります。

2-2 運転電流

[RUN電流]パラメータを設定すると、ドライバの出力最大電流を変更できます。負荷が軽く、トルクに余裕があるときは、 運転電流を小さくすることでモーターの温度上昇を抑えることができます。

関連するパラメータ

MEXE02 ツリー表示	パラメータ名	内容	初期値
モーター	RUN電流	定格電流を100 %として、モーターの運転電流率を設定 します。 【設定範囲】 0 ~ 1,000(1=0.1 %)	1,000

運転電流が低すぎると、モーターの起動や位置の保持に支障が出ることがあります。必要以上に低くしな いでください。

2-3 停止電流

モーターが停止するとカレントダウン機能がはたらいて、モーターの電流が停止電流まで下がります。 停止電流は、定格電流(100%)に[STOP電流]パラメータの設定値を乗じた値です。[RUN電流]パラメータを変更しても、 停止電流は変わりません。

MEXE02 ツリー表示	パラメータ名	内容	初期値
モーター	STOP電流	定格電流を100%として、モーター停止時の電流を 定格電流に対する割合で設定します。 【設定範囲】 0~600(1=0.1%)	500

2-4 加減速レートと加減速時間

■ 加減速の単位

「加減速単位」パラメータで、加減速の単位を設定できます。 設定できる単位は加減速レート(ms/kHz)と加減速時間(s)です。

関連するパラメータ

MEXE02 ツリー表示	パラメータ名	内容	初期値
運転		加減速の単位を設定します。	0
	加減速単位	【設定範囲】	
		0:ms/kHz	
		1:s	

加減速の共通設定と独立設定

「加減速選択」パラメータで、位置決め運転と連続運転における加減速を次のように設定できます。 独立:運転データ No.に設定された加減速に従います。 共通:「共通加速」と「共通減速」パラメータの設定値に従います。

(memo) ・連結運転中は、「加減速選択」パラメータが「独立」に設定されていても、連結運転を開始した運転データ No.の加減速が採用されます。

• 変速運転中の加減速については105ページを参照してください。

MEXE02 ツリー表示	パラメータ名	内容	初期値
運転	加減速選択	共通加減速、または運転データの加減速のどちらを 使用するか設定します。 【 <mark>設定範囲】</mark> 0:共通 1:独立	1

2-5 速度フィルタ

[フィルタ選択]パラメータを「速度フィルタ」に設定し、「速度フィルタ」パラメータを設定すると、モーターの応答性を調整できます。

速度フィルタを高くすると、低速運転時の振動を抑えたり、起動・停止時のモーターの動きが滑らかになります。 ただし値を高くしすぎると、指令に対する同期性は低下します。負荷や用途に合わせて、適切な値を設定してください。

関連するパラメータ

MEXE02 ツリー表示	パラメータ名	内容	初期値
モーター	フィルタ選択	速度フィルタまたは移動平均フィルタのどちらかを 設定します。 【設定範囲】 0:速度フィルタ 1:移動平均フィルタ	0
	速度フィルタ	モーターの応答性を調整します。 【設定範囲】 0 ~ 200 ms	1

2-6 移動平均フィルタ

「フィルタ選択」パラメータを「移動平均フィルタ」に設定し、「移動平均時間」パラメータを設定すると、モーターの応答性 を調整できます。また、位置決め運転時の残留振動を抑制して、位置決め時間を短縮することができます。 「移動平均時間」パラメータは、負荷や運転条件によって最適値が異なります。負荷や運転条件に合わせて、適切な値を設 定してください。

MEXE02 ツリー表示	パラメータ名	内容	初期値
モーター	フィルタ選択	速度フィルタまたは移動平均フィルタのどちらかを 設定します。 【設定範囲】 0:速度フィルタ 1:移動平均フィルタ	0
	移動平均時間	移動平均フィルタの時定数を設定します。 【設定範囲】 0 ~ 200 ms	1

2-7 エンコーダ付モーターを使用する場合

エンコーダを接続したときに使用できる機能などについて説明しています。

📕 位置管理

- ドライバは発振パルスのカウンタを内蔵しています。カウンタによる指令位置は、MEXEO2、OPX-2A、および RS-485 通信のどれかで確認できます。指令位置のカウント範囲は -2,147,483,648 ~ 2,147,483,647 です。
- 原点復帰運転が正常に終了すると、指令位置は0 にクリアされます。P-PRESET入力でプリセットを実行すると、指令位置が「プリセット位置」パラメータに設定した値になります。
- エンコーダを接続して「脱調検出」パラメータを「有効」に設定した場合、モーターが無励磁のときの指令位置は、エンコー ダカウンタ値で更新されます。

■ エンコーダ入力

- エンコーダから入力される90°位相差の信号をモニタできます。モニタされる値は、エンコーダカウンタ値とフィード バック位置の2種類があります。
- エンコーダ分解能は500 P/Rです。モーターが0.72°回転する間に、90°位相差の信号を4回出力します。そのため、エンコーダカウンタ値は、指令位置(step)の約4 逓倍になります。
- エンコーダカウンタのプリセットを実行すると、エンコーダカウンタが「エンコーダカウンタプリセット値」パラメータ で設定した値に変更されます。
- エンコーダを接続すると脱調検出機能を使用できるようになります。脱調検出機能を使用しなくても、エンコーダ入力 はカウントされています。

• エンコーダカウンタ値やフィードバック位置は、実際のモーター位置に対してずれる場合があります。 停止位置の確認用としてお使いください。

カウンタクリアやエンコーダカウンタプリセットは、モーターの停止中に行なってください。

■ 脱調検出機能

エンコーダを接続したときに有効な機能です。 指令位置とエンコーダカウンタの偏差、またはフィードバック位置を監視します。「脱調検出」パラメータを「有効」に設定 すると、次の機能が使用できるようになります。

偏差異常の検出

偏差量が「脱調検出幅」パラメータの値(初期値:7.2°)に達すると、偏差異常と判断します。 基本ステップ角度が0.72°のモーターでは、「脱調検出幅」パラメータの値を7.2°に設定してください。 偏差異常の検出は、励磁状態が500 ms継続したときから開始されます。また、原点復帰運転中は無効になります。

関連するパラメータ

MEXE02 ツリー表示	パラメータ名	内容	初期値
座標	脱調検出	脱調検出機能の有効 /無効を設定します。 【設定範囲】 0:無効 1:有効	0
	脱調検出幅	脱調検出の判定条件を、指令位置とエンコーダ位置 の偏差(角度)で設定します。 【設定範囲】 1 ~ 3,600(1=0.1°)	72
	エンコーダ分解能	エンコーダの分解能を設定します。 【設定範囲】 100 ~ 10,000 P/R	500

(memo) 脱調検出機能を使用するときは、エンコーダの分解能を50 の倍数に設定してください。

• アラーム、ワーニング

偏差異常が検出されたときに、アラームやワーニングを発生させることができます。

- 位置偏差過大アラームを発生させる場合:「脱調検出動作」パラメータを「アラーム出力」に設定する。
- 位置偏差過大ワーニングを発生させる場合:「脱調検出動作」パラメータを「ワーニング出力」に設定する。
- アラームやワーニングを発生させない場合:「脱調検出動作」パラメータを「動作なし」に設定する。

関連するパラメータ

MEXE02 ツリー表示	パラメータ名	内容	初期値
座標	脱調検出動作	脱調を検出したときの動作を設定します。	
		【設定範囲】	
			0
		2.アラーム出力	

● STEPOUT出力

偏差異常を知らせる信号です。STEPOUT出力は、OUT0 ~ OUT5 出力のどれかに割り付けてください。

● 指令位置の更新

無励磁のときの指令位置は、エンコーダカウンタによって補正されます。無励磁中に外力で出力軸が回されても、指令位 置は更新されます。

偏差異常からの回復方法

次のどれかを実行して、偏差異常から回復してください。

- モーターを無励磁にする。
- 原点復帰運転を実行し、正常に終了する。
- 位置プリセットを実行する。

[脱調検出動作]パラメータが[アラーム出力]に設定されているとき

偏差異常が検出されると、位置偏差週大アラームが発生します。この場合は次の手順でアラーム状態から復帰してください。

- 1. ALM-RST入力をONにして、アラームを解除します。
- 2. 上記の回復方法を実行して、偏差異常から回復します。

(memo) 位置偏差過大アラームが発生した場合、ALM-RST入力をONにしただけではアラームを解除できません。 必ず先に ALM-RST入力でアラームを解除し、その後に偏差異常から回復してください。

● エンコーダ分解能の設定

モーターとエンコーダの分解能が異なるときでも、エンコーダ分解能を設定すると、偏差異常を検出できます。 エンコーダ分解能は偏差異常を判断するためのもので、エンコーダカウンタ値には影響しません。

関連するパラメータ

MEXE02 ツリー表示	パラメータ名	内容	初期値
座標	エンコーダ分解能	エンコーダの分解能を設定します。 【設定範囲】 100 ~ 10,000 P/R	500

■ モニタ機能

エンコーダカウンタのモニタ

エンコーダから入力される90°位相差の信号を、MEXEO2、OPX-2A、および RS-485 通信の「エンコーダカウンタ」で読み 出すことができます。読み出される値は4 逓倍になります。

● エンコーダカウンタ値を変更する場合

MEXE02、OPX-2A、および RS-485 通信のどれかでエンコーダカウンタプリセットを実行してください。 エンコーダカウンタ値が「エンコーダカウンタプリセット値」パラメータの値になります。

MEXE02 ツリー表示	パラメータ名	内容	初期値
座標	エンコーダカウンタ プリセット値	エンコーダカウンタのプリセット値を設定します。 【設定範囲】 -8,388,608 ~ 8,388,607 step	0

memo エンコーダカウンタ値やフィードバック位置は、実際のモーター位置に対してずれる場合があります。 停止位置の確認用としてお使いください。

● フィードバック位置のモニタ

エンコーダから入力される90°位相差の信号を、RS-485通信の「フィードバック位置」で読み出すことができます。

- 読み出された値は、指令位置とほぼ同じ値になります。
- ラウンド機能が有効のときは、モーターが1回転すると現在位置が0に戻るため、フィードバック位置も0になります。
 そのためフィードバック位置は、「0~(ラウンド設定値-1)」の範囲で読み出されます。
- 原点復帰運転が終了すると、指令位置は0 にリセットされますが、負荷や運転条件によってはフィードバック位置が0 にリセットされない場合があります。このとき、位置プリセットを実行すると、指令位置とフィードバック位置を一致 させることができます。

フィードバック位置を変更する場合

P-PRESET入力をONにすると、指令位置とフィードバック位置が「プリセット位置」パラメータの値になります。

関連するパラメータ

MEXE02 ツリー表示	パラメータ名	内容	初期値
座標	プリセット位置	プリセット位置を設定します。 【設定範囲】 -8,388,608 ~ 8,388,607 step	0
	電子ギヤA	電子ギヤの分母を設定します。 【設定範囲】 1~ 65,535	1
	電子ギヤ B	電子ギヤの分子を設定します。 【設定範囲】 1~ 65,535	1
	エンコーダ分解能	エンコーダの分解能を設定します。 【設定範囲】 100 ~ 10,000 P/R	500

エンコーダの Z相出力

エンコーダから ENC-Z信号がドライバに入力されると、ドライバから ZSG出力が出力されます。通常、ENC-Z信号はモーター出力軸が1回転するたびに入力されます。

原点復帰運転の際に ZSG出力を併用すると、より正確な原点を検出できます。

関連するパラメータ

MEXE02 ツリー表示	パラメータ名	内容	初期値
原点復帰	原点復帰 TIM信号検出	原点復帰時に TIM (ZSG) 出力を併用するかを設 定します。 【設定範囲】 0:無効 1:TIM信号有効 2:ZSG信号有効※	0

※ エンコーダを接続したときに使用できます。

3 運転の種類と機能一覧

運転

【運転データとパラメータで設定】

ω

4 位置決め運転

位置決め運転とは、モーターの運転速度や位置(移動量)などを運転データに設定して実行する運転です。位置決め運転を 実行すると、モーターは起動速度で立ち上がり、運転速度になるまで加速します。運転速度に達すると速度は一定になり、 停止位置に近づくと起動速度まで減速して停止します。

運転データには、運転機能も設定できます。運転機能とは、連続する運転データ(例:運転データ No.0、No.1、No.2)の 制御方法のことです。

______ 4-1 運転データ

位置決め運転に必要な運転データは、次のとおりです。運転データは、最大64点(No.0~63)まで設定できます。

MEXE02 ツリー表示	項目	内容	初期値
	位置	位置決め運転の位置 (移動量) を設定します。 【設定範囲】 –8,388,608 ~ +8,388,607 step	0
	運転速度	位置決め運転の運転速度を設定します。 【設定範囲】 0~ 1,000,000 Hz	1,000
	加速	位置決め運転の加速レート (加速時間) を設定します。 【設定範囲】 1 ~ 1,000,000 (1=0.001 ms/kHzまたは1=0.001 s)	30,000
	減速	位置決め運転の減速レート (減速時間) を設定します。 【 <mark>設定範囲】</mark> 1 ~ 1,000,000 (1=0.001 ms/kHzまたは1=0.001 s)	30,000
運転データ	運転方式	位置決め運転の位置(移動量)の指定方法を設定します。 【 <mark>設定範囲】</mark> 0:INC (インクリメンタル) 1:ABS (アブソリュート)	0
	運転機能	位置決め運転の実行方式を設定します。 【設定範囲】 0:単独 1:連結 2:連結2	0
	ドウェル時間	連結運転2 の停止待ち時間を設定します。 【設定範囲】 0~ 50,000 (1=0.001 s)	0
	順送り位置決め	順送り位置決め運転の有効 /無効を設定します。 【設定範囲】 0:無効 1:有効	0

● 位置、運転速度、加速、減速

位置決め運転における加速と減速は、「加減速選択」パラメータで次のように設定できます。 独立:運転データに設定した値で運転します(加速、減速ともに64 点ずつ)。 共通:「共通加速」「共通減速」パラメータの値で運転します(加速、減速ともに1 点ずつ)。

起動速度<運転速度の場合

起動速度≧運転速度の場合

● 運転方式

運転方式には次の2種類があります。

アブソリュート(ABS)方式

原点からの位置(移動量)を設定します。[絶対位置決め] 例:開始位置を1,000、移動位置を+3,000 と -3,000 に設定 して位置決め運転した場合

インクリメンタル(INC)方式

移動した先を、次の移動の開始点とします。同じ位置(移動量) を繰り返す運転に適しています。[相対位置決め] 例:開始位置を1,000、移動位置を+3,000 と -3,000 に設定 して位置決め運転した場合

-3,000	原点 0 」	開始点 1,000	3,000
<	移動量4,000	移動量	₫2,000

-2,000	原点 0 」	開始点 1,000		4,000
<	移動量3,000	*	移動量3,000	

● 運転機能、ドウェル時間

運転機能には次の3種類があります。

項目	内容	参照先
単独運転	1 つの運転データで位置決め運転を実行します。	91 ページ
連結運転	複数の運転データを連結して、多段変速位置決め運転を実行します。	92ページ
連結運転2	運転データと運転データの間にドウェル時間(停止待ち時間)があります。 回転方向が異なる運転データも連結できます。	93ページ

4-2 位置決め運転の起動方法

起動方法には次の3種類があります。

項目	内容
運転データ No.選択方式	M0 ~ M5 入力で運転データ No.を選択し、START入力を ONにすると、位置決め運転 を実行します。
ダイレクト位置決め	MS0 ~ MS5 入力のどれかを ONにすると、それぞれの入力に対応した運転データ No.の位置決め運転を実行します。
順送り位置決め	SSTART入力を入力するたびに、次の運転データ No.の位置決め運転を実行します。

■ 運転データ No.選択方式

運転データは、M0 ~ M5 入力の ON/OFFを組み合 わせて選択します。詳細は61 ページをご覧くださ い。

運転データ No.	M5	M4	M3	M2	M1	MO
0	OFF	OFF	OFF	OFF	OFF	OFF
1	OFF	OFF	OFF	OFF	OFF	ON
2	OFF	OFF	OFF	OFF	ON	OFF
•	•	•	•	•	•	•
•	•	•	•	•	•	•
•	•	•	•	•	•	•
61	ON	ON	ON	ON	OFF	ON
62	ON	ON	ON	ON	ON	OFF
63	ON	ON	ON	ON	ON	ON

運転方法

- 1) READY出力が ONであることを確認します。
- 2) M0 \sim M5 入力で運転データ No.を選択し、START入力を ONにします。
- 3) モーターが位置決め運転を始めます。
- 4) READY出力が OFFになったことを確認し、START入力を OFFにします。
- 5) 位置決め運転が終わると、READY出力が ONになります。

※ ダイレクト I/Oのときは、M0 ~ M5 入力を確定してから START入力を ONにしてください。 ネットワーク I/Oのときは、M0 ~ M5 入力と START入力が同時に ONになっても、運転を行ないます。

▋ ダイレクト位置決め

MS0 ~ MS5 入力のどれかを ONにすると、それぞれの入力に対応した運転データ No.の位置決め運転を行ないます。 MS0 ~ MS5 入力のどれかを ONにするだけで位置決め運転を行なえるため、運転データ No.を選択する操作が省けます。 MS0 ~ MS5 入力に割り当てる運転データは、パラメータで設定します。

関連するパラメータ

MEXE02 ツリー表示	名称	内容	初期値
	MS0 運転 No.選択		0
1/0	MS1 運転 No.選択	MS0 ~ MS5 入力に対応させる運転データ No.を設	1
	MS2 運転 No.選択	定します。 【設定範囲】	2
1/0	MS3 運転 No.選択		3
	MS4 運転 No.選択	0~63	4
	MS5 運転 No.選択		5

運転方法

- 1) READY出力が ONであることを確認します。
- 2) MS0 入力を ONにします。
- 3) モーターが位置決め運転を始めます。
- 4) READY出力が OFFになったことを確認し、MS0 入力を OFFにします。
- 5) 位置決め運転が終わると、READY出力が ONになります。

■順送り位置決め運転

順送り位置決め運転では、SSTART入力をONにするたびに、次の運転データ No.の位置決め運転を実行します。運転データ No.を選択する操作が省けるため、位置決めを順番に行ないたいときに便利な機能です。

運転データの「順送り位置決め」が「無効」に設定されているデータ No.まで進むと、順送り位置決め運転を行なう前に選択 した運転データ No.に戻り、そこから順送り運転を再開します。

また、M0 ~ M5 入力や MS0 ~ MS5 入力で順送り運転の起点を変更すると、複数のパターンで順送り運転を設定できます。 ワークごとに異なる運転パターンを設定したいときに便利です。

運転パターンが1 種類の場合

- 1) SSTART入力を ONにして、運転データ No.0 の位置決め運転を行ないます。
- 2) 1)の運転が終了後、再度 SSTART入力を ONにすると、運転データ No.1 の位置決め運転を行ないます。
- 3) 2)の運転が終了後、再度 SSTART入力を ONにすると、運転データ No.2 の位置決め運転を行ないます。
- 4) 3)の運転が終了後、再度 SSTART入力を ONにすると、運転データ No.3 の順送り位置決めが「無効」のため、運転データ No.0 に戻って位置決め運転を行ないます。

設定例

運転データ	順送り 位置決め		②SSTART	
No.0				
No.1	有効	1		
No.2				
No.3	無効			

運転パターンが複数の場合

- 1) 順送り位置決めの起点となる運転データ No.3 を選び、START入力を ONにして位置決め運転を実行します。
- 2) 1)の運転が終了後、再度 SSTART入力を ONにすると、運転データ No.4 の位置決め運転を行ないます。
- 3) 2)の運転が終了後、再度 SSTART入力を ONにすると、運転データ No.5 の位置決め運転を行ないます。
- 4) 3)の運転が終了後、再度 SSTART入力を ONにすると、運転データ No.6 の順送り位置決めが「無効」のため、運転デー タ No.3 に戻って位置決め運転を行ないます。
- 5) 4)の運転が終了後、運転データ No.7 を選び、START入力を ONにして位置決め運転を実行します。 運転データ No.7 が新しい順送り位置決め運転の起点となります。
- 6) 5)の運転が終了後、再度 SSTART入力を ONにすると、運転データ No.8 の位置決め運転を行ないます。
- 7) 6)の運転が終了後、再度 SSTART入力を ONにすると、運転データ No.9 の順送り位置決めが「無効」のため、運転デー タ No.7 に戻って位置決め運転を行ないます。

•	設定例
---	-----

運転データ	順送り 位置決め
No.3	
No.4	有効
No.5	
No.6	無効
No.7	方动
No.8	有初
No.9	無効

● 運転方法

- 1) READY出力が ONであることを確認します。
- 2) SSTART入力を ONにします。
- 3) モーターが位置決め運転を始めます。
- 4) READY出力が OFFになったことを確認し、SSTART入力を OFFにします。
- 5) 位置決め運転が終わると、READY出力が ONになります。

● 順送り位置決め運転のポイント

順送り位置決め運転の実行中に次の操作を行なうと、順送りの起点が運転データ No.0 に変わってしまいます。 また、現在の運転データ No.は[–1]に設定されます。

- DC24 V電源を投入したとき
- 位置決め運転以外の運転を実行したとき
- アラームが発生し、そのアラームをリセットしたとき
- STOP入力を ONにしたとき
- FREE入力や AWO入力など、モーターが無励磁になる指令を入力したとき
- P-PRESETを実行したとき
- Configurationを実行したとき

(memo) [運転機能]で[連結]または[連結2]を設定した運転データを順送り位置決めするときも、「順送り位置決め」を「有効」にしてください。

4-3 運転機能

■ 単独運転

1つの運転データで、1回だけ位置決め運転を実行します。

● 単独運転の例

	運転方式	位置 [step]	運転速度 [Hz]	運転機能	ドウェル時間 [s]	順送り位置決め	加速 [ms/kHz] or [s]	減速 [ms/kHz] or [s]
No.0	INC(インクリメンタル)	0	1000	単独	0.000	無効	30.000	30.000
No.1	INC(インクリメンタル)	5000	5000	単独	0.000	無効	30.000	30.000

運転イメージ

運転方法

- 1) READY出力が ONであることを確認します。
- 2) M0入力をONにして運転データNo.1を選択し、START入力をONにします。
- 3) モーターが運転データ No.1 の位置決め運転を始めます。
- 4) READY出力が OFFになったことを確認し、START入力を OFFにします。
- 5) 位置決め運転が終わると、READY出力が ONになります。

■ 連結運転

運転データの運転機能を「連結」に設定すると、モーターを止めずに、次のデータ No.も続けて位置決めします。 途中で「単独」を設定した運転データがあると、その運転データまで位置決めして、モーターを停止させます。 連結できる運転データは4 個までで、モーターの回転方向が同じものに限ります。

● 回転方向が異なる運転データは連結できません。運転時に運転データ異常のアラームが発生します。
 ● 運転データは4 個まで連結できます。連結運転と連結運転2 を組み合わせたときも、合計数を4 個以下

- ・ 建転ゲークは4 個など運転ときなり。 建福建転と建福建転と準福が日からたとさり、日前数を4 個以下 にしてください。5 個以上の運転データを連結すると、運転の実行時に運転データ異常のアラームが発 生します。
 - データ No.63 に「連結」を設定しても、No.0 には連結しません。 No.63 の単独運転として処理されます。
 - 連結運転の加減速には、連結運転を開始した運転データ No.の加減速が採用されます。

● 連結運転の例

	運転方式	位置 [step]	運転速度 [Hz]	運転機能	ドウェル時間 [s]	順送り位置決め	加速 [ms/kHz] or [s]	減速 [ms/kHz] or [s],
No.0	INC(インクリメンタル)	0	1000	単独	0.000	無効	30.000	30.000
No.1	INC(インクリメンタル)	5000	5000	連結	0.000	無効	30.000	30.000
No.2	INC(インクリメンタル)	20000	10000	単独	0.000	無効	30.000	30.000

運転イメージ

運転方法

- 1) READY出力が ONであることを確認します。
- 2) M0入力をONにして運転データ No.1を選択し、START入力をONにします。
- 3) モーターが運転データ No.1 と No.2 を連結した位置決め運転を始めます。
- 4) READY出力が OFFになったことを確認し、START入力を OFFにします。
- 5) 位置決め運転が終わると、READY出力が ONになります。

■ 連結運転2

運転データの運転機能を「連結2」に設定すると、回転方向が異なる運転データを連結できます。位置決め運転が終了した後、 ドウェル時間だけ停止してから、次の運転データを運転します。途中で「単独」を設定した運転データがあると、その運転デー タまで位置決め運転を行ない、モーターを停止させます。

- 運転データは4 個まで連結できます。連結運転と連結運転2 を組み合わせたときも、合計数を4 個以下にしてください。5 個以上の運転データを連結すると、運転の実行時に運転データ異常のアラームが発生します。
 - データ No.63 に「連結2」を設定しても、No.0 には連結しません。No.63の単独運転として処理されます。

連結運転2の例

		運転方式	位置 [step]	運転速度 [Hz]	運転機能	ドウェル時間 [s]	順送り位置決め	加速 [ms/kHz] or [s]	減速 [ms/kHz] or [s]
N	No.0	INC(インクリメンタル)	0	1000	単独	0.000	無効	30.000	30.000
N	No.1	INC(インクリメンタル)	5000	5000	連結 <mark>2</mark>	1.000	無効	30.000	30.000
N	lo.2	INC(インクリメンタル)	-3000	3000	単独	0.000	無効	30.000	30.000

運転イメージ

運転方法

- 1) READY出力が ONであることを確認します。
- 2) M0入力をONにして運転データ No.1を選択し、START入力をONにします。
- 3) モーターが運転データ No.1 の位置決め運転を始めます。
- 4) READY出力が OFFになったことを確認し、START入力を OFFにします。
- 5) 3)の位置決め運転が終わると、MOVE出力が OFFになります。
- 6) ドウェル時間が経過すると、運転データ No.2 の位置決め運転が自動で始まります。同時に MOVE出力が ONになります。
- 7) 運転データ No.2 の位置決め運転が終わると、READY出力が ONになります。

● 連結運転2の例:連結運転と連結2運転を組み合わせた場合

	運転方式	位置 [step]	運転速度 [Hz]	運転機能	ドウェル時間 [s]	順送り位置決め	加速 [ms/kHz] or [s]	減速 [ms/kHz] or [s]
No.	D INC(インクリメンタル)	0	1000	単独	0.000	無効	30.000	30.000
No.	1 INC(インクリメンタル)	5000	3000	連結	0.000	無効	30.000	30.000
No.	2 INC(インクリメンタル)	10000	5000	連結	0.000	無効	30.000	30.000
No.	3 INC(インクリメンタル)	25000	7000	連結 2	1.000	無効	30.000	30.000
No.	4 ABS(アブソリュート)	0	7000	単独	0.000	無効	30.000	30.000

運転イメージ

運転方法

- 1) READY出力が ONであることを確認します。
- 2) M0入力をONにして運転データNo.1を選択し、START入力をONにします。
- 3) モーターが運転データ No.1 ~ No.3 を連結した位置決め運転を始めます。
- 4) READY出力が OFFになったことを確認し、START入力を OFFにします。
- 5) 3)の位置決め運転が終わると、MOVE出力が OFFになります。
- 6) ドウェル時間が経過すると、運転データ No.4 の位置決め運転が自動で始まります。同時に MOVE出力が ONになります。
- 7) 運転データ No.4 の位置決め運転が終わると、READY出力が ONになります。

5 原点復帰運転

5-1 原点復帰運転の詳細

原点復帰運転とは、位置決め運転を行なう際に開始点となる位置(原点)を確定する運転です。 電源投入時、および位置決め運転の終了時に、原点へ復帰させるときに実行します。 原点復帰運転には次の3 種類があります。

項目	内容	特徴
3 センサ方式	原点復帰運転速度で運転します。HOMEセンサの ONエッジ を検出すると減速停止します。停止後に反転動作を行ない、 再度 HOMEセンサの ONエッジを検出すると停止し、その 位置を原点とします。	 外部にセンサが3 つ必要※ 運転速度が高速 (原点復帰運転速度)
2 センサ方式	原点復帰起動速度で運転します。リミットセンサを検出する とモーターは反転し、リミットセンサから脱出します。 脱出後、「2 センサ原点復帰戻り量」パラメータに設定した量 だけ移動して停止し、その位置を原点とします。	 外部にセンサが2つ必要 運転速度が低速 (原点復帰起動速度)
位置プリセット	モーターが停止している位置で P-PRESETを実行すると、指 令位置が「プリセット位置」パラメータの値になります。原点 を任意に設定することもできます。	 外部センサが不要 任意の位置を原点にできます。

[※] 回転機構の場合、外部センサが1 つでも原点を検出できます。3 センサ方式に設定し、HOMEセンサだけを接続してく ださい。

■ 付加機能

項目	3 センサ方式 2 センサ方式	位置プリセット	関連するパラメータ
原点オフセット	可能	不可	原点復帰オフセット
山 迎 わ い 井 (信 早) の 拴 山	司能	不可	原点復帰 SLITセンサ検出
外部セノリ(信号)の快击	니肥	下山	原点復帰 TIM信号検出
原点復帰後の指令位置	0 になります	任意の位置	プリセット位置

● 原点オフセット

原点復帰運転後に、パラメータで設定したオフセット量だけ位置決め運転を行ない、停止した位置を原点とする機能です。 オフセットによって決定した原点は、通常の原点とは区別して「電気原点」と呼びます。 オフセット量が0 のときは、原点と機械原点が同じ位置になります。

● 外部センサ(信号)の検出

SLIT入力や TIM (ZSG) 信号を併用すると、より正確な原点を検出できます。

(memo) TIM出力を使用するときは、分解能を50の整数倍に設定してください。

原点復帰後の指令位置

モーターが停止している位置で P-PRESETを実行すると、指令位置とフィードバック位置が「プリセット位置」パラメータに 設定した値になります。

■ 原点復帰運転に関するパラメータ

MEXE02 ツリー表示	パラメータ名	内容	初期値
	原点復帰方法	原点復帰方法を設定します。 【設定範囲】 0:2 センサ方式 1:3 センサ方式	1
	原点復帰運転速度	原点復帰運転の運転速度を設定します。 【設定範囲】 1~ 1,000,000 Hz	1,000
	原点復帰加減速	原点復帰運転の加減速レート(加減速時間)を設定します。 【設定範囲】 1 ~ 1,000,000(1=0.001 ms/kHzまたは1=0.001 s)※1	30,000
	原点復帰起動速度	原点復帰運転の起動速度を設定します。 【設定範囲】 1~ 1,000,000 Hz	100
	原点復帰オフセット	原点からのオフセット量を設定します。 【設定範囲】 -8,388,608 ~ 8,388,607 step	0
原点復帰	原点復帰開始方向	原点検出の開始方向を設定します。 【設定範囲】 0:-側 1:+側	1
	2 センサ原点復帰 戻り量	2 センサ方式の原点復帰運転で、リミットセンサから脱出し た後の移動量を設定します。 【設定範囲】 0 ~ 32,767 step	200
	原点復帰 SLITセンサ 検出	原点復帰時に SLIT入力を併用するかを設定します。 【設定範囲】 0:無効 1:有効	0
	原点復帰 TIM信号 検出	原点復帰時に TIM出力または ZSG出力を併用するかを設定 します。 【設定範囲】 0:無効 1:TIM信号有効 2:ZSG信号有効※2	0

※1 「加減速単位」パラメータで、加減速レート(ms/kHz)か加減速時間(s)を選択できます(初期値:加減速レート)。

※2 エンコーダを接続したときに使用できます。

● 運転イメージ(3 センサ方式の場合)

移動量で見たときの動作シーケンス

● 運転方法

- 1) READY出力が ONであることを確認します。
- 2) HOME入力を ONにします。
- 3) 原点復帰運転が始まります。
- 4) READY出力が OFFになったことを確認し、HOME入力を OFFにします。
- 5) 原点復帰運転が終わると、HOME-P出力が ONになります。

5-2 動作シーケンス

■ 3 センサ方式

```
●記号の説明
```

VS:原点復帰起動速度

VR:原点復帰運転速度

VL:最終原点出し速度(VS<500 Hzのとき:VS、VS≥500 Hzのとき:500 Hz) ---は、原点オフセットを設定した場合です。

原点復帰運転の開始位置	原点復	夏帰運転の開始方向]:+側	原点	复帰運転の開始方向]:一側
-LS	-LS +側		+LS — VR — VS	-LS +側	HOMES	+LS — VR — VS
	一側	↑	- VS - VR	-側		— VS — VR
+LS	ーLS +側		+LS — VR — VS	ーLS +側	HOMES	+LS - VR - VS
	一側			一側		- VS - VR
HOMES	-LS +側		+LS — VR — VS	-LS +側	HOMES	+LS — VR — VS
_	一側		— VS — VR	一側		— VS — VR
HOMESと-LSの間	ーLS +側		+LS — VR — VS	-LS +側	HOMES	+LS — VR — VS
	一側		— VS — VR	一側		— VS — VR
HOMESと+LSの間	-LS +側	HOMES	+LS - VR - VS	-LS +側	HOMES	+LS - VR - VS
	一側	` <u>/`\</u>	- VR	一側	`. <u>.</u> X_VL	- VR

● HOMEセンサだけを使用する場合

回転機構など、リミットセンサを使用しない場合は、次のシーケンスになります。

原点復帰運転の開始位置	原点復帰運転の開始方向:+側 原点復帰運転の			気復帰運転の開始方向	句:一側	
	HOMES				HOMES	
HOMES	+側		— VR — VS	+側		— VR — VS
	一側		— VS — VR	一側		— VS — VR
		HOMES			HOMES	
HOMES以外	+側	VL T	— VR — VS	+側		— VR — VS
	一側		— VS — VR	一側		— VS — VR

重要

「原点復帰加減速」パラメータの設定値によっては、HOMEセンサを検出した後に、HOMEセンサを越え て減速停止することがあります。メカ端と HOMEセンサの距離が近いと接触するおそれがあるため、十 分に距離をとってください。

● 外部センサ(信号)を併用する場合

HOMEセンサの ONエッジを検出後、外部センサ(信号)が検出されるまで原点復帰運転を継続します。HOMEセンサが ONの間に外部センサ(信号)が検出されると、原点復帰運転が完了します。

「原点復帰 TIM信号検出」パラメータで「ZSG信号有効」を選択したときは、図の TIM信号は ZSG信号になります。

HOMEセンサの ONエッジを検出した後の動作シーケンス

外部センサ(信号)の有無	原点復	帰運転の開始方向	:+側	原点復帰運転の開始方向:側		
	-LS +側		+LS — VR — VS	-LS +側	HOMES	+LS — VR — VS
SLIT入力	一側	*	— VS — VR	一側	VL VL	— VS — VR
	SLIT ON OFF —			SLIT ON OFF —		
	-LS +側	HOMES	+LS — VR — VS	-LS +側	HOMES	+LS — VR — VS
TIM信号	一側		— VS — VR	一側	↑, ↓ VL	— VS — VR
	TIM ON			TIM ON		
	-LS +側		+LS — VR — VS	-LS +側	HOMES	+LS — VR — VS
SLIT入力とTIM信号	一側		— VS — VR	一側	↑, ↓ ↓ VL	— VS — VR
	SLIT ON OFF —			SLIT ON OFF —		
	TIM ON OFF —			TIM ON OFF —		

■ 2 センサ方式

●記号の説明

VS:原点復帰起動速度

VR:原点復帰運転速度

VL:最終原点出し速度(VS<500 Hzのとき:VS、VS≧500 Hzのとき:500 Hz) --- は、原点オフセットを設定した場合です。

※ ±LSから脱出した後、「2 センサ原点復帰戻り量」パラメータに設定した量だけ移動します。

● 外部センサ(信号)を併用する場合

リミットセンサを検出するとモーターは反転し、リミットセンサから脱出します。脱出後、「2 センサ原点復帰戻り量」パラ メータに設定した量だけ移動して停止し、外部センサ(信号)が検出されるまで運転を継続します。外部センサ(信号)が検 出されると、原点復帰運転が完了します。

「原点復帰 TIM信号検出」パラメータで「ZSG信号有効」を選択したときは、図の TIM信号は ZSG信号になります。

リミットセンサの ONエッジを検出した後の動作シーケンス

※ ±LSから脱出した後、「2センサ原点復帰戻り量」パラメータに設定した量だけ移動します。

5-3 位置プリセット

P-PRESETを実行すると、指令位置が「プリセット位置」パラメータに設定した値になります。 ただし、次の場合はプリセットは実行されません。

- モーターの動作中
- アラームの発生中

関連するパラメータ

MEXE02 ツリー表示	パラメータ名	内容	初期値
座標	プリセット位置	プリセット位置を設定します。 【設定範囲】 –8,388,608 ~ 8,388,607 step	0

運転方法

- 1) READY出力が ONであることを確認します。
- 2) P-PRESET入力をONにします。
- 3) ドライバの内部処理が終了すると、HOME-P出力が ONになります。
- 4) HOME-P出力が ONになったことを確認し、P-PRESET入力を OFFにします。

P-PRESET入力 ON OFF	
ON READY出力 OFF	
ON HOME-P出力 OFF	3
ON 指令位置 OFF	、 プリセット位置

6 連続運転

FWD入力または RVS入力が ONになっている間、モーターは連続して運転します。

FWD入力、RVS入力ともに、選択されている運転データ No.の運転速度で運転します。連続運転中に運転データ No.を変更すると変速します。

FWD入力または RVS入力を OFFにすると、モーターは減速停止します。減速中、同じ回転方向の信号を ONにすると、モーターは再加速して連続運転を続けます。

FWD入力と RVS入力が両方とも ONになると、モーターは減速停止します。

6-1 運転データ

連続運転に必要な運転データは、次のとおりです。

MEXE02 ツリー表示	項目	内容	初期値
	運転速度	連続運転の運転速度を設定します。 【設定範囲】 0~ 1,000,000 Hz	1,000
運転データ	加速	連続運転の加速レート (加速時間) を設定します。※ 【設定範囲】 1 ~ 1,000,000 (1=0.001 ms/kHzまたは1=0.001 s)	30,000
	減速	連続運転の減速レート(減速時間)を設定します。※ 【設定範囲】 1 ~ 1,000,000(1=0.001 ms/kHzまたは1=0.001 s)	30,000

※ 連続運転における加速と減速は、「加減速選択」パラメータで次のように設定できます。 独立:運転データに設定した値で運転します(加速、減速ともに64 点ずつ)。 共通:「共通加速」「共通減速」パラメータの値で運転します(加速、減速ともに1 点ずつ)。

6-2 連続運転の起動方法

運転データ No.を選択して FWD入力または RVS入 力を ONにすると、連続運転を開始します。 運転データは、M0 ~ M5 入力の ON/OFFを組み合 わせて選択します。詳細は61 ページをご覧くださ い。

運転データ No.	M5	M4	M3	M2	M1	MO
0	OFF	OFF	OFF	OFF	OFF	OFF
1	OFF	OFF	OFF	OFF	OFF	ON
2	OFF	OFF	OFF	OFF	ON	OFF
•	•	•	•	•	•	•
•	•	•	•	•	•	•
•	•	•	•	•	•	•
61	ON	ON	ON	ON	OFF	ON
62	ON	ON	ON	ON	ON	OFF
63	ON	ON	ON	ON	ON	ON

● 運転方法

- 1) READY出力が ONであることを確認します。
- 2) M0 \sim M5 入力で運転データ No.を選択し、FWD入力を ONにします。
- 3) モーターが連続運転を始めます。READY出力が OFFになります。
- 4) M0入力をONにして、運転データNo.1を選択します。運転データNo.1の運転速度まで加速します。
- 5) M0 入力を OFFにして、運転データ No.0 を選択します。運転データ No.0 の運転速度まで減速します。
- 6) FWD入力をOFFにします。
- 7) モーターが減速停止し、READY出力がONになります。

※ ダイレクト I/Oのときは、M0 ~ M5 入力を確定してから FWD入力または RVS入力を ONにしてください。 ネットワーク I/Oのときは、M0 ~ M5 入力と FWD (RVS) 入力が同時に ONになっても、運転を行ないます。

- 運転方法:FWD入力とRVS入力を組み合わせた場合
 - 1) READY出力が ONであることを確認します。
 - 2) M0 \sim M5 入力で運転データ No.を選択し、FWD入力を ONにします。
 - 3) モーターが連続運転を始めます。READY出力が OFFになります。
 - 4) FWD入力を OFFにします。モーターが減速します。
 - 5) モーターの減速中に FWD入力を ONにします。モーターが再加速します。
 - 6) FWD入力を OFFにします。モーターが減速します。
 - 7) モーターの減速中に RVS入力を ONにします。モーターがいったん停止した後、逆方向へ回転します。
 - 8) RVS入力が ONの間に FWD入力を ONにすると、モーターが減速します。
 - 9) モーターが減速停止し、MOVE出力が OFFになります。
 - 10) FWD入力と RVS入力をどちらも OFFにすると、READY出力が ONになります。

※ ダイレクト I/Oのときは、M0 ~ M5 入力を確定してから FWD入力または RVS入力を ONにしてください。 ネットワーク I/Oのときは、M0 ~ M5 入力と FWD (RVS) 入力が同時に ONになっても、運転を行ないます。

6-3 変速運転

● 加減速が「独立」の場合

VS:起動速度(Hz) VR1:運転データ No.1 の運転速度(Hz) VR2:運転データ No.2 の運転速度(Hz) TA1:運転データ No.1 の加速 TA2:運転データ No.2 の加速

TD2:運転データ No.2 の減速 TAR1:運転データ No.1 の加速レート (Hz/s) TAR2:運転データ No.2 の加速レート (Hz/s) TDR2:運転データ No.2の減速レート (Hz/s)

• 加減速レートの算出方法

TAR1 = (VR1 - VS) / TA1TAR2 = (VR2 - VS) / TA2TDR2 = (VR2 - VS) / TD2

● 加減速が「共通」の場合

加減速単位:ms/kHz

加減速単位:s

●記号の説明

VS:起動速度(Hz) VR1:運転データ No.1 の運転速度(Hz) VR2:運転データ No.2 の運転速度(Hz) TAC:共通加速 TDC:共通減速 TAR1:運転データNo.1の加速レート(Hz/s) TAR2:運転データNo.2の加速レート(Hz/s) TDR1:運転データNo.1の減速レート(Hz/s) TDR2:運転データNo.2の減速レート(Hz/s) •加減速レートの算出方法

TAR1 = (VR1 - VS) / TACTAR2 = (VR2 - VS) / TACTDR2 = (VR2 - VS) / TDC

7 その他の運転

7-1 JOG運転

JOG運転とは、「JOG移動量」パラメータに設定した移動量だけ位置決め運転する機能です。 +JOG入力を ONにすると+方向、–JOG入力を ONにすると–方向へ JOG運転を行ないます。 位置を微調整するときなどに便利な機能です。

関連するパラメータ

MEXE02 ツリー表示	パラメータ名	内容	初期値
運転	JOG移動量	JOG運転の移動量を設定します。 【 <mark>設定範囲】</mark> 1 ~ 8,388,607 step	1
	JOG運転速度	JOG運転の運転速度を設定します。 【 設定範囲】 1 ~ 1,000,000 Hz	1,000
	JOG加減速	JOG運転の加減速レート (加減速時間) を設定します。 【 <mark>設定範囲】</mark> 1 ~ 1,000,000 (1=0.001 ms/kHzまたは1=0.001 s) ※	30,000
	JOG起動速度	JOG運転の起動速度を設定します。 【設定範囲】 0 ~ 1,000,000 Hz	100

※ 「加減速単位」パラメータで、加減速レート (ms/kHz) か加減速時間 (s) を選択できます (初期値:加減速レート)。

● 運転イメージ

● 運転方法

- 1) READY出力が ONであることを確認します。
- 2) +JOG入力をONにします。
- 3) モーターが位置決め運転を始めます。
- 4) READY出力が OFFになったことを確認し、+JOG入力を OFFにします。
- 5) 位置決め運転が終わると、READY出力が ONになります。

7-2 テスト運転

テスト運転は、MEXE02 または OPX-2Aで実行します。JOG運転とティーチングを実行できます。 MEXE02 の詳細は MEXE02 の取扱説明書を、OPX-2Aの詳細は231 ページをご覧ください。

JOG運転

JOG運転によって、モーターとドライバの配線状態や動作状態を確認できます。

例: OPX-2Aで JOG運転する場合

📕 ティーチング

ティーチングは、MEXE02 または OPX-2Aでモーターを動かして、現在位置を運転データの位置(移動量)に設定する機能 です。ティーチングで位置(移動量)を設定すると、運転方式は必ずアブソリュート方式になります。 ティーチングの運転速度、加減速、および起動速度は、JOG運転と同じです。

(memo) ティーチングは、座標が確定しているときに行なってください。座標の確定については111 ページをご 覧ください。
7-3 停止動作

STOP動作

モーターの動作中に STOP入力または RS-485 通信の STOPを ONに すると、モーターが停止します。 モーターの停止方法は、「STOP入力停止方法」パラメータの設定に従 います。

例として、「STOP入力停止方法」パラメータを「減速停止」にしたときの動作を図に示します。

時間

関連するパラメータ

MEXE02 ツリー表示	パラメータ名	内容	初期値
1/0	STOP入力停止方法	STOP入力でモーターを停止させたときの、モーター の停止方法を設定します。 【設定範囲】 0:即停止 1:減速停止 2:即停止+カレントオフ 3:減速停止+カレントオフ	1

📱 ハードウェアオーバートラベル

ハードウェアオーバートラベルは、リミットセンサ(±LS)を移動範囲の上下限に設置して、移動範囲を限定する機能です。 「ハードウェアオーバートラベル」パラメータを「有効」に設定すると、リミットセンサの検出時にモーターを停止させるこ とができます。モーターの停止方法は、「オーバートラベル動作」パラメータの設定に従います。 動作例を図に示します。

関連するパラメータ

MEXE02 ツリー表示	パラメータ名	内容	初期値
I/O	ハードウェアオーバー トラベル	±LS入力によるハードウェアオーバートラベル検出の 有効 /無効を設定します。 【設定範囲】 0:無効 1:有効	1
	オーバートラベル動作	オーバートラベルが発生したときのモーターの停止 方法を設定します。 【設定範囲】 0:即停止 1:減速停止	0

[オーバートラベル動作]パラメータを減速停止にするときは、減速を開始してから停止するまでの距離を 考慮し、負荷が機構の端に接触しないようにしてください。

■ ソフトウェアオーバートラベル

ソフトウェアオーバートラベルは、パラメータで移動範囲の上下限を設定して、移動範囲を限定する機能です。 「ソフトウェアオーバートラベル」パラメータを「有効」に設定すると、ソフトウェアリミットでモーターを停止させること ができます。モーターの停止方法は、「オーバートラベル動作」パラメータの設定に従います。たとえば、「オーバートラベ ル動作」パラメータを「減速停止」に設定すると、減速レートに従って減速し、ソフトウェアリミットでモーターを停止させ ることができます。

運転中にソフトウェアリミットを超える運転を開始したときの動作パターンを図に示します。

即停止の場合

減速停止の場合

関連するパラメータ

MEXE02 ツリー表示	名称	内容	初期値
I/O	オーバートラベル動作	オーバートラベルが発生したときのモーターの 停止方法を設定します。 【設定範囲】 0:即停止 1:減速停止	0
	ソフトウェアオーバー トラベル	ソフトウェアリミットによるソフトウェアオー バートラベル検出の有効 /無効を設定します。 【設定範囲】 0:無効 1:有効	1
座標	+ソフトウェアリミット	+方向のソフトウェアリミットを設定します。 【設定範囲】 -8,388,608 ~ 8,388,607 step	8,388,607
	ーソフトウェアリミット	ー方向のソフトウェアリミットを設定します。 【設定範囲】 –8,388,608 ~ 8,388,607 step	-8,388,608

 ・ ソフトウェアオーバートラベルは、座標が確定しているときに動作します。座標の確定については 111 ページをご覧ください。

モーターの動作中にソフトウェアリミット値が変更されたときは、「オーバートラベル動作」パラメータの設定に従って停止します。

■ リミットからの脱出動作

+方向のリミットが検出されたときは-方向、-方向のリミットが検出されたときは+方向へ脱出できます。 リミットから脱出できる運転の種類を表に示します。

運転の種類	リミットセンサ(±LS)	ソフトウェアリミット
位置決め運転	運転不可(脱出できません)	
連続運転 テスト運転 原点復帰運転	運転可能(脱出できます)	運転可能(脱出できます)

座標管理

8 座標管理

8-1 座標位置管理

ドライバは、位置情報を管理しています。

次のどちらかを実行すると、座標が確定します。

- 原点復帰運転を実行する。
- P-PRESETを実行する。

次のどれかを実行すると、座標が未確定になります。

- DC24 V電源を再投入する。
- 「脱調検出」パラメータが「無効」に設定されているときに、モーターを無励磁にする。
- Configurationを実行する。

「原点復帰未完了アラーム」パラメータを「有効」に設定すると、座標が確定していない状態での位置決め運転を禁止できます。座標が確定していない状態で START入力、SSTART入力、MS0 ~ MS5 入力を ONにすると、原点復帰未完了のアラームが発生します。アラームについては260 ページをご覧ください。

関連するパラメータ

MEXE02 ツリー表示	パラメータ名	内容	初期値
アラーム	原点復帰未完了 アラーム	座標が確定していない状態で位置決め運転を開始したとき、 アラームを発生させるかを設定します。 【設定範囲】 0:無効 1:有効	0

8-2 ラウンド機能

ラウンド機能は、指令位置が「ラウンド設定範囲」パラメータの設定値を超えると、指令位置を0に戻す機能です。 指令位置は、「0~(ラウンド設定値-1)」の範囲で変化します。

関連するパラメータ

MEXE02 ツリー表示	パラメータ名	内容	初期値
座標	ラウンド設定	ラウンド機能の有効 /無効を設定します。 【設定範囲】 0:無効 1:有効	0
	ラウンド設定範囲	ラウンド設定範囲を設定します。 【設定範囲】 1 ~ 8,388,607 step	500

(memo) [ラウンド設定]パラメータを[有効]にすると、ソフトウェアオーバートラベルは無効になります。([ソフ トウェアオーバートラベル]パラメータが[有効]に設定されていても無効になります。)

● ラウンド機能の例

次の条件で位置決め運転を行なったときの動作例を示します。

- ラウンド設定:3,600
- 分解能:500 P/R(「電子ギヤA」パラメータ=1、「電子ギヤB」パラメータ=1)
- 指令位置:900

9 運転データ

設定できる運転データ数は64 個です(データ No.0 ~ 63)。 データを変更すると、運転の停止後に再計算とセットアップが行なわれます。

項目	内容	初期値
位置 No.0	位置決め運転の位置(移動量)を設定します。	
~	【設定範囲】	0
位置 No.63	-8,388,608 ~ +8,388,607 step	
運転速度 No.0	位置決め運転と連続運転の運転速度を設定します。	
~	【設定範囲】	1000
運転速度 No.63	0~1,000,000 Hz	
運転方式 No 0	位置決め運転の位置(移動量)の指定方法を設定します。	
~	【設定範囲】	0
運転方式 No.63	0:INC(インクリメンタル)	
	1:ABS(アブソリュート)	
	位置決め運転の実行方式を設定します。	
運転機能 No.0	【設定範囲】	_
	0:単独	0
連転機能 No.63		
	2:連結2	
加速 No.0	位置決め運転と連続運転の加速レート (加速時間) を設定します。※1	
~	【設定範囲】	30,000
加速 No.63	1~1,000,000(1=0.001 ms/kHzまたは1=0.001 s)※2	
減速 No.0	位置決め運転と連続運転の減速レート(減速時間)を設定します。※1	
~	【設定範囲】	30,000
減速 No.63	1~1,000,000(1=0.001 ms/kHzまたは1=0.001 s)※2	
順洋11位署注め No 0	順送り位置決め運転の有効 /無効を設定します。	
	【設定範囲】	0
順送り位置決め No.63	0:無効	Ŭ
	1:有効	
ドウェル時間 No.0	連結運転2 の停止待ち時間を設定します。	
~	【設定範囲】	0
ドウェル時間 No.63	0~50,000 (1=0.001 s)	

※1 「加減速選択」パラメータが「独立」のときに有効です。「共通」のときは、「共通加速」「共通減速」パラメータの設定値 が使用されます(初期値:独立)。

※2 「加減速単位」パラメータで、加減速レート(ms/kHz)か加減速時間(s)を選択できます(初期値:加減速レート)。

10 パラメータ

パラメータは RAMまたは NVメモリに保存されます。RAMのパラメータは DC24 V電源を遮断すると消去されますが、 NVメモリのパラメータは DC24 V電源を遮断しても保存されています。

ドライバに DC24 V電源を投入すると、NVメモリのパラメータが RAMに転送され、RAM上でパラメータの再計算やセットアップが行なわれます。

RS-485 通信または FAネットワークで設定したパラメータは、RAMに保存されます。RAMに保存されたパラメータを NV メモリに保存するには、メンテナンスコマンドの「NVメモリー括書き込み」を行なってください。

MEXE02 で設定したパラメータは、「データの書き込み」を行なうと NVメモリに保存されます。

パラメータを変更したときに、変更した値が反映されるタイミングはパラメータによって異なります。反映タイミングの 詳細は「表記の規則」でご確認ください。

 Memo
 • RS-485 通信または FAネットワークで設定したパラメータは RAMに保存されます。DC24 V電源の再 投入が必要なものは、電源を切る前に必ず NVメモリへ保存してください。
 • NVメモリへの書き込み可能回数は、約10 万回です。

■ 表記の規則

本書では、それぞれの反映タイミングをアルファベットで表わしています。

表記	詳細
А	パラメータを書き込むと、すぐに再計算とセットアップが行なわれます。
В	運転を停止すると、再計算とセットアップが行なわれます。
С	Configurationの実行後または DC24 V電源の再投入後に、再計算とセットアップが行なわれます。
D	

10-1 パラメーター覧

	●STOP入力停止方法	● +I S接点設定
	 ハードウェアオーバートラベル 	 HOMES接点設定
	 オーバートラベル動作 	● SIIT接点設定
	• ARFA1 +方向位置	• MSO 運転 No.選択
レージョメータ	• AREA1 一方向位置	• MS1 運転 No.選択
(115ページ)	• AREA2 +方向位置	• MS2 運転 No.選択
	• AREA2 一方向位置	• MS3 運転 No.選択
	• AREA3 +方向位置	• MS4 運転 No.選択
	● AREA3 -方向位置	• MS5 運転 No.選択
	● MOVE出力最小時間	● HOME-P出力機能選択
	• RUN電流	•移動平均時間
モーターバラメータ (116ページ)	• STOP電流	• フィルタ選択
	• 速度フィルタ	
	• 共通加速	• JOG起動速度
	• 共通減速	• 加減速選択
連転バフメータ (117ページ)	●起動速度	• 加減速単位
	• JOG運転速度	• JOG移動量
	• JOG加減速	
	• 原点復帰方法	•原点復帰開始方向
	• 原点復帰運転速度	● 原点復帰 SLITセンサ検出
原点復帰ハフメータ (117ページ)	• 原点復帰加減速	• 原点復帰 TIM信号検出
	• 原点復帰起動速度	•2 センサ原点復帰戻り量
	● 原点復帰オフセット	

アラームパラメータ (118 ページ)	• 原点復帰未完了アラーム		
ワーニングパラメータ (118 ページ)	 ・過熱ワーニング ・過電圧ワーニング ・不足電圧ワーニング 		
	 ・電子ギヤA ・電子ギヤB ・モーター回転方向 	 ラウンド設定 ラウンド設定範囲 エンコーダ分解能 	
座標パラメータ (119 ページ)	 ・ソフトウェアオーバートラベル ・+ソフトウェアリミット ・ソフトウェアリミット ・プリセット位置 	 エンコーダカウンタプリセット値 脱調検出 脱調検出幅 脱調検出動作 	
共通パラメータ (120 ページ)	 データ設定器連度表示 データ設定器編集 		
I/O機能[入力] パラメータ (120 ページ)	 IN0 ~ IN7 入力機能選択 IN0 ~ IN7 入力接点設定 		
I/O機能[出力] パラメータ (121 ページ)	• OUT0 ~ OUT5 出力機能選択		
I/O機能[RS-485]パラメータ (121 ページ)	 NET-IN0 ~ NET-IN15 入力機能選択 NET-OUT0 ~ NET-OUT15 出力機能選択 		
通信パラメータ (123 ページ)	 通信タイムアウト 通信異常アラーム 通信パリティ 	 通信ストップビット 送信待ち時間 	

10-2 I/Oパラメータ

パラメータ名	内容	初期値	反映 (P.114)
STOP入力停止方法	 STOP入力でモーターを停止させたときの、モーターの停止方法を設定します。 【設定範囲】 0:即停止 1:減速停止 2:即停止+カレントオフ 3:減速停止+カレントオフ 	1	
ハードウェアオーバー トラベル	±LS入力によるハードウェアオーバートラベル検出の有効 /無効 を設定します。 【設定範囲】 0:無効 1:有効	1	
オーバートラベル動作	オーバートラベルが発生したときのモーターの停止方法を設定し ます。 【設定範囲】 0:即停止 1:減速停止	0	A
AREA1 +方向位置 AREA2 +方向位置 AREA3 +方向位置	AREA1 ~ AREA3 の+方向位置を設定します。 【設定範囲】 -8,388,608 ~ 8,388,607 step	0	
AREA1 - 方向位置 AREA2 - 方向位置 AREA3 - 方向位置	AREA1 ~ AREA3 の-方向位置を設定します。 【設定範囲】 -8,388,608 ~ 8,388,607 step	0	
MOVE出力最小時間	MOVE出力の最小 ON時間を設定します。 【設定範囲】 0 ~ 255 ms	0	

3 運転の種類と設定

パラメータ名	内容	初期値	反映 (P.114)
±LS接点設定	±LS入力の入力接点を設定します。 【設定範囲】 0:A接点(N.O.) 1:B接点(N.C.)	0	
HOMES接点設定	HOMES入力の入力接点を設定します。 【設定範囲】 0:A接点 (N.O.) 1:B接点 (N.C.)	0	С
SLIT接点設定	SLIT入力の入力接点を設定します。 【設定範囲】 0:A接点(N.O.) 1:B接点(N.C.)	0	
MS0 運転 No.選択	_	0	
MS1 運転 No.選択	 MSO ~ MS5 入力に対応させる運転データ No を設定します。	1	
MS2 運転 No.選択		2	R
MS3 運転 No.選択	$0 \sim 63$	3	
MS4 運転 No.選択		4	
MS5 運転 No.選択		5	
HOME-P出力機能選択	HOME-P出力を出力させるタイミングを設定します。 【設定範囲】 0:原点出力 1:原点復帰完了出力	0	A

10-3 モーターパラメータ

パラメータ名	内容	初期値	反映 (P.114)
RUN電流	定格電流を100 %として、モーターの運転電流率を設定します。 【設定範囲】 0 ~ 1,000(1=0.1 %)	1,000	
STOP電流	定格電流を100%として、モーター停止時の電流を定格電流に対する割 合で設定します。 【設定範囲】 0~600(1=0.1%)	500	A
速度フィルタ	モーターの応答性を調整します。 【設定範囲】 0 ~ 200 ms	1	B
移動平均時間	移動平均フィルタの時定数を設定します。 【設定範囲】 0 ~ 200 ms	1	D
フィルタ選択	速度フィルタまたは移動平均フィルタのどちらかを設定します。 【設定範囲】 0:速度フィルタ 1:移動平均フィルタ	0	С

10-4 運転パラメータ

パラメータ名	内容	初期値	反映 (P.114)
共通加速	位置決め運転と連続運転の共通加速レート(共通加速時間)を設定します。 【設定範囲】 1~1,000,000(1=0.001 ms/kHzまたは1=0.001 s) ※1※2	30,000	
共通減速	位置決め運転と連続運転の共通減速レート(共通減速時間)を設定します。 【設定範囲】 1~1,000,000(1=0.001 ms/kHzまたは1=0.001 s)※1※2	30,000	
起動速度	位置決め運転と連続運転の起動速度を設定します。運転速度の値が起動速 度よりも小さいときは、起動速度で運転します。 【設定範囲】 0~1,000,000 Hz	100	
JOG運転速度	JOG運転の運転速度を設定します。 【設定範囲】 1~ 1,000,000 Hz	1,000	В
JOG加減速	JOG運転の加減速レート(加減速時間)を設定します。 【設定範囲】 1~1,000,000(1=0.001 ms/kHzまたは1=0.001 s)※2	30,000	
JOG起動速度	JOG運転の起動速度を設定します。 【設定範囲】 0 ~ 1,000,000 Hz	100	
加減速選択	共通加減速、または運転データの加減速のどちらを使用するか設定します。 【設定範囲】 0:共通 1:独立	1	
加減速単位	加減速の単位を設定します。 【設定範囲】 0:ms/kHz 1:s	0	С
JOG移動量	JOG運転の移動量を設定します。 【設定範囲】 1 ~ 8,388,607 step	1	В

※1 「加減速選択」パラメータが「共通」のときに有効です(初期値:独立)。

※2 「加減速単位」パラメータで、加減速レート(ms/kHz)か加減速時間(s)を選択できます(初期値:加減速レート)。

10-5 原点復帰パラメータ

パラメータ名	内容	初期値	反映 (P.114)
原点復帰方法	原点復帰方法を設定します。 【設定範囲】 0:2 センサ方式 1:3 センサ方式	1	
原点復帰運転速度	原点復帰運転の運転速度を設定します。 【設定範囲】 1~ 1,000,000 Hz	1,000	В
原点復帰加減速	原点復帰運転の加減速レート(加減速時間)を設定します。 【設定範囲】 1~1,000,000(1=0.001 ms/kHzまたは1=0.001 s)※1	30,000	
原点復帰起動速度	原点復帰運転の起動速度を設定します。 【設定範囲】 1~ 1,000,000 Hz	100	

パラメータ名	内容	初期値	反映 (P.114)
原点復帰オフセット	原点からのオフセット量を設定します。 【設定範囲】 -8,388,608 ~ 8,388,607 step	0	
原点復帰開始方向	原点検出の開始方向を設定します。 【設定範囲】 0:-側 1:+側	1	
原点復帰 SLITセンサ検出	原点復帰時に SLIT入力を併用するかを設定します。 【設定範囲】 0:無効 1:有効	0	В
原点復帰 TIM信号検出	原点復帰時に TIM出力または ZSG出力を併用するかを設定しま す。 【設定範囲】 0:無効 1:TIM信号有効 2:ZSG信号有効※2	0	
2 センサ原点復帰戻り量	2 センサ方式の原点復帰運転で、リミットセンサから脱出した後 の移動量を設定します。 【設定範囲】 0 ~ 32,767 step	200	

※1 「加減速単位」パラメータで、加減速レート(ms/kHz)か加減速時間(s)を選択できます(初期値:加減速レート)。

※2 エンコーダを接続したときに使用できます。

10-6 アラームパラメータ

パラメータ名	内容	初期値	反映 (P.114)
原点復帰未完了 アラーム	座標が確定していない状態で位置決め運転を開始したときに、アラー ムを発生させるかを設定します。 【設定範囲】 0:無効 1:有効	0	С

10-7 ワーニングパラメータ

パラメータ名	内容	初期値	反映 (P.114)
過熱ワーニング	主回路過熱のワーニングの発生条件を設定します。 【設定範囲】 40 ~ 85 ℃	85	
過電圧ワーニング	過電圧のワーニングの発生条件を設定します。 【設定範囲】 120 ~ 450 V	435	A
不足電圧ワーニング	不足電圧のワーニングの発生条件を設定します。 【設定範囲】 120 ~ 280 V	120	

10-8 座標パラメータ

パラメータ名	内容	初期値	反映 (P.114)
電子ギヤA	電子ギヤの分母を設定します。 【設定範囲】 1~65,535	1	
電子ギヤ B	電子ギヤの分子を設定します。 【設定範囲】 1 ~ 65,535	1	С
モーター回転方向	モーター出力軸の回転方向を設定します。 【設定範囲】 0:+側 =CCW 1:+側 =CW	1	
ソフトウェアオーバー トラベル 	ソフトウェアリミットによるソフトウェアオーバートラベル検出 の有効 /無効を設定します。 【設定範囲】 0:無効 1:有効	1	
+ソフトウェアリミット	+方向のソフトウェアリミットを設定します。 【設定範囲】 -8,388,608 ~ 8,388,607 step	8,388,607	A
ーソフトウェアリミット	ー方向のソフトウェアリミットを設定します。 【設定範囲】 _8,388,608 ~ 8,388,607 step	-8,388,608	
プリセット位置	プリセット位置を設定します。 【設定範囲】 -8,388,608 ~ 8,388,607 step	0	
ラウンド設定	ラウンド機能の有効 /無効を設定します。 【設定範囲】 0:無効 1:有効	0	
ラウンド設定範囲	ラウンド設定範囲を設定します。 【設定範囲】 1 ~ 8,388,607 step	500	С
エンコーダ分解能	エンコーダの分解能を設定します。 【設定範囲】 100 ~ 10,000 P/R	500	
エンコーダカウンタ プリセット値	エンコーダカウンタのプリセット値を設定します。 【設定範囲】 -8,388,608 ~ 8,388,607 step	0	A
脱調検出	脱調検出機能の有効 /無効を設定します。 【設定範囲】 0:無効 1:有効	0	С
脱調検出幅	脱調検出の判定条件を、指令位置とエンコーダ位置の偏差(角度) で設定します。 【設定範囲】 1~3,600(1=0.1°)	72	
脱調検出動作	脱調を検出したときの動作を設定します。 【設定範囲】 0:動作なし 1:ワーニング出力 2:アラーム出力	0	A

3 運転の種類と設定

10-9 共通パラメータ

パラメータ名	内容	初期値	反映 (P.114)
データ設定器速度表示	OPX-2Aの速度モニタの表示方法を設定します。 【設定範囲】 0:符号あり 1:絶対値	0	
データ設定器編集	OPX-2A による編集を可能にするかを設定します。 【設定範囲】 0:無効 1:有効	1	A

10-10 I/O機能[入力]パラメータ

パラメータ名	内容	初期値	反映 (P.114)
IN0 入力機能選択		3:HOME	
IN1 入力機能選択		4:START	
IN2 入力機能選択	入力信号を入力端子 INO ~ IN7 に割り付けます。 【設定範囲】 次表をご覧ください。	48:M0	
IN3 入力機能選択		49:M1	
IN4 入力機能選択		50:M2	
IN5 入力機能選択		16:FREE	
IN6 入力機能選択		18:STOP	
IN7 入力機能選択		24:ALM-RST	C
IN0 入力接点設定			C
IN1 入力接点設定			
IN2 入力接点設定	入力端子 INO ~ IN7 の接点設定を切り替えます。		
IN3 入力接点設定	【設定範囲】	0	
IN4 入力接点設定	0:A接点(N.O.)	0	
IN5 入力接点設定	1:B接点(N.C.)		
IN6 入力接点設定			
IN7 入力接点設定			

IN入力機能選択の設定範囲

0:未使用	7:-JOG	16:FREE	33:R1	40:R8	47:R15
1:FWD	8:MS0	17:AWO	34:R2	41:R9	48:M0
2:RVS	9:MS1	18:STOP	35:R3	42:R10	49:M1
3:HOME	10:MS2	24:ALM-RST	36:R4	43:R11	50:M2
4:START	11:MS3	25:P-PRESET	37:R5	44:R12	51:M3
5:SSTART	12:MS4	27:HMI	38:R6	45:R13	52:M4
6:+JOG	13:MS5	32:R0	39:R7	46:R14	53:M5

10-11 I/O機能[出力]パラメータ

パラメータ名	内容	初期値	反映 (P.114)
OUT0 出力機能選択		70:HOME-P	
OUT1 出力機能選択		68:MOVE	
OUT2 出力機能選択		73:AREA1	C
OUT3 出力機能選択	【設定範囲】 「次表をご覧ください」	67:READY	C
OUT4 出力機能選択		66:WNG	
OUT5 出力機能選択		65:ALM	

OUT出力機能選択の設定範囲

0:未使用	10:MS2_R	35:R3	45:R13	61:-LS_R	74:AREA2
1:FWD_R	11:MS3_R	36:R4	46:R14	62:HOMES_R	75:AREA3
2:RVS_R	12:MS4_R	37:R5	47:R15	63:SLIT_R	80:S-BSY
3:HOME_R	13:MS5_R	38:R6	48:M0_R	65:ALM	82:MPS
4:START_R	16:FREE_R	39:R7	49:M1_R	66:WNG	83:STEPOUT
5:SSTART_R	17:AWO_R	40:R8	50:M2_R	67:READY	84:OH
6:+JOG_R	18:STOP_R	41:R9	51:M3_R	68:MOVE	85:ZSG
7:-JOG_R	32:R0	42:R10	52:M4_R	70:HOME-P	86:MBC
8:MS0_R	33:R1	43:R11	53:M5_R	72:TIM	
9:MS1_R	34:R2	44:R12	60:+LS_R	73:AREA1	

10-12 I/O機能[RS-485]パラメータ

パラメータ名	内容	初期値	反映 (P.114)
NET-INO 入力機能選択		48:M0	
NET-IN1 入力機能選択		49:M1	
NET-IN2 入力機能選択		50:M2	
NET-IN3 入力機能選択		4:START	
NET-IN4 入力機能選択		3:HOME	
NET-IN5 入力機能選択		18:STOP	
NET-IN6 入力機能選択		16:FREE	
NET-IN7 入力機能選択	人力信号を NEI-INU ~ NEI-IN 15 に割り付けます。	24:ALM-RST	C
NET-IN8 入力機能選択	【設正範囲】 次ページをご覧ください	8:MS0	
NET-IN9 入力機能選択		9:MS1	
NET-IN10 入力機能選択		10:MS2	
NET-IN11 入力機能選択		5:SSTART	
NET-IN12 入力機能選択		6:+JOG	
NET-IN13 入力機能選択		7:-JOG	
NET-IN14 入力機能選択		1:FWD	
NET-IN15 入力機能選択		2:RVS	

パラメータ名	内容	初期値	反映 (P.114)
NET-OUT0 出力機能選択		48:M0_R	
NET-OUT1 出力機能選択		49:M1_R	
NET-OUT2 出力機能選択		50:M2_R	
NET-OUT3 出力機能選択		4:START_R	
NET-OUT4 出力機能選択		70:HOME-P	
NET-OUT5 出力機能選択		67:READY	
NET-OUT6 出力機能選択	出力信号を NET-OUT0 ~ NET-OUT15 に割り付けま	66:WNG	
NET-OUT7 出力機能選択	す。	65:ALM	C
NET-OUT8 出力機能選択	【設定範囲】	80:S-BSY	C
NET-OUT9 出力機能選択	次表をご覧ください。	73:AREA1	
NET-OUT10 出力機能選択		74:AREA2	
NET-OUT11 出力機能選択		75:AREA3	
NET-OUT12 出力機能選択		72:TIM	
NET-OUT13 出力機能選択		68:MOVE	
NET-OUT14 出力機能選択		0:未使用	
NET-OUT15 出力機能選択		83:STEPOUT	

NET-IN入力機能選択の設定範囲

0:未使用	7:-JOG	16:FREE	33:R1	40:R8	47:R15
1:FWD	8:MS0	17:AWO	34:R2	41:R9	48:M0
2:RVS	9:MS1	18:STOP	35:R3	42:R10	49:M1
3:HOME	10:MS2	24:ALM-RST	36:R4	43:R11	50:M2
4:START	11:MS3	25:P-PRESET	37:R5	44:R12	51:M3
5:SSTART	12:MS4	27:HMI	38:R6	45:R13	52:M4
6:+JOG	13:MS5	32:R0	39:R7	46:R14	53:M5

NET-OUT出力機能選択の設定範囲

0:未使用	10:MS2_R	35:R3	45:R13	61:-LS_R	74:AREA2
1:FWD_R	11:MS3_R	36:R4	46:R14	62:HOMES_R	75:AREA3
2:RVS_R	12:MS4_R	37:R5	47:R15	63:SLIT_R	80:S-BSY
3:HOME_R	13:MS5_R	38:R6	48:M0_R	65:ALM	82:MPS
4:START_R	16:FREE_R	39:R7	49:M1_R	66:WNG	83:STEPOUT
5:SSTART_R	17:AWO_R	40:R8	50:M2_R	67:READY	84:OH
6:+JOG_R	18:STOP_R	41:R9	51:M3_R	68:MOVE	85:ZSG
7:-JOG_R	32:R0	42:R10	52:M4_R	70:HOME-P	86:MBC
8:MS0_R	33:R1	43:R11	53:M5_R	72:TIM	
9:MS1_R	34:R2	44:R12	60:+LS_R	73:AREA1	

10-13 通信パラメータ

パラメータ名	内容	初期値	反映 (P.114)
通信タイムアウト	 RS-485 通信の通信タイムアウトの発生条件を設定します。設定値が 0のときは、ドライバは通信タイムアウトの発生条件を監視しません。 【設定範囲】 0:監視なし 1~10,000 ms 	0	A
通信異常アラーム	RS-485 通信異常アラームの発生条件を設定します。設定した回数だけ RS-485 通信異常が発生すると、通信異常アラームになります。 【設定範囲】 1~10回	3	
通信パリティ	RS-485 通信のパリティを設定します。 【設定範囲】 0:なし 1:偶数 2:奇数	1	
通信ストップビット	RS-485 通信のストップビットを設定します。 【設定範囲】 0:1 ビット 1:2 ビット	0	D
送信待ち時間	RS-485 通信の送信待ち時間を設定します。 【設定範囲】 0 ~ 10,000(1=0.1 ms)	100	

4 I/O制御

MEXE02 または OPX-2Aで運転データやパラメータを設定し、I/Oで運転を制御する場合について説明しています。

◆もくじ

1	ガイ	ダンス	126
2	運転	データ	128
3	パラ	メータ	129
3-	1	パラメーター覧	129
3-2	2	1/0パラメータ	130
3-3	3	モーターパラメータ	131
3-4	4	運転パラメータ	131
3-!	5	原点復帰パラメータ	131
3-6	6	アラームパラメータ	132
3-7	7	ワーニングパラメータ	132
3-8	8	座標パラメータ	132
3-9	9	共通パラメータ	132
3-	10	I/O機能[入力]パラメータ	133
3-	11	I/O機能[出力]パラメータ	133
3-	12	I/O機能[RS-485]パラメータ	134
3-	13	通信パラメータ	135
4	タイ	ミングチャート	136

1 ガイダンス

はじめてお使いになるときはここをご覧になり、運転方法のながれについてご理解ください。

※1 付属または別売りです。

※2 当社でご用意しています。別途お買い求めください。

STEP 3 モーターを運転します

STEP 4 うまく動かせましたか?

いかがでしたか。うまく運転できたでしょうか。 モーターが動かないときは、次の点を確認してください。

- アラームが発生していませんか?
- 電源やモーターは確実に接続されていますか?

詳細な設定や機能については、73ページ「3運転の種類と設定」をご覧ください。

2 運転データ

設定できる運転データ数は64 個です (データ No.0 ~ 63) 。

データを変更すると、運転の停止後に再計算とセットアップが行なわれます。

項目	設定範囲	初期値
位置 No.0 ~ 位置 No.63	-8,388,608 ~ +8,388,607 step	0
運転速度 No.0 ~ 運転速度 No.63	0 ~ 1,000,000 Hz	1,000
運転方式 No.0 ~ 運転方式 No.63	0:INC (インクリメンタル) 1:ABS (アブソリュート)	0
運転機能 No.0 ~ 運転機能 No.63	0:単独 1:連結 2:連結2	0
加速 No.0 ~ 加速 No.63	1~1,000,000 (1=0.001 ms/kHzまたは1=0.001 s)※	30,000
減速 No.0 ~ 減速 No.63	1~1,000,000 (1=0.001 ms/kHzまたは1=0.001 s)※	30,000
順送り位置決め No.0 ~ 順送り位置決め No.63	0:無効 1:有効	0
ドウェル時間 No.0 ~ ドウェル時間 No.63	0~50,000(1=0.001 s)	0

※ 「加減速単位」パラメータで、加減速レート (ms/kHz) か加減速時間 (s) を選択できます (初期値:加減速レート)。

3 パラメータ

パラメータは RAMまたは NVメモリに保存されます。RAMのパラメータは DC24 V電源を遮断すると消去されますが、 NVメモリのパラメータは DC24 V電源を遮断しても保存されています。

ドライバに DC24 V電源を投入すると、NVメモリのパラメータが RAMに転送され、RAM上でパラメータの再計算やセットアップが行なわれます。

RS-485 通信または FAネットワークで設定したパラメータは RAMに保存されます。RAMに保存されたパラメータを NV メモリに保存するには、メンテナンスコマンドの「NVメモリー括書き込み」を行なってください。

MEXE02 で設定したパラメータは、「データの書き込み」を行なうと NVメモリに保存されます。

パラメータを変更したときに、変更した値が反映されるタイミングはパラメータによって異なります。反映タイミングの 詳細は「表記の規則」でご確認ください。

• RS-485 通信または FAネットワークで設定したパラメータは RAMに保存されます。DC24 V電源の再投入が必要なものは、電源を切る前に必ず NVメモリへ保存してください。
 • NVメモリへの書き込み可能回数は、約10 万回です。

■ 表記の規則

本書では、それぞれの反映タイミングをアルファベットで表わしています。

表記	内容
A	パラメータを書き込むと、すぐに再計算とセットアップが行なわれます。
В	運転を停止すると、再計算とセットアップが行なわれます。
С	Configurationの実行後または DC24 V電源の再投入後に、再計算とセットアップが行なわれます。
D	

3-1 パラメータ一覧

・STOP入力停止方法 ・±LS接点設定 ・ハードウェアオーバートラベル ・HOMES接点設定 ・オーパートラベル動作 ・SLIT接点設定 ・オーパートラベル動作 ・SLIT接点設定 ・AREA1 +方向位置 ・MS0 運転 No.選択 ・AREA1 -方向位置 ・MS1 運転 No.選択 ・AREA2 +方向位置 ・MS3 運転 No.選択 ・AREA2 -方向位置 ・MS3 運転 No.選択 ・AREA3 +方向位置 ・MS3 運転 No.選択 ・AREA3 -方向位置 ・MS3 運転 No.選択 ・AREA3 -方向位置 ・MS3 運転 No.選択 ・AREA3 -方向位置 ・MS5 運転 No.選択 ・BRIT ・MOVE出力最小惑 ・BRUN電流 ・FOOR ・STOP電流 ・JUの長空観 ・JOG起動速度 ・加減速選択 ・JOG運転速度 ・JOG超速度 ・JOG運転速度 ・JOG移動運 ・JOG通道振度			
・ハードウェアオーパートラベル ・HOMES接点設定 ・オーパートラベル動作 ・SLIT接点設定 ・オーパートラベル動作 ・SLIT接点設定 ・AREA1 +方向位置 ・MS0 運転 No.選択 ・AREA1 -方向位置 ・MS1 運転 No.選択 ・AREA2 +方向位置 ・MS2 運転 No.選択 ・AREA2 +方向位置 ・MS3 運転 No.選択 ・AREA3 +方向位置 ・MS3 運転 No.選択 ・AREA3 +方向位置 ・MS3 運転 No.選択 ・AREA3 -方向位置 ・MS3 運転 No.選択 ・AREA3 -方向位置 ・MS5 運転 No.選択 ・BCU内電流 ・FUN電流 ・BUN電流 ・FUN=PU力機能選択 ・BCOP電流 ・JOG起動速度 ・共通減速度 ・加減速度 ・JOG運転速度 ・JOG超速度 ・JOG通道振度 ・JOGの部 ・JOG通道振度		• STOP入力停止方法	• ±LS接点設定
・オーパートラベル動作 ・SLIT接点設定 ・AREA1 +方向位置 ・MSO 運転 No.選択 ・AREA1 -方向位置 ・MS1 運転 No.選択 ・AREA2 +方向位置 ・MS2 運転 No.選択 ・AREA2 +方向位置 ・MS3 運転 No.選択 ・AREA3 -方向位置 ・MS3 運転 No.選択 ・AREA3 -方向位置 ・MS3 運転 No.選択 ・AREA3 -方向位置 ・MS5 運転 No.選択 ・MOVE出力最小時間 ・HOME-P出力機能選択 ・BCOP電流 ・POG起動速度 ・STOP電流 ・フレタ運択 ・速度フィルタ ・JOG起動速度 ・共通減速 ・JDG記述速度 ・JOG運転速度 ・JDG記述速度 ・JOG加減速度 ・原点復帰間始方向 ・原点復帰市法 ・原点復帰間加減速 ・原点復帰市 ・原点復帰原り ・原点復帰原北速度 ・2		 ハードウェアオーバートラベル 	• HOMES接点設定
・AREA1 +方向位置 ・MS0 運転 No.選択 ・AREA1 -方向位置 ・MS1 運転 No.選択 ・AREA2 +方向位置 ・MS2 運転 No.選択 ・AREA2 -方向位置 ・MS3 運転 No.選択 ・AREA3 +方向位置 ・MS5 運転 No.選択 ・AREA3 -方向位置 ・MS5 運動 No.選択 ・AREA3 -方向位置 ・MS5 運動 No.選択 ・MOVE出力最小時間 ・HOME-P出力機能選択 ・STOP電流 ・F型加速度 ・Jの保動 ・ジロック(131 ページ) ・共通加速度 ・JOG超速度 ・JOG運転速度 ・JOG移動量 ・JOG7都量 ・JOG通道度 ・原点復帰方法 ・原点復帰 SLITセンサ検出 ・原点復帰記 ・原点復帰記 ・E ・原点復帰記 ・夏信		 オーバートラベル動作 	• SLIT接点設定
I/Oパラメータ(130 ページ) ・AREA1 - 方向位置 ・MS1 運転 No.選択 AREA2 + 方向位置 ・MS3 運転 No.選択 AREA2 - 方向位置 ・MS4 運転 No.選択 AREA3 + 方向位置 ・MS4 運転 No.選択 AREA3 - 方向位置 ・MS5 運転 No.選択 AREA1 - ダ/0131 ページ) ・RUN電流 ・F数の 運転パラメータ(131 ページ) ・共通加速 ・JOG起動速度 ・共通減速 ・JOG認識速 ・JOG和減速 ・JOGご転速度 ・JOG都量 ・JOG加減速 ・JOG加減速 ・原点復帰方法 ・原点復帰 SLITセンザ検出 ・原点復帰加減速 ・原点復帰 TIN信号検出 ・原点復帰 Ni ・原点復帰記 ・原点復帰ネフセット ・		● AREA1 + 方向位置	● MS0 運転 No.選択
・AREA2 +方向位置 ・MS2 運転 No.選択 ・AREA2 -方向位置 ・MS3 運転 No.選択 ・AREA3 +方向位置 ・MS3 運転 No.選択 ・AREA3 -方向位置 ・MS5 運転 No.選択 ・RUN電流 ・FONE-P出力機能選択 ・STOP電流 ・フィルタ選択 ・STOP電流 ・フィルタ選択 ・家度フィルタ ・ ・共通減速 ・JOG起動速度 ・共通減速 ・加減速選択 ・起動速度 ・JOG超動速度 ・JOG運転速度 ・JOG移動量 ・JOG加減速度 ・原点復帰立場 ・原点復帰支援 ・原点復帰回転速度 ・原点復帰加減速度 ・夏点復帰こり量 ・原点復帰記 ・夏点復帰記 ・原点復帰記 ・夏点復帰記 ・月前復帰記 ・夏点復帰記 <th></th> <td>● AREA1 -方向位置</td> <td>● MS1 運転 No.選択</td>		● AREA1 -方向位置	● MS1 運転 No.選択
・AREA2 - 方向位置・MS3 運転 No.選択・AREA3 + 方向位置・MS4 運転 No.選択・AREA3 - 方向位置・MS5 運転 No.選択・AREA3 - 方向位置・MS5 運転 No.選択・MOVE出力最小時間・HOME-P出力機能選択モーターパラメータ(131 ページ)・RUN電流・STOP電流・フィルタ選択・速度フィルタ・準転パラメータ(131 ページ)・共通加速・JOG起動速度・・共通減速・加減速選択・起動速度・加減速単位・JOG運転速度・JOG移動量・JOG加減速・・原点復帰方法・原点復帰開始方向・原点復帰方法・原点復帰 SLITセンサ検出・原点復帰加減速・原点復帰 TIM信号検出・原点復帰加減速・2 センサ原点復帰戻り量・原点復帰オフセット	1/0////////////////////////////////////	● AREA2 +方向位置	• MS2 運転 No.選択
・AREA3 +方向位置・MS4 運転 No.選択・AREA3 -方向位置・MS5 運転 No.選択・AREA3 -方向位置・MS5 運転 No.選択・MOVE出力最小時間・HOME-P出力機能選択モーターパラメータ(131 ページ)・RUN電流・STOP電流・フィルタ選択・速度フィルタ・支度フィルタ・共通加速・JOG起動速度・共通減速・加減速選択・記動速度・加減速単位・JOG運転速度・JOG移動量・JOG通転速度・JOG移動量・JOG加減速・原点復帰方法・原点復帰方法・原点復帰開始方向・原点復帰加減速・原点復帰 SLITセンサ検出・原点復帰起動速度・2 センサ原点復帰戻り量・原点復帰オフセット		● AREA2 -方向位置	• MS3 運転 No.選択
・AREA3 -方向位置・MS5 運転 No.選択・MOVE出力最小時間・HOME-P出力機能選択・RUN電流・移動平均時間・STOP電流・フィルタ選択・速度フィルタ・・建速ウィルタ・・共通加速・JOG起動速度・共通減速・加減速選択・見回速度・・月通減速・・方の位置転速度・・JOG運転速度・・JOG運転速度・・JOG運転速度・・JOG加減速・・		• AREA3 + 方向位置	• MS4 運転 No.選択
・MOVE出力最小時間・HOME-P出力機能選択・RUN電流・移動平均時間・STOP電流・フィルタ選択・速度フィルタ・速度フィルタ・其通加速・JOG起動速度・共通加速・加減速選択・目動速度・加減速単位・JOG運転速度・JOG移動量・JOG運転速度・JOG移動量・JOG加減速・原点復帰方法・原点復帰加減速・原点復帰 TIM信号検出・原点復帰起動速度・2 センサ原点復帰戻り量・原点復帰オフセット・		● AREA3 -方向位置	• MS5 運転 No.選択
・RUN電流・移動平均時間モーターパラメータ(131 ページ)・STOP電流 ・JTOP電流 ・支度フィルタフィルタ選択 ・支度フィルタ連載パラメータ(131 ページ)・共通加速 ・共通減速・JOG起動速度 ・加減速単位 ・JOG運転速度 ・JOG運転速度 ・JOG運転速度 ・JOG潮減速・加減速単位 ・JOG運転速度 ・JOG移動量 ・JOG加減速原点復帰方法・原点復帰開始方向 ・原点復帰運転速度 ・原点復帰運転速度 ・原点復帰尾動速度 ・原点復帰アンサ検出 ・原点復帰起動速度 ・原点復帰アンサ原点復帰アンサ原点復帰戻り量 ・原点復帰オフセット		• MOVE出力最小時間	• HOME-P出力機能選択
モーターパラメータ(131 ページ) ・STOP電流 ・フィルタ選択 速度フィルタ ・共通加速 ・JOG起動速度 ・共通減速 ・加減速選択 ・起動速度 ・見動速度 ・加減速単位 ・JOG運転速度 ・JOG移動量 ・JOG加減速 ・JOG加減速 原点復帰方法 ・原点復帰開始方向 ・原点復帰加減速 ・原点復帰 TIM信号検出 ・原点復帰起動速度 ・2 センサ原点復帰戻り量 ・原点復帰オフセット ・		• RUN電流	•移動平均時間
・速度フィルタ・共通加速・JOG起動速度・共通減速・加減速選択・起動速度・加減速単位・足動速度・加減速単位・JOG運転速度・JOG移動量・JOG加減速・・原点復帰方法・原点復帰開始方向・原点復帰運転速度・原点復帰 SLITセンサ検出・原点復帰加減速・原点復帰 TIM信号検出・原点復帰起動速度・2 センサ原点復帰戻り量・原点復帰オフセット	モーターパラメータ(131 ページ)	• STOP電流	• フィルタ選択
・共通加速 ・JOG起動速度 ・共通減速 ・加減速選択 ・起動速度 ・加減速単位 ・2002運転速度 ・JOG移動量 ・JOG運転速度 ・JOG移動量 ・JOG加減速 ・ ・原点復帰方法 ・原点復帰開始方向 ・原点復帰運転速度 ・原点復帰開始方向 ・原点復帰運転速度 ・原点復帰 SLITセンサ検出 ・原点復帰加減速 ・原点復帰 TIM信号検出 ・原点復帰起動速度 ・2 センサ原点復帰戻り量 ・原点復帰オフセット ・		• 速度フィルタ	
・共通減速 ・加減速選択 運転パラメータ(131ページ) ・起動速度 ・加減速単位 ・JOG運転速度 ・JOG移動量 ・JOG加減速 ・ ●原点復帰方法 ・原点復帰開始方向 ・原点復帰運転速度 ・原点復帰 SLITセンサ検出 ・原点復帰加減速 ・原点復帰 TIM信号検出 ・原点復帰起動速度 ・2 センサ原点復帰戻り量 ・原点復帰オフセット ・		• 共通加速	• JOG起動速度
運転パラメータ(131ページ) ・起動速度 ・加減速単位 ・JOG運転速度 ・JOG移動量 ・JOG加減速 ・ ・原点復帰方法 ・原点復帰開始方向 ・原点復帰運転速度 ・原点復帰 SLITセンサ検出 ・原点復帰加減速 ・原点復帰 TIM信号検出 ・原点復帰起動速度 ・2 センサ原点復帰戻り量 ・原点復帰オフセット ・		● 共通減速	• 加減速選択
・JOG運転速度 ・JOG移動量 ・JOG加減速 ・原点復帰方法 ・原点復帰方法 ・原点復帰開始方向 ・原点復帰運転速度 ・原点復帰 SLITセンサ検出 ・原点復帰加減速 ・原点復帰 TIM信号検出 ・原点復帰起動速度 ・2 センサ原点復帰戻り量 ・原点復帰オフセット ・	運転パラメータ(131ページ)	• 起動速度	• 加減速単位
・JOG加減速 ・原点復帰方法 ・原点復帰開始方向 ・原点復帰運転速度 ・原点復帰 SLITセンサ検出 ・原点復帰加減速 ・原点復帰 TIM信号検出 ・原点復帰起動速度 ・2 センサ原点復帰戻り量 ・原点復帰オフセット ・		• JOG運転速度	• JOG移動量
・原点復帰方法 ・原点復帰開始方向 ・原点復帰運転速度 ・原点復帰 SLITセンサ検出 ・原点復帰加減速 ・原点復帰 TIM信号検出 ・原点復帰起動速度 ・2 センサ原点復帰戻り量 ・原点復帰オフセット		• JOG加減速	
・原点復帰運転速度 ・原点復帰 SLITセンサ検出 ・原点復帰加減速 ・原点復帰 TIM信号検出 ・原点復帰起動速度 ・2 センサ原点復帰戻り量 ・原点復帰オフセット		• 原点復帰方法	• 原点復帰開始方向
原点復帰パラメータ(131ページ) • 原点復帰加減速 • 原点復帰 TIM信号検出 • 原点復帰起動速度 • 2 センサ原点復帰戻り量 • 原点復帰オフセット		• 原点復帰運転速度	● 原点復帰 SLITセンサ検出
・原点復帰起動速度 ・2 センサ原点復帰戻り量 ・原点復帰オフセット	原点復帰パラメータ(131ページ)	• 原点復帰加減速	• 原点復帰 TIM信号検出
 原点復帰オフセット 		• 原点復帰起動速度	•2 センサ原点復帰戻り量
		● 原点復帰オフセット	

4 1/0制御

アラームパラメータ(132ページ)	• 原点復帰未完了アラーム		
	• 過熱ワーニング	● 不足電圧ワーニング	
<i>9</i> (132 <i>N</i> - <i>y</i>)	• 過電圧ワーニング		
	 電子ギヤA 	• ラウンド設定	
	• 電子ギヤ B	• ラウンド設定範囲	
	• モーター回転方向	•エンコーダ分解能	
座標パラメータ(132ページ)	 ソフトウェアオーバートラベル 	• エンコーダカウンタプリセット値	
	・+ソフトウェアリミット	● 脱調検出	
	 -ソフトウェアリミット 	● 脱調検出幅	
	 プリセット位置 	● 脱調検出動作	
	• データ設定器速度表示		
	● データ設定器編集		
I/O機能[入力]パラメータ(133ページ)	• IN0 ~ IN7 入力機能選択	• IN0 ~ IN7 入力接点設定	
I/O機能[出力]パラメータ(133ページ)	• OUT0 ~ OUT5 出力機能選択		
I/O機能[RS-485]パラメータ	• NET-IN0 ~ NET-IN15 入力機能選択		
(134 ページ)	● NET-OUT0 ~ NET-OUT15 出力機能選択		
	 通信タイムアウト 	• 通信ストップビット	
通信パラメータ(135ページ)	• 通信異常アラーム	●送信待ち時間	
	 通信パリティ 		

3-2 I/Oパラメータ

パラメータ名	設定範囲	初期値	反映 (P.129)
STOP入力停止方法	0:即停止1:減速停止2:即停止+カレントオフ3:減速停止+カレントオフ		
ハードウェアオーバートラベル	0:無効 1:有効	1	
オーバートラベル動作	0:即停止 1:減速停止	0	^
AREA1 +方向位置			~
AREA1-方向位置		Ο	
AREA2 +方向位置	– –8,388,608 ~ 8,388,607 step		
AREA2 -方向位置			
AREA3 +方向位置			
AREA3 -方向位置			
MOVE出力最小時間	$0 \sim 255 \text{ ms}$	0	
±LS接点設定			
HOMES接点設定	U.A按只(N.O.) 1.B接占(N.C.)	0	С
SLIT接点設定			
MS0 運転 No.選択		0	
MS1 運転 No.選択		1	
MS2 運転 No.選択	0 62	2	Р
MS3 運転 No.選択	0~63	3	D
MS4 運転 No.選択		4	
MS5 運転 No.選択		5	
HOME-P出力機能選択	0:原点出力 1:原点復帰完了出力	0	А

3-3 モーターパラメータ

パラメータ名	設定範囲	初期値	反映 (P.129)
RUN電流	0~1,000(1=0.1%)	1,000	^
STOP電流	0~600(1=0.1%)	500	A
速度フィルタ	0 - 200 mc	1	Б
移動平均時間	$0 \sim 200 \text{ ms}$	I	D
フィルタ選択	0:速度フィルタ 1:移動平均フィルタ	0	С

3-4 運転パラメータ

パラメータ名	設定範囲	初期値	反映 (P.129)
共通加速	1~1,000,000	30.000	
	(1=0.001 ms/kHzまたは1=0.001 s)※1 ※2		
起動速度	0~1,000,000 Hz	100	
JOG運転速度	1 ~ 1,000,000 Hz	1,000	
JOG加減速	1~1,000,000 (1=0.001 ms/kHzまたは1=0.001 s)※2	30,000	В
JOG起動速度	0~1,000,000 Hz	100	
加減速選択	0:共通 1:独立	1	
加減速単位	0:ms/kHz 1:s	0	С
JOG移動量	1~8,388,607 step	1	В

※1 「加減速選択」パラメータが「共通」のときに有効です(初期値:独立)。

※2 「加減速単位」パラメータで、加減速レート(ms/kHz)か加減速時間(s)を選択できます(初期値:加減速レート)。

3-5 原点復帰パラメータ

パラメータ名	設定範囲	初期値	反映 (P.129)
原点復帰方法	0:2 センサ方式 1:3 センサ方式	1	
原点復帰運転速度	1 ~ 1,000,000 Hz	1,000	
原点復帰加減速	1~1,000,000 (1=0.001 ms/kHzまたは1=0.001 s)※	30,000	
原点復帰起動速度	1 ~ 1,000,000 Hz	100	
原点復帰オフセット	-8,388,608 ~ 8,388,607 step	0	
原点復帰開始方向	0:一側 1:+側	1	В
原点復帰 SLITセンサ検出	0:無効 1:有効	0	
原点復帰 TIM信号検出	0:無効 1:TIM信号有効 2:ZSG信号有効	0	
2 センサ原点復帰戻り量	0 ~ 32,767 step	200	

※ 「加減速単位」パラメータで、加減速レート (ms/kHz) か加減速時間 (s) を選択できます (初期値:加減速レート)。

3-6 アラームパラメータ

パラメータ名	設定範囲	初期値	反映 (P.129)
原点復帰未完了アラーム	0:無効 1:有効	0	С

3-7 ワーニングパラメータ

パラメータ名	設定範囲	初期値	反映 (P.129)
過熱ワーニング	40 ~ 85 °C	85	
過電圧ワーニング	120~450 V	435	A
不足電圧ワーニング	120~280 V	120	

3-8 座標パラメータ

パラメータ名	設定範囲	初期値	反映 (P.129)
電子ギヤA	1. 65.525	1	
電子ギヤ B	1~05,555	I	C
モーター回転方向	0:+側=CCW 1:+側=CW	1)
ソフトウェアオーバートラベル	0:無効 1:有効	1	
+ソフトウェアリミット	-8,388,608 ~ 8,388,607 step	8,388,607	А
ーソフトウェアリミット	-8,388,608 ~ 8,388,607 step	-8,388,608	
プリセット位置	-8,388,608 ~ 8,388,607 step	0	
ラウンド設定	0:無効 1:有効	0	6
ラウンド設定範囲	1~8,388,607 step	500	C
エンコーダ分解能	100~10,000 P/R	500	
エンコーダカウンタプリセット値	-8,388,608 ~ 8,388,607 step	0	А
	0:無効 1:有効	0	С
脱調検出幅	1~3,600(1=0.1°)	72	
脱調検出動作	0:動作なし 1:ワーニング出力 2:アラーム出力	0	A

3-9 共通パラメータ

パラメータ名	設定範囲	初期値	反映 (P.129)
データ設定器速度表示	0:符号あり 1:絶対値	0	^
データ設定器編集	0:無効 1:有効	1	A

3-10 I/O機能[入力]パラメータ

パラメータ名	設定範囲	初期値	反映 (P.129)
IN0 入力機能選択		3:HOME	
IN1 入力機能選択		4:START	
IN2 入力機能選択		48:M0	
IN3 入力機能選択	次主たご覧ください	49:M1	
IN4 入力機能選択	次衣をと見ください。	50:M2	
IN5 入力機能選択		16:FREE	
IN6 入力機能選択		18:STOP	
IN7 入力機能選択		24:ALM-RST	C
IN0 入力接点設定			C
IN1 入力接点設定			
IN2 入力接点設定			
IN3 入力接点設定	0:A接点(N.O.)	0	
IN4 入力接点設定	1:B接点(N.C.)	0	
IN5 入力接点設定			
IN6 入力接点設定			
IN7 入力接点設定			

IN入力機能選択の設定範囲

		1	1		1
0:未使用	7:-JOG	16:FREE	33:R1	40:R8	47:R15
1:FWD	8:MS0	17:AWO	34:R2	41:R9	48:M0
2:RVS	9:MS1	18:STOP	35:R3	42:R10	49:M1
3:HOME	10:MS2	24:ALM-RST	36:R4	43:R11	50:M2
4:START	11:MS3	25:P-PRESET	37:R5	44:R12	51:M3
5:SSTART	12:MS4	27:HMI	38:R6	45:R13	52:M4
6:+JOG	13:MS5	32:R0	39:R7	46:R14	53:M5

3-11 I/O機能[出力]パラメータ

パラメータ名	設定範囲	初期値	反映 (P.129)
OUT0 出力機能選択		70:HOME-P	
OUT1 出力機能選択		68:MOVE	
OUT2 出力機能選択	次またプミノゼナい	73:AREA1	C
OUT3 出力機能選択	次衣をこ見てたさい。	67:READY	C
OUT4 出力機能選択	-	66:WNG	
OUT5 出力機能選択		65:ALM	

OUT出力機能選択の設定範囲

0:未使用	10:MS2_R	35:R3	45:R13	61:-LS_R	74:AREA2
1:FWD_R	11:MS3_R	36:R4	46:R14	62:HOMES_R	75:AREA3
2:RVS_R	12:MS4_R	37:R5	47:R15	63:SLIT_R	80:S-BSY
3:HOME_R	13:MS5_R	38:R6	48:M0_R	65:ALM	82:MPS
4:START_R	16:FREE_R	39:R7	49:M1_R	66:WNG	83:STEPOUT
5:SSTART_R	17:AWO_R	40:R8	50:M2_R	67:READY	84:OH
6:+JOG_R	18:STOP_R	41:R9	51:M3_R	68:MOVE	85:ZSG
7:-JOG_R	32:R0	42:R10	52:M4_R	70:HOME-P	86:MBC
8:MS0_R	33:R1	43:R11	53:M5_R	72:TIM	
9:MS1_R	34:R2	44:R12	60:+LS_R	73:AREA1	

3-12 I/O機能[RS-485]パラメータ

パラメータ名	設定範囲	初期値	反映 (P.129)
NET-INO 入力機能選択		48:M0	
NET-IN1 入力機能選択		49:M1	
NET-IN2 入力機能選択		50:M2	
NET-IN3 入力機能選択		4:START	
NET-IN4 入力機能選択		3:HOME	
NET-IN5 入力機能選択		18:STOP	
NET-IN6 入力機能選択		16:FREE	
NET-IN7 入力機能選択	次事をご覧ください	24:ALM-RST	
NET-IN8 入力機能選択	人衣をこ見てたさい。	8:MS0	
NET-IN9 入力機能選択		9:MS1	
NET-IN10入力機能選択		10:MS2	
NET-IN11 入力機能選択		5:SSTART	
NET-IN12 入力機能選択		6:+JOG	
NET-IN13 入力機能選択		7:-JOG	
NET-IN14 入力機能選択		1:FWD	
NET-IN15 入力機能選択		2:RVS	C
NET-OUT0 出力機能選択		48:M0_R	
NET-OUT1 出力機能選択		49:M1_R	
NET-OUT2 出力機能選択		50:M2_R	
NET-OUT3 出力機能選択		4:START_R	
NET-OUT4 出力機能選択		70:HOME-P	
NET-OUT5 出力機能選択		67:READY	
NET-OUT6 出力機能選択		66:WNG	
NET-OUT7 出力機能選択	次ページをご覧ください	65:ALM	
NET-OUT8 出力機能選択		80:S-BSY	
NET-OUT9 出力機能選択		73:AREA1	
NET-OUT10 出力機能選択		74:AREA2	
NET-OUT11 出力機能選択		75:AREA3	
NET-OUT12 出力機能選択		72:TIM	
NET-OUT13 出力機能選択		68:MOVE	
NET-OUT14 出力機能選択		0:未使用	
NET-OUT15 出力機能選択		83:STEPOUT	

NET-IN入力機能選択の設定範囲

0:未使用	7:-JOG	16:FREE	33:R1	40:R8	47:R15
1:FWD	8:MS0	17:AWO	34:R2	41:R9	48:M0
2:RVS	9:MS1	18:STOP	35:R3	42:R10	49:M1
3:HOME	10:MS2	24:ALM-RST	36:R4	43:R11	50:M2
4:START	11:MS3	25:P-PRESET	37:R5	44:R12	51:M3
5:SSTART	12:MS4	27:HMI	38:R6	45:R13	52:M4
6:+JOG	13:MS5	32:R0	39:R7	46:R14	53:M5

NET-OUT出力機能選択の設定範囲

0:未使用	10:MS2_R	35:R3	45:R13	61:-LS_R	74:AREA2
1:FWD_R	11:MS3_R	36:R4	46:R14	62:HOMES_R	75:AREA3
2:RVS_R	12:MS4_R	37:R5	47:R15	63:SLIT_R	80:S-BSY
3:HOME_R	13:MS5_R	38:R6	48:M0_R	65:ALM	82:MPS
4:START_R	16:FREE_R	39:R7	49:M1_R	66:WNG	83:STEPOUT
5:SSTART_R	17:AWO_R	40:R8	50:M2_R	67:READY	84:OH
6:+JOG_R	18:STOP_R	41:R9	51:M3_R	68:MOVE	85:ZSG
7:-JOG_R	32:R0	42:R10	52:M4_R	70:HOME-P	86:MBC
8:MS0_R	33:R1	43:R11	53:M5_R	72:TIM	
9:MS1_R	34:R2	44:R12	60:+LS_R	73:AREA1	

3-13 通信パラメータ

パラメータ名	設定範囲	初期値	反映 (P.129)
通信タイムアウト	0:監視なし 1 ~ 10,000 ms	0	A
通信異常アラーム	1~10 🗆	3	
通信パリティ	0:なし 1:偶数 2:奇数	1	
通信ストップビット	0:1 ビット 1:2 ビット	0 D	
送信待ち時間	0~10,000(1=0.1 ms)	100	

4 タイミングチャート

電源投入

※ 電磁ブレーキ付タイプの場合は2.2 s以下。

- STOP入力
- 「STOP入力停止方法」パラメータが「即停止」の場合

※ 運転速度、速度フィルタ、移動平均フィルタなどによって異なります。

● 「STOP入力停止方法」パラメータが「減速停止」の場合

- ※ 運転速度、速度フィルタ、移動平均フィルタなどによって異なります。
- 「STOP入力停止方法」パラメータが「即停止+カレントオフ」の場合

※1 運転速度、速度フィルタ、移動平均フィルタなどによって異なります。

※2 電磁ブレーキ付タイプの場合は1.2 s以下。

● 「STOP入力停止方法」パラメータが「減速停止+カレントオフ」の場合

※1 運転速度、速度フィルタ、移動平均フィルタなどによって異なります。

※2 電磁ブレーキ付タイプの場合は1.2 s以下。

FREE入力

※ 電磁ブレーキ付タイプの場合は1.2 s以下。

AWO入力

[※] 電磁ブレーキ付タイプの場合は1.2 s以下。

ALM-RST入力

● モーターが無励磁にならないアラームが発生した場合

※ ALM出力は B接点です。通常は ON、アラームが発生すると OFFになります。

● モーターが無励磁になるアラームが発生した場合

※1 ALM出力は B接点です。通常は ON、アラームが発生すると OFFになります。

※2 電磁ブレーキ付タイプの場合は1.3 s以下。

■ HMI入力

P-PRESET入力

■ 単独運転(位置決め運転)

■ 連結運転(位置決め運転)

【連結運転2(位置決め運転)

※ 運転データ No.1 で設定したドウェル時間の値となります。

■ ダイレクト位置決め運転

■ 順送り位置決め運転

|連続運転

4 1/0制御

■ JOG運転

原点復帰運転

5 Modbus RTU制御 (RS-485 通信)

RS-485 通信で上位システムから制御する方法について説明しています。RS-485 通信で使用するプロトコルは、Modbusプロトコルです。

◆もくじ

1	ガィ	イダンス	144
2	通信	言仕様	149
3	ス1	イッチの設定	151
4	RS-	485 通信の設定	154
5	通信	言方式と通信タイミング	155
5- 5-	1 2	通信方式 通信タイミング	155 155
6	メッ	ッセージ	156
6- 6-	1 2	クエリ レスポンス	156 158
7	ファ	ッンクションコード	160
7- 7- 7-	1 2 3 4	保持レジスタの読み出し(03h) 保持レジスタへの書き込み(06h) 診断(08h) 複数の保持レジスタへの書き込み(10h)	160 161 162 163

8 レ:	ジスタアドレス一覧	164
8-1	動作コマンド	164
8-2	メンテナンスコマンド	
8-3	モニタコマンド	
8-4	パラメータ R/Wコマンド	
9 グル	レープ送信	176
10 運	転の設定例	178
10-1	位置決め運転	
10-2	連続運転	
10-3	原点復帰運転	
11 通信	言異常の検出	184
11-1	通信エラー	
11-2	アラームとワーニング	184
12	イミングチャート	185

1 ガイダンス

はじめてお使いになるときはここをご覧になり、運転方法のながれについてご理解ください。 ここで紹介する例は、上位システムで運転データやパラメータを設定して、モーターを運転する方法です。

※1 付属または別売りです。※2 当社でご用意してしています。別途お買い求めください。
STEP 2 スイッチを設定します

スイッチで表の内容を設定してください。設定すると、図のようになります。

	スイッチ	出荷時設定
プロトコル:Modbusプロトコル	SW1のNo.2をON	OFF
	SW1のNo.1をOFF、IDを1	SW1のNo.1:OFF、ID:0
通信速度:115,200 bps	BAUDを4	7
	TERM.の No.1 と No.2 を ON	OFF

STEP 3 電源を投入し、通信パラメータを設定します

MEXE02 で、次の通信パラメータを確認してください。

通信が確立できないときは、ドライバの通信パラメータを見直してください。

MEXE02 ツリー表示	パラメータ名	
通信	通信パリティ[初期値:1(偶数)]	
	通信ストップビット[初期値:0(1 ビット)]	
	送信待ち時間[初期値:100 (10.0 ms)]	

(memo) マスタから送信されるフレームの送信間隔は、ドライバのサイレントインターバルよりも長く設定してく ださい。通信速度が115,200 bpsの場合、ドライバのサイレントインターバルは2.5 msです。

STEP 4 電源を再投入します

ドライバのスイッチや通信パラメータは、電源の再投入後に有効になります。

STEP 5 メッセージを送信して、モーターを運転します

例として、次の位置決め運転を実行する方法を説明します。

1. 次の5つのクエリを送信して、運転データを設定します。

• 運転データ No.0 の運転方式

フィールド名称		データ	内容
スレーブア	スレーブアドレス		スレーブアドレス1
ファンクシ	/ョンコード	06h	保持レジスタへの書き込み
_" _	レジスタアドレス (上位)	05h) 運転大学 Nia 0 (0501b)
	レジスタアドレス (下位)	01h	建料力式 NO.0 (050 III)
7-9	ライト値(上位)	00h	
	ライト値(下位)	00h	
エラーチェック(下位)		D8h	CPC 16 の計管体田
エラーチェック(上位)		C6h	CRC-10 の計算和未

• 運転データ No.0 の位置

フィールド名称		データ	内容
スレーブア	スレーブアドレス		スレーブアドレス1
ファンクシ	/ョンコード	06h	保持レジスタへの書き込み
- 2	レジスタアドレス (上位)	04h	(位置 Nia 0 (0 401b)
	レジスタアドレス (下位)	01h	1业直 NO.0 (040 III)
) —9	ライト値(上位)	21h	9 E00 ctop (2124h)
	ライト値(下位)	34h	8,500 step (2134h)
エラーチェック(下位)		C0h	
エラーチェック(上位)		BDh	

• 運転データ No.0 の運転速度

フィールド名称		データ	内容
スレーブアドレス		01h	スレーブアドレス1
ファンクシ	/ョンコード	06h	保持レジスタへの書き込み
_" _	レジスタアドレス (上位)	04h	
	レジスタアドレス (下位)	81h	建料还反 NO.0 (040 III)
) —9	ライト値(上位)	07h	
	ライト値(下位)	D0h	2,000 H2 (07 D0H)
エラーチェック(下位)		DBh	CDC 16 の計管は田
エラーチェ	:ック(上位)	7Eh	

• 運転データ No.0 の加速

	フィールド名称	データ	内容
スレーブアドレス		01h	スレーブアドレス1
ファンクシ	>コード	06h	保持レジスタへの書き込み
	レジスタアドレス(上位)	06h	加速 No 0 (0601b)
="	レジスタアドレス (下位)	01h	////述 NO.0 (000 111/
) — 9	ライト値(上位)	4Eh	20 mc/kHz(4E20h)
	ライト値(下位)	20h	
エラーチェック(下位)		ECh	CDC 16 の計管対田
エラーチェック (上位)		FAh	(KC-10 の計算和未

• 運転データ No.0 の減速

フィールド名称		データ	内容
スレーブア	スレーブアドレス 01h スレーブアドレス1		スレーブアドレス1
ファンクシ	>コード	06h	保持レジスタへの書き込み
-" 7	レジスタアドレス (上位)	06h	(河市 No 0 (06916)
	レジスタアドレス (下位)	81h	/0.0 (000 III)
) — 9	ライト値(上位)	4Eh	20 mc/kHz(4E20h)
	ライト値(下位)	20h	20 1115/ KI 12 (4E2011)
エラーチェック(下位)		EDh	CPC 16 の計管結甲
エラーチェ	:ック(上位)	12h	

- 2. 次の2つのクエリを送信して、運転を実行します。
 - START入力 ON (運転 No.0 運転開始)

フィールド名称		データ	内容	
スレーブアドレス		01h	スレーブアドレス1	
ファンクシ	/ョンコード	06h	保持レジスタへの書き込み	
	レジスタアドレス (上位)	00h	ドライバン 七七今(00706)	
	レジスタアドレス (下位)	7Dh		
) —9	ライト値(上位)	00h		
	ライト値(下位)	08h		
エラーチェック(下位)		18h	CPC 16 の計管対田	
エラーチェック(上位)		14h		

• START入力 OFF

フィールド名称		データ	内容
スレーブア	スレーブアドレス		スレーブアドレス1
ファンクションコード		06h	保持レジスタへの書き込み
-" -	レジスタアドレス (上位)	00h	ドニノバユ カド今(00706)
	レジスタアドレス (下位)	7Dh	
) — 9	ライト値(上位)	00h	
	ライト値(下位)	00h	START OFF (00001)
エラーチェック(下位)		19h	CDC 16 の計管対田
エラーチェック(上位)		D2h	

3. モーターが問題なく回ることを確認します。

STEP 6 運転できましたか?

いかがでしたか。うまく運転できたでしょうか。モーターが動かないときは、次の点を確認してください。

- アラームが発生していませんか?
- 電源、モーター、RS-485 通信ケーブルは確実に接続されていますか?
- スレーブアドレス、通信速度、終端抵抗の設定は正しいですか?
- C-DAT/C-ERR LEDが消灯していませんか?または赤色に点灯していませんか?(通信エラーが発生しています。)

2 通信仕様

電気的特性	EIA-485 準拠、ストレートケーブル シールド付きツイストペア線 (TIA/EIA-568B CAT5e以上を推奨) を使用し、総延長距離を50 mまで とする。
通信方式	半二重通信 調歩同期方式(データ:8 ビット、ストップビット:1 ビット/ 2 ビット、パリティ:なし/偶数/奇数)
伝送速度	9,600 bps、19,200 bps、38,400 bps、57,600 bps、115,200 bpsから選択
プロトコル	Modbus RTUモード
接続形態	上位システム1台に対して最大31台まで接続できます。

※1 終端抵抗120Ω

※2 終端抵抗(TERM.-No.1、No.2)をONにします。

3 スイッチの設定

📕 プロトコル

機能設定スイッチ(SW1)の No.2 を ONにします。Modbusプロトコルが選択されます。

出荷時設定 OFF

SW1-No.2	プロトコル
ON	Modbus RTUプロトコル
OFF	ネットワークコンバータに接続

■ 号機番号(スレーブアドレス)

号機設定スイッチ(ID)と機能設定スイッチ(SW1)の No.1 を併用して、号機番号(スレーブアドレス)を設定します。号機 番号(スレーブアドレス)は重複しないように設定してください。号機番号(スレーブアドレス)0はブロードキャストで予約 されているので、使用しないでください。

ID:0、SW1-No.1:OFF 出荷時設定

ID	SW1-No.1	号機番号 (スレーブアドレス)	ID	SW1-No.1	号機番号 (スレーブアドレス)
0		使用しません	0		16
1		1	1		17
2		2	2		18
3		3	3		19
4		4	4		20
5		5	5		21
6		6	6		22
7	OFF	7	7		23
8		8	8	ON	24
9		9	9		25
А		10	А		26
В		11	В		27
С		12	С		28
D		13	D		29
E		14	E		30
F		15	F		31

■ 通信速度

通信速度設定スイッチ(BAUD)で通信速度を設定します。 通信速度は、上位システムの通信速度と同じ値を設定してください。

出荷時設定 7

BAUD	通信速度(bps)
0	9,600
1	19,200
2	38,400
3	57,600
4	115,200
5 ~ F	使用しません

(memo) 5 ~ Fの目盛りは設定しないでください。

■ 終端抵抗

上位システムから一番離れた位置(終端)にあるドライバは、終端抵抗を設定します。 終端抵抗設定スイッチ (TERM.)の No.1 と No.2 を両方とも ONにして、RS-485 通信の終端抵抗 (120 Ω) を設定してくだ さい。

出荷時設定 No.1、No.2 ともに OFF(終端抵抗なし)

TERMNo.1、No.2	終端抵抗(120 Ω)
両方とも OFF	なし
両方とも ON	あり

(**memo)** No.1、No.2 の片方だけを ONにすると、通信エラーが発生する場合があります。

4 RS-485 通信の設定

事前に RS-485 通信に必要なパラメータを設定してください。

パラメータを変更したときに、変更した値が反映されるタイミングはパラメータによって異なります。各パラメータの反映タイミングは、169ページをご覧ください。

MEXE02 または OPX-2Aで設定するパラメータ

RS-485 通信では設定できないため、MEXEO2 または OPX-2Aで次のパラメータを設定してください。

MEXE02 ツリー表示	パラメータ名	内容	初期値
	通信パリティ	RS-485 通信のパリティを設定します。 【設定範囲】 0:なし 1:偶数 2:奇数	1
通信	通信ストップビット	RS-485 通信のストップビットを設定します。 【設定範囲】 0:1 ビット 1:2 ビット	0
	送信待ち時間	RS-485 通信の送信待ち時間を設定します。 【設定範囲】 0 ~ 10,000(1=0.1 ms)	100

■ RS-485 通信でも設定できるパラメータ

MEXE02、OPX-2A、および RS-485 通信のどれかで、次のパラメータを設定してください。

MEXE02 ツリー表示	パラメータ名	内容	初期値
通信タイムアウト 通信 通信異常アラーム	通信タイムアウト	RS-485 通信の通信タイムアウトの発生条件を設定しま す。0 のときは、ドライバは通信タイムアウトの発生条件 を監視しません。 【設定範囲】	0
		0 ~ 10,000 ms	
	通信異常アラーム	RS-485 通信異常アラームの発生条件を設定します。 設定した回数だけ RS-485 通信異常が発生すると、通信 異常アラームになります。	3
		【設定範囲】 1 ~ 10 回	

5-1 通信方式

Modbusプロトコルの通信方式は、シングルマスタ/マルチスレーブ方式です。マスタだけがクエリ(問い合わせ)を発行 できます。スレーブはクエリで要求された処理を実行し、応答メッセージを返信します。 RKIシリーズは、伝送モードとして RTUモードだけをサポートしています。ASCIIモードはサポートしていません。 メッセージの送信方法には2種類あります。

● ユニキャストモード

マスタはスレーブ1台に対してクエリを送信します。 スレーブは処理を実行し、レスポンスを返信します。

• ブロードキャストモード

マスタでスレーブアドレス0を指定すると、すべてのスレーブに対してク エリを送信できます。スレーブは処理を実行しますが、レスポンスは返信 しません。

ドライバが監視している通信時間、およびマスタの通信タイミングは、次のとおりです。

記号	名称	内容
Tb1	通信タイムアウト	受信したクエリの間隔を監視します。 「通信タイムアウト」パラメータで設定した時間を過ぎてもクエリを受信できな かったときは、通信タイムアウトのアラームが発生します。
Tb2	送信待ち時間	マスタからクエリを受信した後、スレーブが通信ラインを送信状態に切り替えて、 レスポンスの返信を開始するまでの時間です。 「送信待ち時間」パラメータで設定します。実際の送信待ち時間は、サイレントイ ンターバル(C3.5)+送信待ち時間(Tb2)になります。
Tb3	ブロードキャスト間隔	ブロードキャストの場合、次のクエリを送信するまでの時間です。 サイレントインターバル(C3.5)+5 ms以上の時間が必要です。
C3.5	サイレントインターバル	送信待ち時間として、必ず3.5 文字時間以上の間隔を空けてください。 3.5 文字未満だとドライバが応答できません。送信待ち時間については次表をご 覧ください。

サイレントインターバルの送信待ち時間

通信速度(bps)	サイレントインターバル	マスタのフレーム間隔(目安)
9,600	4 ms以上	5.0 ms以上
19,200 38,400 57,600 115,200	2.5 ms以上	3.0 ms以上

6 メッセージ

メッセージのフォーマットを示します。

マスタ	クエリ	スレーブ
スレーブアドレス	~	スレーブアドレス
ファンクションコード	レスポンス	ファンクションコード
データ		データ
エラーチェック		エラーチェック

6-1 クエリ

クエリのメッセージ構成を示します。

スレーブアドレス	ファンクションコード	データ	エラーチェック
8ビット	8ビット	N×8 ビット	16 ビット

📕 スレーブアドレス

スレーブアドレスを指定します(ユニキャストモード)。 スレーブアドレスを0に設定すると、すべてのスレーブに対してクエリを送信できます(ブロードキャストモード)。

📕 ファンクションコード

ドライバがサポートしているファンクションコードとメッセージ長は、次のとおりです。

ファンクション	松松台に	メッセージ長		ブロードナッフト
コード	加及用匕	クエリ	レスポンス	
03h	保持レジスタからの読み出し	8	7~37	不可
06h	保持レジスタへの書き込み	8	8	可
08h	診断	8	8	不可
10h	複数の保持レジスタへの書き込み	11~41	8	可

■ データ

ファンクションコードに関連するデータを設定します。ファンクションコードによってデータ長は変化します。

📕 エラーチェック

Modbus RTUモードのエラーチェックは CRC-16 方式を採用しています。スレーブは受信したメッセージの CRC-16 を 計算して、メッセージに含まれるエラーチェックの値と比較します。CRC-16 の計算値とエラーチェックが一致していれば、 正常なメッセージと判断します。

CRC-16の計算方法

- 1. 初期値を FFFFhとし、FFFFhとスレーブアドレス (8 ビット)の排他的論理和 (XOR)を計算します。
- 2. 手順1の結果を1 bit右へシフトします。このシフトはあふれたビットが[1]になるまで行ないます。
- 3. あふれたビットが「1」になったら、手順2の結果とA001hの XORを計算します。
- 4. シフトが8回になるまで、手順2と手順3を繰り返します。
- 5. 手順4の結果とファンクションコード(8ビット)の XORを計算します。 すべてのバイトに対して、手順2から4を繰り返します。 最後の結果が CRC-16の計算結果になります。

CRC-16の計算例

表は、1 バイト目のスレーブアドレスを02h、2 バイト目のファンクションコードを07hとした場合の計算例です。 実際の CRC-16 の計算結果は、3 バイト目以降のデータも含めて計算されます。

内容	結果	桁あふれ
CRCレジスタ初期値 FFFFh	1111 1111 1111 1111	-
先頭バイト02h	0000 0000 0000 0010	-
初期値 FFFFhと XOR	1111 1111 1111 1101	-
右シフト1 回目	0111 1111 1111 1110	1
A001hとXOR	1010 0000 0000 0001 1101 1111 1111 1111	_
右シフト2回目	0110 1111 1111 1111	1
A001hとXOR	1010 0000 0000 0001 1100 1111 1111 1110	_
右シフト3回目	0110 0111 1111 1111	0
右シフト4回目	0011 0011 1111 1111	1
A001hとXOR	1010 0000 0000 0001 1001 0011 1111 1110	_
右シフト5回目	0100 1001 1111 1111	0
右シフト6回目	0010 0100 1111 1111	1
A001hとXOR	1010 0000 0000 0001 1000 0100 1111 1110	_
右シフト7回目	0100 0010 0111 1111	0
右シフト8回目	0010 0001 0011 1111	1
A001hとXOR	1010 0000 0000 0001 1000 0001 0011 1110	_
次のバイト07hと XOR	0000 0000 0000 0111 1000 0001 0011 1001	_
右シフト1回目	0100 0000 1001 1100	1
A001hとXOR	1010 0000 0000 0001 1110 0000 1001 1101	-
右シフト2回目	0111 0000 0100 1110	1
A001hとXOR	1010 0000 0000 0001 1101 0000 0100 1111	-
右シフト3回目	0110 1000 0010 0111	1
A001hとXOR	1010 0000 0000 0001 1100 1000 0010 0110	_
右シフト4 回目	0110 0100 0001 0011	0
右シフト5回目	0011 0010 0000 1001	1
A001hとXOR	1010 0000 0000 0001 1001 0010 0000 1000	_
右シフト6回目	0100 1001 0000 0100	0
右シフト7回目	0010 0100 1000 0010	0
右シフト8回目	0001 0010 0100 0001	0
CRC-16 の結果	0001 0010 0100 0001	-

6-2 レスポンス

スレーブから返信されるレスポンスには、正常応答、無応答、および例外応答の3 種類があります。 レスポンスのメッセージ構成はクエリと同じです。

スレーブアドレス	ファンクションコード	データ	エラーチェック
8ビット	8ビット	N×8 ビット	16 ビット

■ 正常応答

マスタからクエリを受信すると、スレーブは要求された処理を実行し、ファンクションコードに対応したレスポンスを返 信します。

■ 無応答

マスタがクエリを送信しても、スレーブがレスポンスを返信しない場合があります。この状態を無応答といいます。 無応答になる原因を示します。

伝送異常の場合

スレーブは次の伝送異常を検出すると、クエリを破棄し、レスポンスを返信しません。

伝送異常の原因	内容
フレーミングエラー	ストップビット0 が検出されました。
パリティエラー	設定したパリティとの不一致が検出されました。
CRC不一致	CRC-16の計算値とエラーチェックが不一致でした。
メッセージ長不正	メッセージの長さが256 バイトを超えました。

● 伝送異常ではない場合

伝送異常が検出されなくても、レスポンスを返信しない場合があります。

原因	内容
ブロードキャスト	ブロードキャストで通信している場合、要求された処理は実行しますが、レスポンスは 返信しません。
スレーブアドレス不一致	クエリのスレーブアドレスとドライバのスレーブアドレスが一致しませんでした。

■ 例外応答

スレーブがクエリで要求された処理を実行できないときに、例外応答を返信します。レスポンスには、処理できない原因 を示す例外コードが付加されます。例外応答のメッセージ構成は次のとおりです。

スレーブアドレス	ファンクションコード	例外コード	エラーチェック
8ビット	8ビット	8ビット	16 ビット

• ファンクションコード

例外応答のファンクションコードは、クエリのファンクションコードに80hを加算した値になります。

クエリのファンクションコード	例外応答
03h	83h
06h	86h
08h	88h
10h	90h

● 例外応答の例

マスタ			クエリ
スレー	ブアドレス	01h	←
ファング	フションコード	10h	~ レフ
	レジスタアドレス(上位)	02h	
	レジスタアドレス(下位)	42h	
	レジスタ数(上位)	00h	
	レジスタ数(下位)	02h	
データ	バイト数	04h	
	レジスタアドレスのライト値(上位)	00h	
	レジスタアドレスのライト値(下位)	00h	
	レジスタアドレス+1のライト値(上位)	03h	
	レジスタアドレス+1のライト値(下位)	20h	
エラーチェック(下位)		6Eh	
エラーチェック(上位) OEh			

<u> </u>	
スレーノ	

	スレー	01h	
スポンス	ファンクションコード		90h
	データ 例外コード		04h
	エラーチェック(下位)		4Dh
	エラーチェック(上位)		C3h

● 例外コード

処理できない原因を示します。

例外コード	通信エラー コード	原因	内容
01h	88b	不正ファンクション	ファンクションコードが不正のため実行できませんでした。 ・未対応のファンクションコード ・診断(08h)のサブファンクションコードが00h以外
02h	88h 02h 不正データアドレス		データアドレスが不正のため実行できませんでした。 ・未対応のレジスタアドレス (0000h ~ 1FFFh以外) ・レジスタアドレスとレジスタ数の和が2000h以上
03h	8Ch	不正データ	データが不正のため実行できませんでした。 ・レジスタ数が0、または17以上 ・バイト数がレジスタ数×2以外の値 ・データ長が範囲外
04h	89h 8Ah 8Ch 8Dh	スレーブエラー	 スレーブでエラーが発生したため、実行できませんでした。 ・ユーザー I/Fと通信中(89h) ・ MEXE02 でダウンロードまたは初期化中 ・ OPX-2Aでダウンロード、初期化、またはティーチング中 ・ NVメモリ処理中(8Ah) ・ 内部処理中(S-BSYが ON) ・ EEPROM異常のアラームが発生中 ・パラメータ設定範囲外(8Ch) ・ ライト値が設定範囲外 ・コマンド実行不可(8Dh)

7 ファンクションコード

RKⅡシリーズ ドライバがサポートしているファンクションコードについて説明します。 ここで紹介している以外のファンクションコードを送信しても実行できませんので、ご注意ください。

7-1 保持レジスタの読み出し(03h)

レジスタ (16 bit)を読み出します。連続するレジスタを最大16 個まで (16×16 bit) 読み出せます。 データは上位と下位を同時に読み出してください。同時に読み出さないと、値が不正になる場合があります。 複数の保持レジスタを読み出すときは、レジスタアドレスの順に実行されます。

┃ 読み出しの例

スレーブアドレス1の運転データの位置 No.1 と No.2 を読み出します。

内容	レジスタアドレス	読み出される値	10 進数の表示
運転データの位置 No.1 (上位)	0402h	0000h	10.000
運転データの位置 No.1 (下位)	0403h	2710h	10,000
運転データの位置 No.2 (上位)	0404h	FFFFh	10.000
運転データの位置 No.2 (下位)	0405h	D8F0h	-10,000

• クエリ

フィールド名称		データ	内容	
スレーブアドレス		01h	スレーブアドレス1	
ファンクシ	>コード	03h	保持レジスタからの読み出し	
	レジスタアドレス (上位)	04h	言み出しの記占となるし、ジフタマドレフ	
="	レジスタアドレス (下位)	02h	- 読み出しの起点となるレンスタゲトレ	
) —9	レジスタ数(上位)	00h	起点のレジスタアドレスから読み出す	
	レジスタ数(下位)	04h	レジスタの数(4 個 =0004h)	
エラーチェック(下位)		E4h	CPC 16 の計算結果	
エラーチェック(上位)		F9h		

• レスポンス

	フィールド名称	データ	内容	
スレーブア	'ドレス	01h	クエリと同じ値	
ファンクシ	ソコード	03h	クエリと同じ値	
	データバイト数	08h	クエリのレジスタ数の2 倍の値	
	レジスタアドレスのリード値(上位)	00h	しぶフタフドレフ04026の詰み山し佐	
	レジスタアドレスのリード値(下位)	00h	レシスタアドレス0402110読み出し値	
	レジスタアドレス +1 のリード値 (上位)	27h	」	
データ	レジスタアドレス +1 のリード値(下位)	10h		
	レジスタアドレス +2 のリード値 (上位)	FFh	しいフタマドレフ0404bの詰み出し値	
	レジスタアドレス +2 のリード値 (下位)	FFh	レシスタアトレス0404110読み出し値	
	レジスタアドレス +3 のリード値 (上位)	D8h	しぶフタフドレフ04056の詰み山し佐	
	レジスタアドレス +3 のリード値(下位)	F0h	レシスタアドレス0405110読の出し値	
エラーチェック(下位)		08h	CDC 16 の計算結果	
エラーチェック(上位)		A3h		

7-2 保持レジスタへの書き込み(06h)

データを指定のレジスタに書き込みます。

ただし、上位と下位を合わせた結果がデータ範囲外になる場合があるため、できるだけ「複数の保持レジスタへの書き込み (10h)」を使用して、上位と下位を同時に書き込んでください。

■ 書き込みの例

スレーブアドレス2の速度フィルタに80(50h)を書き込みます。

内容	レジスタアドレス	書き込む値	10 進数の表示
速度フィルタ	024Bh	50h	80

• クエリ

フィールド名称		データ	内容	
スレーブアドレス		02h	スレーブアドレス2	
ファンクシ	>コード	06h	保持レジスタへの書き込み	
データ	レジスタアドレス (上位)	02h	またいみた行たらし、ジフタフドレフ	
	レジスタアドレス (下位)	4Bh	「音さ込みを打なうレシスタアトレス	
	ライト値(上位)	00h	し、ジフタフドレフに書き込む店	
	ライト値(下位)	50h	レシスタアドレスに書き込む値	
エラーチェック(下位)		F8h		
エラーチェック(上位)		6Bh	CKC-10 の計算和未	

• レスポンス

	フィールド名称	データ	内容		
スレーブア	'ドレス	02h	クエリと同じ値		
ファンクシ	>コード	06h	クエリと同じ値		
	レジスタアドレス (上位)	02h	クエリトロド店		
="	レジスタアドレス (下位)	4Bh	シエリと回し10		
) —9	ライト値(上位)	00h	クエリトロド店		
	ライト値(下位)	50h	クエリと回し10		
エラーチェック(下位)		F8h			
エラーチェック(上位)		6Bh			

7-3 診断(08h)

マスタとスレーブ間の通信を診断します。任意のデータを送信し、返信されたデータで通信が正常かを判断します。サブファ ンクションは00h(クエリの返信)だけになります。

■ 診断の例

任意のデータ(1234h)をスレーブに送信して、診断を行ないます。

• クエリ

	フィールド名称	データ	内容		
スレーブア	? ドレス	03h	スレーブアドレス3		
ファンクシ	ノョンコード	08h	診断		
	サブファンクションコード (上位)	00h	クエリデータの海信		
_" 0	サブファンクションコード (下位)	00h	クエリアータの返信		
5-9	データ値(上位)	12h	<u> </u>		
	データ値(下位)	34h	[[[1234]]]		
エラーチュ	ニック(下位)	ECh	CDC 16 の計管対田		
エラーチュ	ニック(上位)	9Eh	してに-10の計算和未		

• レスポンス

	フィールド名称	データ	内容	
スレーブア	' ドレス	03h	クエリと同じ値	
ファンクシ	>コンコード	08h	クエリと同じ値	
	サブファンクションコード (上位)	00h	クエリと同じ値	
="	サブファンクションコード (下位)	00h		
) —9	データ値(上位)	12h		
	データ値(下位)	34h	クエリと回し値	
エラーチェ	:ック(下位)	ECh	クエリトロド店	
エラーチェ	:ック(上位)	9Eh		

7-4 複数の保持レジスタへの書き込み(10h)

複数の連続するレジスタにデータを書き込みます。最大16個のレジスタに書き込むことができます。 データは上位と下位を同時に書き込んでください。同時に書き込まないと、値が不正になる場合があります。 書き込みは、レジスタアドレスの順に実行されます。範囲外のデータなど、一部のデータによって例外応答が返信された ときでも、他のデータは正常に書き込まれている場合があります。

■ 書き込みの例

次のデータをスレーブアドレス4の運転データの加速 No.2 ~ No.4 に設定します。

内容	レジスタアドレス	書き込む値	10 進数の表示
運転データの加速 No.2 (上位)	0604h	0000h	10.000
運転データの加速 No.2 (下位)	0605h	2710h	10,000
運転データの加速 No.3 (上位)	0606h	0000h	20.000
運転データの加速 No.3 (下位)	0607h	4E20h	20,000
運転データの加速 No.4 (上位)	0608h	0007h	500.000
運転データの加速 No.4 (下位)	0609h	A120h	500,000

• クエリ

	フィールド名称	データ	内容
スレーブア	パドレス	04h	スレーブアドレス4
ファンクシ	>コンコード	10h	複数の保持レジスタへの書き込み
	レジスタアドレス (上位)	06h	またいみのおちとなるし、ジフタマドレフ
	レジスタアドレス (下位)	04h	者さ込みの起点となるレジスタゲトレス
	レジスタ数(上位)	00h	起点のレジスタアドレスから書き込む
	レジスタ数(下位)	06h	レジスタの数(6 個 =0006h)
	バイト数	0Ch	クエリのレジスタ数の2 倍の値
	レジスタアドレスのライト値(上位)	00h	し、ジフタフドレフ0604bの書き込み店
	レジスタアドレスのライト値(下位)	00h	レシスタアドレス0004110音さ込み値
	レジスタアドレス +1 のライト値 (上位)	27h	し、ジフタフドレフ06056の書き込み値
データ	レジスタアドレス +1 のライト値(下位)	10h	レシスタアドレス000511の書き込み値
	レジスタアドレス +2 のライト値 (上位)	00h	し ジフタフドレフ 06 06 hの 書き込む 広
	レジスタアドレス +2 のライト値(下位)	00h	レシスタアドレス000010音き込み値
	レジスタアドレス +3 のライト値 (上位)	4Eh	
	レジスタアドレス +3 のライト値(下位)	20h	レシスタアトレス060/11の書き込み値
	レジスタアドレス +4 のライト値 (上位)	00h	」、ジフタフドレフ0600hの書もいい広
	レジスタアドレス +4 のライト値(下位)	07h	レンスタアトレス0000100音き込み値
	レジスタアドレス +5 のライト値 (上位)	A1h	し、ジフタフドレフ0600hの書もいい広
	レジスタアドレス +5 のライト値(下位)	20h	レシスラアトレス0009110音で込み値
エラーチェ	:ック(下位)	1Dh	CDC 16 の計管は国
エラーチェ	:ック(上位)	A9h	

● レスポンス

	フィールド名称	データ	内容	
スレーブア	'ドレス	04h	クエリと同じ値	
ファンクシ	>コード	10h	クエリと同じ値	
レジスタアドレス(上		06h	クエリトロド店	
="	レジスタアドレス (下位)	04h	フエリと回し恒	
) —9	レジスタ数(上位)	00h		
	レジスタ数(下位)	06h	クエリと回し値	
エラーチェック(下位)		01h	CDC 16 の計管対田	
エラーチェック (上位)		17h		

8 レジスタアドレス一覧

ドライバで使用するデータはすべて32 bit幅です。Modbusプロトコルではレジスタは16 bit幅のため、2 個のレジスタで 1 つのデータを表わしています。

アドレス配置はビッグエンディアンとなっているため、偶数アドレスが上位、奇数アドレスが下位になります。

8-1 動作コマンド

モーターの動作に関するコマンドです。動作コマンドの内容は NVメモリには保存されません。

レジスタ	アドレス	名称	内容	READ/	設定範囲	
Dec	Hex			VVRITE		
48	0030h	グループ (上位)	グループ送信の号機を設定し	P/M/	−1:グループの指定なし (グループ送信を行ないません。)	
49	0031h	グループ(下位)	ます。		1~31:グループのアドレス (親スレーブの号機番号)	
124	007Ch	ドライバ入力指令(上位)	ドライバへの入力指令を設定	D/M/	なページの説明をご覧ください	
125	007Dh	ドライバ入力指令(下位)	します。		人へークの説明をと見てたさい。	
126	007Eh	ドライバ出力指令(上位)	ドライバの出力状態を読み込	D	次ページの当明をご覧ください	
127	007Fh	ドライバ出力指令(下位)	みます。	ĸ	人へークの説明をと見てたさい。	

■ グループ(0030h/0031h)

複数のスレーブでグループを組んで、クエリを一斉送信できます。グループについては176 ページをご覧ください。 初期値は –1 です。グループを設定するときは、上位と下位を同時に書き込んでください。

アドレス (Hex)				アドレス	の内容※			
	bit15	bit14	bit13	bit12	bit11	bit10	bit9	bit8
00206				[FFF	Fh]			
003011	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
				[FFF	Fh]			

※ []内は初期値です。

アドレス (Hex)		アドレスの内容※								
	bit15	bit14	bit13	bit12	bit11	bit10	bit9	bit8		
0031h		1 ~ 31:グループのアドレスを設定[FFFFh]								
	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0		
			1~31:2	゛ループのア	ドレスを設定	定[FFFFh]				

※ []内は初期値です。

ドライバ入力指令(007Ch/007Dh)

RS-485 通信でアクセスできるドライバの入力信号です。各入力信号については60 ページをご覧ください。

アドレス (Hex)		アドレスの内容							
	bit15	bit14	bit13	bit12	bit11	bit10	bit9	bit8	
00764	-	-	-	_	—	-	-	-	
007CH	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	
	_	-	-	-	-	_	-	-	

アドレス (Hex)		アドレスの内容※										
	bit15	bit14	bit13	bit12	bit11	bit10	bit9	bit8				
	NET-IN15 [RVS]	NET-IN14 [FWD]	NET-IN13 [–JOG]	NET-IN12 [+JOG]	NET-IN11 [SSTART]	NET-IN10 [MS2]	NET-IN9 [MS1]	NET-IN8 [MS0]				
007Dh	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0				
	NET-IN7 [ALM-RST]	NET-IN6 [FREE]	NET-IN5 [STOP]	NET-IN4 [HOME]	NET-IN3 [START]	NET-IN2 [M2]	NET-IN1 [M1]	NET-INO [M0]				

※ []内は初期値です。

■ ドライバ出力指令(007Eh/007Fh)

RS-485 通信で取得できるドライバの出力信号です。各出力信号については65ページをご覧ください。

アドレス (Hex)		アドレスの内容										
	bit15	bit14	bit13	bit12	bit11	bit10	bit9	bit8				
007Eh	_	_	_	-	_	_	-	-				
	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0				
	-	-	_	_	-	_	_	-				

アドレス (Hex)	アドレスの内容※								
007Fh	bit15	bit14	bit13	bit12	bit11	bit10	bit9	bit8	
	NET- OUT15 [STEPOUT]	NET- OUT14 [未使用]	NET- OUT13 [MOVE]	NET- OUT12 [TIM]	NET- OUT11 [AREA3]	NET- OUT10 [AREA2]	NET-OUT9 [AREA1]	NET-OUT8 [S-BSY]	
	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	
	NET-OUT7 [ALM]	NET-OUT6 [WNG]	NET-OUT5 [READY]	NET-OUT4 [HOME-P]	NET-OUT3 [START_R]	NET-OUT2 [M2_R]	NET-OUT1 [M1_R]	NET-OUT0 [M0_R]	

※ []内は初期値です。

8-2 メンテナンスコマンド

アラームやワーニングを解除したり、NVメモリの一括処理を行ないます。 すべて WRITEになります。0 から1 へ書き込むと実行されます。

レジスタアドレス		勾折	由容	北宁东田
Dec	Hex			設化創出
384	0180h	アラームのリセット(上位)	発生中のアラームを解除します。アラームの種類に	
385	0181h	アラームのリセット(下位)	よっては解除できないものがあります。	
388	0184h	アラーム履歴クリア(上位)		
389	0185h	アラーム履歴クリア(下位)	アノーム腹腔をノリアしより。	
390	0186h	ワーニング履歴クリア(上位)	ロニニング房庭をクリマレキオ	
391	0187h	ワーニング履歴クリア(下位)	シーニンク腹腔をノリアしより。	
392	0188h	通信エラーコード履歴クリア(上位)	通信エラニ房麻をクリマレキオ	
393	0189h	通信エラーコード履歴クリア(下位)	通信エノー復歴をノリアしより。	
394	018Ah	P-PRESET実行(上位)	<u> や合位業 とつ ノー ドバック位業 なプリセット しきす</u>	
395	018Bh	P-PRESET実行(下位)	指市位値とフィードバック位置をフラビッドしより。	
396	018Ch	Configuration (上位)	パラメータの再計算とセットアップを実行します	
397	018Dh	Configuration (下位)	パリスークの円計算とビッドアックを天110より。	
398	018Eh	全データ初期化(上位)	NVメモリに保存されているパラメータを初期値に戻	
399	018Fh	全データ初期化(下位)	します。	
400	0190h	NVメモリー括読み出し(上位)	NVメモリに保存されているパラメータを RAMに読み出します。RAMに保存されていた運転データとパ	
401	0191h	NVメモリー括読み出し(下位)	ラメータはすべて上書きされます。	
402	0192h	NVメモリー括書き込み(上位)	RAMIC保存されているパラメータを NVメモリに書	
403	0193h	NVメモリー括書き込み(下位)	約10万回です。	
404	0194h	エンコーダカウンタプリセット(上位)	エンコーダカウンタを、「エンコーダカウンタプリ	
405	0195h	エンコーダカウンタプリセット(下位)	セット値」パラメータの値に更新します。	

Configuration (018Ch/018Dh)

Configurationは、次の条件がすべて満たされると実行できます。

- アラームが発生していない
- モーターが動作していない
- MEXE02 が I/Oテスト、テスト運転、ティーチング、およびダウンロードを行なっていない
- OPX-2Aがテストモードまたはコピーモード以外

Configuration実行前後のドライバの状態を示します。

項目	Configurationが可能な状態	Configurationの実行中	Configurationの実行後	
PWR LED	点灯	点灯		
ALM LED	消灯	消灯	ドライバの住能に下います	
電磁ブレーキ	保持 /解放	保持	トノイハの仏感によりより。	
モーター励磁	励磁 /無励磁	無励磁		
出力信号		不定	有効	
入力信号	有効	细动		
センサ入力		無効		
指令位置			0	
フィードバック位置	ドライバの状能によります。	不定	0 *	
エンコーダカウンタ		TAL .	Configurationを実行する前 のカウントを継続します。	

※ 負荷や運転条件によっては、0 にならない場合があります。

(**memo)** Configurationの実行中にモニタを行なっても、正常なモニタ値が返らない場合があります。

8-3 モニタコマンド

指令位置、指令速度、アラーム・ワーニング履歴などをモニタします。 すべて READになります。

I	レジスタ	タアドレス 名称		山南	符回
I	Dec	Hex	「山小」		■ 単U世1
I	128	0080h	現在のアラーム(上位)		
	129	0081h	現在のアラーム(下位)	光生中のアラームコートを示します。	
I	130	0082h	アラーム履歴1(上位)		
Ĩ	131	0083h	アラーム履歴1(下位)		
I	132	0084h	アラーム履歴2(上位)		
Ī	133	0085h	アラーム履歴2(下位)		
	134	0086h	アラーム履歴3(上位)		
Ī	135	0087h	アラーム履歴3(下位)		
	136	0088h	アラーム履歴4(上位)		
Ī	137	0089h	アラーム履歴4(下位)		
Ī	138	008Ah	アラーム履歴5(上位)		
Ī	139	008Bh	アラーム履歴5(下位)		
Ī	140	008Ch	アラーム履歴6(上位)	アラーム腹歴1~10を示します。	
Ĩ	141	008Dh	アラーム履歴6(下位)		
I	142	008Eh	アラーム履歴7(上位)		
Ī	143	008Fh	アラーム履歴7(下位)		00h ~ FFh
Ī	144	0090h	アラーム履歴8(上位)		
Ĩ	145	0091h	アラーム履歴8(下位)		
Ī	146	0092h	アラーム履歴9(上位)		
Ì	147	0093h	アラーム履歴9(下位)		
Ī	148	0094h	アラーム履歴10(上位)		
Ì	149	0095h	アラーム履歴10(下位)		
Ī	150	0096h	現在のワーニング(上位)		
Ĩ	151	0097h	現在のワーニング(下位)	発生中のワーニングコードを示します。	
Ī	152	0098h	ワーニング履歴1(上位)		
Ĩ	153	0099h	ワーニング履歴1(下位)		
Ī	154	009Ah	ワーニング履歴2(上位)		
Î	155	009Bh	ワーニング履歴2(下位)		
I	156	009Ch	ワーニング履歴3(上位)		
Î	157	009Dh	ワーニング履歴3(下位)		
I	158	009Eh	ワーニング履歴4(上位)		
Î	159	009Fh	ワーニング履歴4(下位)		
J	160	00A0h	ワーニング履歴5(上位)		
Î	161	00A1h	ワーニング履歴5(下位)		
Ī	162	00A2h	ワーニング履歴6(上位)	ワーニング履歴1 ~ 10 を示します。	
Î	163	00A3h	ワーニング履歴6(下位)		
I	164	00A4h	ワーニング履歴7(上位)		
Ĩ	165	00A5h	ワーニング履歴7(下位)		
Ī	166	00A6h	ワーニング履歴8(上位)		
1	167	00A7h	ワーニング履歴8(下位)		
Ī	168	00A8h	ワーニング履歴9(上位)		
-	169	00A9h	ワーニング履歴9(下位)		
Ī	170	00AAh	ワーニング履歴10(上位)		
1	171	00ABh	ワーニング履歴10(下位)		
Ī	172	00ACh	現在通信エラーコード(上位)		
-	173	00ADh	現在通信エラーコード(下位)	前回受信した通信エラーコードを示します。	
	175 UUADII	······································			

レジスタ	アドレス	27 ¥r	由穴	答曲	
Dec	Hex	る例		■ 単じ世	
174	00AEh	通信エラーコード履歴1(上位)			
175	00AFh	通信エラーコード履歴1(下位)			
176	00B0h	通信エラーコード履歴2(上位)			
177	00B1h	通信エラーコード履歴2(下位)			
178	00B2h	通信エラーコード履歴3(上位)			
179	00B3h	通信エラーコード履歴3(下位)			
180	00B4h	通信エラーコード履歴4(上位)			
181	00B5h	通信エラーコード履歴4(下位)			
182	00B6h	通信エラーコード履歴5(上位)			
183	00B7h	通信エラーコード履歴5(下位)	く これまでに発生した通信エラーコード履歴		
184	00B8h	通信エラーコード履歴6(上位)	1~10を示します。	00h ~ FFh	
185	00B9h	通信エラーコード履歴6(下位)			
186	00BAh	通信エラーコード履歴7(上位)			
187	00BBh	通信エラーコード履歴7(下位)			
188	00BCh	通信エラーコード履歴8(上位)			
189	00BDh	通信エラーコード履歴8(下位)			
190	00BFh	通信エラーコード履歴9(上位)			
191	00BFh	→ 通信エラーコード履歴9(下位)			
192	00C0h	通信エラーコード履歴10(上位)			
193	00C1h	通信エラーコード履歴10(下位)			
194	00C2h				
195	00C3h		選択されている運転データ No.を示します。	0~63	
155	00001				
196	00C4h	現在の運転データ No.(上位)	位直次の連転中の連転テータ NO.を示します。		
			停止中は、最後に運転したデータ No.が示され	-1~63	
197	00C5h	 現在の運転データ No (下位)	ます。電源を投入してから位置決め運転が実行		
137	0000		されるまでは、「-1」が表示されます。		
198	00C6h	指令位置(上位)	ド令位置をテレキオ	-2,147,483,648~	
199	00C7h	指令位置(下位)		2,147,483,647 step	
200				-9,600 ~	
200	00080	指令迷度(上位) 		+9,600 r/min	
			現在の指令速度を示します。 (r/min)	+:正転	
201	00C9h	指令速度(下位)		-: : : : : : : : : : : : : : : : : : :	
202	OOCAL				
202	OUCAN		現在の指令速度を示します。(Hz)	-1,000,000 ~ ±1,000,000 H -	
203	00CBh			+1,000,000 Hz	
204	00CCh		フィードバック位置を示します。電子ギヤで設 字」た内容を反映した値がまテキれます。※	$-2,14/,483,648 \sim$	
205	OUCDN	ノイードハック位直(ト位)		2,147,403,047 Step	
210			連結運転2 で使用するドウェル時間の残りを示	$0 \sim 50,000$	
211	00D3h			(1-0.001 S)	
212	00D4h	ショレクト I/O、電磁フレーキの 状態(上位)	ダイレクト I/Oと電磁ブレーキの状態を示しま	次表をご覧ください。	
213	00D5h	ダイレクト I/O、電磁ブレーキの 状態 (下位)	ک و		
256	0100h	エンコーダカウンタ(上位)		-2,147,483,648~	
257	0101h	エンコーダカウンタ(下位)	エノコ フバラフラで小しみ9。※	2,147,483,647 step	

※ エンコーダ付のみ

ダイレクト I/O、電磁ブレーキの状態(00D4h/00D5h)

アドレス	(Hex)	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
00D4h	上位	-	-	-	-	-	-	-	MB
	下位	-	-	OUT5	OUT4	OUT3	OUT2	OUT1	OUT0
00D5h	上位	-	-	-	-	SLIT	HOMES	–LS	+LS
	下位	IN7	IN6	IN5	IN4	IN3	IN2	IN1	IN0

8-4 パラメータ R/Wコマンド

パラメータの読み出しや書き込みを行ないます。

すべて WRITE/READになります。パラメータの詳細は114 ページをご覧ください。

パラメータを変更したときに、変更した値が反映されるタイミングはパラメータによって異なり、次の4 種類があります。 本編では、それぞれの反映タイミングを A ~ Dで表わしています。

表記	内容
А	パラメータを書き込むと、すぐに再計算とセットアップが行なわれます。
В	運転を停止すると、再計算とセットアップが行なわれます。
С	Configurationの実行後または DC24 V電源の再投入後に、再計算とセットアップが行なわれます。
D	DC24 V電源の再投入後に再計算とセットアップが行なわれます。

■ 運転データ

レジスタアドレス		夕称	設定筋囲	初期値	反映
Dec	Hex				(P.169)
1024 1025 ~ 1150 1151	0400h 0401h ~ 047Eh 047Fh	位置 No.0 (上位) 位置 No.0 (下位) ~ 位置 No.63 (上位) 位置 No.63 (下位)	-8,388,608 ~ 8,388,607 step	0	
1152 1153 ~ 1278 1279	0480h 0481h ~ 04FEh 04FFh	運転速度 No.0 (上位) 運転速度 No.0 (下位) ~ 運転速度 No.63 (上位) 運転速度 No.63 (下位)	0~1,000,000 Hz	1,000	
1280 1281 ~ 1406 1407	0500h 0501h ~ 057Eh 057Fh	運転方式 No.0 (上位) 運転方式 No.0 (下位) ~ 運転方式 No.63 (上位) 運転方式 No.63 (下位)	0:INC(インクリメンタル) 1:ABS(アブソリュート)	0	
1408 1409 ~ 1534 1535	0580h 0581h ~ 05FEh 05FFh	運転機能 No.0 (上位) 運転機能 No.0 (下位) ~ 運転機能 No.63 (上位) 運転機能 No.63 (下位)	0:単独 1:連結 2:連結2	0	в
1536 1537 ~ 1662 1663	0600h 0601h ~ 067Eh 067Fh	加速 No.0 (上位) 加速 No.0 (下位) ~ 加速 No.63 (上位) 加速 No.63 (下位)	1 ~ 1,000,000 (1=0.001 ms/kHzまたは 1=0.001 s) ※1 ※2	30,000	
1664 1665 ~ 1790 1791	0680h 0681h ~ 06FEh 06FFh	減速 No.0 (上位) 減速 No.0 (下位) ~ 減速 No.63 (上位) 減速 No.63 (下位)	1 ~ 1,000,000 (1=0.001 ms/kHzまたは 1=0.001 s) ※1 ※2	30,000	

レジスタアドレス		夕珎	設守筋囲	如期/店	反映
Dec	Hex				(P.169)
1920 1921 ~ 2046 2047	0780h 0781h ~ 07FEh 07FFh	順送り位置決め No.0 (上位) 順送り位置決め No.0 (下位) ~ 順送り位置決め No.63 (上位) 順送り位置決め No.63 (下位)	0:無効 1:有効	0	P
2048 2049 ~ 2174 2175	0800h 0801h ~ 087Eh 087Fh	ドウェル時間 No.0 (上位) ドウェル時間 No.0 (下位) ~ ドウェル時間 No.63 (上位) ドウェル時間 No.63 (下位)	0~50,000(1=0.001 s)	0	D

※1 「加減速選択」パラメータが「独立」のときに有効です。「共通」のときは、「共通加速」「共通減速」パラメータの設定値 が使用されます(初期値:独立)。

※2 「加減速単位」パラメータで、加減速レート(ms/kHz)か加減速時間(s)を選択できます(初期値:加減速レート)。

■ ユーザーパラメータ

レジスタアドレス		A 14-	この古な田		反映
Dec	Hex		□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□	10月11日	(P.169)
512	0200h	STOP入力停止方法(上位)	0:即停止 1:減速停止	1	
513	0201h	STOP入力停止方法(下位)	2:即停止+カレントオフ 3:減速停止+カレントオフ		
514	0202h	ハードウェアオーバートラベル (上位)	0:無効	1	
515	0203h	ハードウェアオーバートラベル (下位)	1:有効		
516	0204h	オーバートラベル動作(上位)	0:即停止	0	
517	0205h	オーバートラベル動作(下位)	1:減速停止	0	
522	020Ah	AREA1 +方向位置(上位)			
523	020Bh	AREA1 +方向位置(下位)			
524	020Ch	AREA1 -方向位置(上位)			A
525	020Dh	AREA1 -方向位置(下位)			
526	020Eh	AREA2 +方向位置(上位)	–8,388,608 ~ 8,388,607 step	0	
527	020Fh	AREA2 +方向位置(下位)			
528	0210h	AREA2 -方向位置(上位)			
529	0211h	AREA2 -方向位置(下位)			
530	0212h	AREA3 +方向位置(上位)			_
531	0213h	AREA3 +方向位置(下位)			
532	0214h	AREA3 -方向位置(上位)			
533	0215h	AREA3-方向位置(下位)			
534	0216h	MOVE出力最小時間(上位)	0 . 255 mg		
535	0217h	MOVE出力最小時間(下位)	$0 \sim 255$ ms	0	
536	0218h	±LS接点設定(上位)	0:A接点(N.O.)	0	
537	0219h	±LS接点設定(下位)	1:B接点(N.C.)	0	
538	021Ah	HOMES接点設定(上位)	0:A接点(N.O.)	0	
539	021Bh	HOMES接点設定(下位)	1:B接点(N.C.)	0	C
540	021Ch	SLIT接点設定(上位)	0:A接点(N.O.)	0	
541	021Dh	SLIT接点設定(下位)	1:B接点(N.C.)	0	
4096	1000h	MS0 運転 No.選択(上位)		0	
4097	1001h	MS0 運転 No.選択(下位)		0	
4098	1002h	MS1 運転 No.選択(上位)	0	1	Р
4099	1003h	MS1 運転 No.選択(下位)	0~05	I	В
4100	1004h	MS2 運転 No.選択(上位)		2	
4101	1005h	MS2 運転 No.選択(下位)			

レジスタ	アドレス	ク 1年	シークな田		反映
Dec	Hex		設定範囲	10月11月11月11月11月11月11月11月11月11月11月11月11月1	(P.169)
4102	1006h	MS3 運転 No.選択(上位)		з	
4103	1007h	MS3 運転 No.選択(下位)		5	
4104	1008h	MS4 運転 No.選択(上位)	0~63	Л	D
4105	1009h	MS4 運転 No.選択(下位)			
4106	100Ah	MS5 運転 No.選択(上位)		5	
4107	100Bh	MS5 運転 No.選択(下位)			
4108	100Ch	HOME-P出力機能選択(上位)	0:原点出力	0	
4109	100Dh	HOME-P出力機能選択(下位)	1:原点復帰完了出力	U U U U U U U U U U U U U U U U U U U	
576	0240h	RUN電流(上位)	$0 \sim 1000(1=0.1\%)$	1 000	Δ
577	0241h	RUN電流(下位)		1,000	
578	0242h	STOP電流(上位)	$0 \sim 600(1=0.1.\%)$	500	
579	0243h	STOP電流(下位)			
586	024Ah	速度フィルタ(上位)	$0 \sim 200 \text{ms}$	1	
587	024Bh	速度フィルタ(下位)	200 ms	1	B
588	024Ch	移動平均時間(上位)	$0 \sim 200 \text{ms}$	1	
589	024Dh	移動平均時間(下位)	200 113		
4128	1020h	フィルタ選択(上位)	0:速度フィルタ	0	C
4129	1021h	フィルタ選択(下位)	1:移動平均フィルタ		
640	0280h	共通加速(上位)	1~1,000,000(1=0.001 ms/kHz	30,000	
641	0281h	共通加速(下位)	または1=0.001 s) ※	50,000	
642	0282h	共通減速(上位)	1~1,000,000(1=0.001 ms/kHz	30,000	
643	0283h	共通減速(下位)	または1=0.001 s) ※		
644	0284h	起動速度(上位)	$0 \sim 1000000 \text{ Hz}$	100	
645	0285h	起動速度(下位)			
646	0286h	JOG運転速度(上位)	$1 \sim 1000000\text{Hz}$	1 000	В
647	0287h	JOG運転速度(下位)		1,000	
648	0288h	JOG加減速(上位)	1~1,000,000(1=0.001 ms/kHz	30,000	
649	0289h	JOG加減速(下位)	または1=0.001 s) ※		
650	028Ah	JOG起動速度(上位)	$0 \sim 1000000\text{Hz}$	100	
651	028Bh	JOG起動速度(下位)			-
652	028Ch	加減速選択(上位)	0:共通	1	
653	028Dh	加減速選択(下位)	1:独立	•	
654	028Eh	加減速単位(上位)	0:ms/kHz	0	с
655	028Fh	加減速単位(下位)	1:s		
4168	1048h	JOG移動量(上位)	1~8.388.607 step	1	
4169	1049h	JOG移動量(下位)			-
704	02C0h	原点復帰方法(上位)	0:2 センサ方式	1	
705	02C1h	原点復帰方法(下位)	1:3 センサ万式		-
706	02C2h	原点復帰運転速度(上位)	1~1.000.000 Hz	1.000	
707	02C3h	原点復帰運転速度(下位)			-
708	02C4h	原点復帰加減速(上位)	$1 \sim 1,000,000 (1=0.001 \text{ ms/kHz})$	30.000	
709	02C5h	原点復帰加減速(下位)	または1=0.001 s) ※		В
710	02C6h	原点復帰起動速度(上位)	1 ~ 1,000,000 Hz	100	
711	02C7h	原点復帰起動速度(下位)			-
712	02C8h	原点復帰オフセット(上位)	-8,388,608 ~ 8,388.607 step	0	
713	02C9h	原点復帰オフセット(下位)			
714	02CAh	原点復帰開始方向(上位)	0:一側	1	
715	02CBh	原点復帰開始方向(下位)	1:+1,1		
716	02CCh	原点復帰 SLITセンサ検出 (上位)	0:無効	0	
717	02CDh	原点復帰 SLITセンサ検出 (下位)	1:有効		

Dec Hex 名称 設定範囲 初期値 718 02CEh 原点復帰 TIM信号検出(上位) 0:無効 1:TIM信号有効 2:ZSG信号有効 0 4192 1060h 2 センサ原点復帰戻り量(上位) 0 ~ 32,767 step 200	(P.169) B C
718 02CEh 原点復帰 TIM信号検出(上位) 0:無効 1:TIM信号有効 2:ZSG信号有効 0 719 02CFh 原点復帰 TIM信号検出(下位) 2:ZSG信号有効 0 4192 1060h 2 センサ原点復帰戻り量(上位) 0 ~ 32,767 step 200	B
719 02CFh 原点復帰 TIM信号検出(下位) 1.11M信号有効 0 4192 1060h 2 センサ原点復帰戻り量(上位) 0 ~ 32,767 step 200	B
4192 1060h 2 センサ原点復帰戻り量(上位) 0 ~ 32,767 step 200	C
4193 10616 2センサ原占復帰草り景(下位) 0 32,707 365 200	С
	С
776 0308h 原点復帰未完了アラーム(上位) 0:無効 0:	Ŭ
777 0309h 原点復帰未完了アラーム(下位) 1:有効	
832 0340h 過熱ワーニング(上位) 40~85°C 85	
833 0341h 過熱ワーニング(下位) 40 05 05	_
838 0346h 過電圧ワーニング(上位) 120~450 V 435	Δ
839 0347h 過電圧ワーニング(下位) 435 455 455 455 455 455 455 455 455 455	
840 0348h 不足電圧ワーニング(上位) 120~280.V 120	
841 0349h 不足電圧ワーニング(下位) 120 - 200 V 120 - 200 V	
896 0380h 電子ギヤA(上位) 1 - 65 525 1	
897 0381h 電子ギヤA(下位) 1~05,555 1	
898 0382h 電子ギヤB(上位) 1 1 1 1	
899 0383h 電子ギヤB(下位) 1~65,535 1	
900 0384h モーター回転方向(上位) 0:+側=CCW	
901 0385h モーター回転方向(下位) 1:+側=CW	
902 0386h ソフトウェアオーバートラベル(上位) 0:無効	
903 0387h ソフトウェアオーバートラベル(下位) 1:有効 1	
904 0388h +ソフトウェアリミット(上位)	
905 0389h +ソフトウェアリミット(下位) -8,388,608 ~ 8,388,607 step 8,388,60.	
906 038Ah -ソフトウェアリミット(上位)	— A
907 038Bh -ソフトウェアリミット(下位) -8,388,608 ~ 8,388,607 step -8,388,60	
908 038Ch プリセット位置(上位)	
909 038Dh プリセット位置(下位) -8,388,608 ~ 8,388,607 step 0	
910 038Eh ラウンド設定(上位) 0:無効	
<u>911</u> 038Fh ラウンド設定(下位) 1:有効 0	
912 0390h ラウンド設定範囲(上位)	
<u>913</u> 0391h ラウンド設定範囲(下位) 1~8,388,607 step 500	C
4288 10C0h エンコーダ分解能(上位)	
<u>4289</u> 10C1h エンコーダ分解能(下位) 100~10,000 P/R 500	
4290 10C2h エンコーダカウンタプリヤット値(上位)	
<u>- 100211 コンコーダカウンタプリセット値(下位)</u> -8,388,608 ~ 8,388,607 step 0	A
4292 10C4h 脱調検出(上位) 0:冊効	
<u>4293</u> 10C5h 脱調検出(下位) 1:有効 0	C
4294 10C6h 脱調検出幅(上位)	
100011 加調(出版) 1~3,600(1=0.1°) 72 4295 10C7h 脱調検出幅(下位) 1~3,600(1=0.1°) 72	
4296 10C8h 脱調検出動作(上位) 0:動作なし	
4297 10C9h 脱調検出動作(下位) 1:ワーニング出力 0	A
960 03C0h データ設定器速度表示(上位) 0:符号あり 0	
961 03C1h データ設定器速度表示(下位) 1:絶対値 0	
962 03C2h データ設定器編集(上位) 0:無効 0:無効	^
963 03C3h データ設定器編集(下位) 1:有効	A
4352 1100h IN0 入力機能選択(上位) 21100h	
4353 1101h IN0 入力機能選択(下位) 3:HOME 3:HOME	
4354 1102h IN1 入力機能選択(上位) 175 ベージの表をご覧ください。	
4355 1103h IN1 入力機能選択(下位) 4:START	

レジスタ	アドレス			+==+==/==	反映
Dec	Hex	治剤	設定範囲	1 初期10	(P.169)
4356	1104h	IN2 入力機能選択(上位)		49:040	
4357	1105h	IN2 入力機能選択(下位)		40.1110	
4358	1106h	IN3 入力機能選択(上位)		10.11	
4359	1107h	IN3 入力機能選択(下位)		49.1011	
4360	1108h	IN4 入力機能選択(上位)		50.112	
4361	1109h	IN4 入力機能選択(下位)	175 ページの表をご覧ください	50.MZ	
4362	110Ah	IN5 入力機能選択(上位)		16'EREE	
4363	110Bh	IN5 入力機能選択(下位)			
4364	110Ch	IN6 入力機能選択(上位)		18:STOP	
4365	110Dh	IN6 入力機能選択(下位)			
4366	110Eh	IN7 入力機能選択(上位)		24:ALM-RST	
4367	110Fh	IN7 入力機能選択(下位)			
4384	1120h	IN0 入力接点設定(上位)			
4385	1121h	INO 入力接点設定(下位)			
4386	1122h	IN1 入力接点設定(上位)	0:A接点(N.O.)	0	
4387	1123h	IN1 入力接点設定(下位)	1:B接点(N.C.)		
4388	1124h	IN2 入力接点設定(上位)			
4389	1125h	IN2 人力接点設定(卜位)			
4390	1126h				
4391	112/h			0	с
4392	1128N	IN4 入力接京設定(上位)			
4393	11290				
4394	112AN	INS 入力按点設定(上位)	0:A接点(N.O.) 1:B接齿(N.C.)		
4395	112BI				
4390	112CH				
4397	112DI				
4390	112EH				
4399	11/0h				
4410	11/1h			70:HOME-P	
4417	1147h				
4419	1142h	OUT1 出力機能選択(下位)		68:MOVE	
4420	1144h				
4421	1145h	OUT2出力機能選択(下位)		73:AREA1	
4422	1146h	OUT3出力機能選択(1日位)	175 ページの表をご覧ください。		
4423	1147h	OUT3 出力機能選択(下位)		67:READY	
4424	1148h	OUT4出力機能選択(上位)			
4425	1149h	OUT4出力機能選択(下位)		66:WNG	
4426	114Ah	OUT5 出力機能選択(上位)	-		
4427	114Bh	OUT5 出力機能選択(下位)		65:ALM	
4448	1160h	NET-INO 入力機能選択(上位)			
4449	1161h	NET-INO 入力機能選択(下位)		48:M0	
4450	1162h	NET-IN1 入力機能選択(上位)		10.111	
4451	1163h	NET-IN1 入力機能選択(下位)		49:M1	
4452	1164h	NET-IN2 入力機能選択(上位)		50.000	
4453	1165h	NET-IN2 入力機能選択(下位)	175ペーンの表をご覧ください。	50:1M2	
4454	1166h	NET-IN3 入力機能選択(上位)		ALCTADT	
4455	1167h	NET-IN3 入力機能選択(下位)		4.5TART	
4456	1168h	NET-IN4 入力機能選択(上位)		2.100VE	
4457	1169h	NET-IN4 入力機能選択(下位)		3.HOME	

レジスタ	アドレス	夕称	設定範囲	初期値	反映
Dec	Hex				(P.169)
4458	116Ah	NET-IN5 入力機能選択(上位)		19.000	
4459	116Bh	NET-IN5 入力機能選択(下位)		10.310P	
4460	116Ch	NET-IN6 入力機能選択(上位)		16.5055	
4461	116Dh	NET-IN6 入力機能選択(下位)		TOIFKEE	
4462	116Eh	NET-IN7 入力機能選択(上位)			
4463	116Fh	NET-IN7 入力機能選択(下位)		24. ALIVI-KST	
4464	1170h	NET-IN8 入力機能選択(上位)		9.1460	
4465	1171h	NET-IN8 入力機能選択(下位)		0.11150	
4466	1172h	NET-IN9 入力機能選択(上位)		0.1461	
4467	1173h	NET-IN9 入力機能選択(下位)		9.10151	
4468	1174h	NET-IN10 入力機能選択(上位)		10:002	
4469	1175h	NET-IN10入力機能選択(下位)	175ページの表をと見ください。	10.10152	
4470	1176h	NET-IN11 入力機能選択(上位)		EICCTADT	
4471	1177h	NET-IN11 入力機能選択(下位)		5.55TART	
4472	1178h	NET-IN12入力機能選択(上位)		6:1100	
4473	1179h	NET-IN12入力機能選択(下位)		0.+JOG	
4474	117Ah	NET-IN13 入力機能選択(上位)		7. 100	
4475	117Bh	NET-IN13 入力機能選択(下位)		7JOG	
4476	117Ch	NET-IN14 入力機能選択(上位)		1.540	
4477	117Dh	NET-IN14 入力機能選択(下位)		I.FVU	
4478	117Eh	NET-IN15 入力機能選択(上位)		2.0.0	
4479	117Fh	NET-IN15 入力機能選択(下位)		ZIRVS	
4480	1180h	NET-OUT0 出力機能選択(上位)		40.040 0	
4481	1181h	NET-OUT0 出力機能選択(下位)		48:1VIU_R	
4482	1182h	NET-OUT1 出力機能選択(上位)		40:141 D	
4483	1183h	NET-OUT1 出力機能選択(下位)		49./VII_K	C
4484	1184h	NET-OUT2 出力機能選択(上位)			
4485	1185h	NET-OUT2 出力機能選択(下位)		50.1VIZ_K	
4486	1186h	NET-OUT3 出力機能選択(上位)			
4487	1187h	NET-OUT3 出力機能選択(下位)		4.31AK1_K	
4488	1188h	NET-OUT4 出力機能選択(上位)			
4489	1189h	NET-OUT4 出力機能選択(下位)		70.10/ME-P	
4490	118Ah	NET-OUT5 出力機能選択(上位)			
4491	118Bh	NET-OUT5 出力機能選択(下位)		07.READT	
4492	118Ch	NET-OUT6 出力機能選択(上位)		66 VANIC	
4493	118Dh	NET-OUT6 出力機能選択(下位)	175 ページの表をご覧ください		
4494	118Eh	NET-OUT7 出力機能選択(上位)		65:0100	
4495	118Fh	NET-OUT7 出力機能選択(下位)		05.ALM	
4496	1190h	NET-OUT8 出力機能選択(上位)		80.5 BCA	
4497	1191h	NET-OUT8 出力機能選択(下位)		00.3-031	
4498	1192h	NET-OUT9 出力機能選択(上位)		73.VDEV1	
4499	1193h	NET-OUT9出力機能選択(下位)			
4500	1194h	NET-OUT10 出力機能選択(上位)		71. ADEAD	
4501	1195h	NET-OUT10 出力機能選択(下位)			
4502	1196h	NET-OUT11 出力機能選択(上位)		75.40642	
4503	1197h	NET-OUT11 出力機能選択(下位)		73.AREAS	
4504	1198h	NET-OUT12 出力機能選択(上位)			
4505	1199h	NET-OUT12 出力機能選択(下位)		/ 2 . 1 ////	
4506	119Ah	NET-OUT13 出力機能選択(上位)		68:1401/5	
4507	119Bh	NET-OUT13 出力機能選択(下位)		00.NOVE	

レジスタアドレス		夕뀫	記字範囲	勿胡佐	反映	
Dec	Hex				(P.169)	
4508	119Ch	NET-OUT14 出力機能選択(上位)		0. 主体田	C	
4509	119Dh	NET-OUT14 出力機能選択(下位)	「NET-OUT出力機能選択の設定範	0. 未使用		
4510	119Eh	NET-OUT15 出力機能選択(上位)	囲」の表をご覧ください。	83:STEPOUT		
4511	119Fh	NET-OUT15 出力機能選択(下位)				
4608	1200h	通信タイムアウト(上位)	0:監視なし	0		
4609	1201h	通信タイムアウト(下位)	1 ~ 10,000 ms	0	A	
4610	1202h	通信異常アラーム(上位)	1 ~ 10 回	2		
4611	1203h	通信異常アラーム(下位)		5		

※ 「加減速単位」パラメータで、加減速レート (ms/kHz) か加減速時間 (s) を選択できます (初期値:加減速レート)。

● IN入力機能選択の設定範囲

0:未使用	7:-JOG	16:FREE	33:R1	40:R8	47:R15
1:FWD	8:MS0	17:AWO	34:R2	41:R9	48:M0
2:RVS	9:MS1	18:STOP	35:R3	42:R10	49:M1
3:HOME	10:MS2	24:ALM-RST	36:R4	43:R11	50:M2
4:START	11:MS3	25:P-PRESET	37:R5	44:R12	51:M3
5:SSTART	12:MS4	27:HMI	38:R6	45:R13	52:M4
6:+JOG	13:MS5	32:R0	39:R7	46:R14	53:M5

● OUT出力機能選択の設定範囲

0:未使用	10:MS2_R	35:R3	45:R13	61:-LS_R	74:AREA2
1:FWD_R	11:MS3_R	36:R4	46:R14	62:HOMES_R	75:AREA3
2:RVS_R	12:MS4_R	37:R5	47:R15	63:SLIT_R	80:S-BSY
3:HOME_R	13:MS5_R	38:R6	48:M0_R	65:ALM	82:MPS
4:START_R	16:FREE_R	39:R7	49:M1_R	66:WNG	83:STEPOUT
5:SSTART_R	17:AWO_R	40:R8	50:M2_R	67:READY	84:OH
6:+JOG_R	18:STOP_R	41:R9	51:M3_R	68:MOVE	85:ZSG
7:-JOG_R	32:R0	42:R10	52:M4_R	70:HOME-P	86:MBC
8:MS0_R	33:R1	43:R11	53:M5_R	72:TIM	
9:MS1_R	34:R2	44:R12	60:+LS_R	73:AREA1	

● NET-IN入力機能選択の設定範囲

0:未使用	7:-JOG	16:FREE	33:R1	40:R8	47:R15
1:FWD	8:MS0	17:AWO	34:R2	41:R9	48:M0
2:RVS	9:MS1	18:STOP	35:R3	42:R10	49:M1
3:HOME	10:MS2	24:ALM-RST	36:R4	43:R11	50:M2
4:START	11:MS3	25:P-PRESET	37:R5	44:R12	51:M3
5:SSTART	12:MS4	27:HMI	38:R6	45:R13	52:M4
6:+JOG	13:MS5	32:R0	39:R7	46:R14	53:M5

● NET-OUT出力機能選択の設定範囲

0:未使用	10:MS2_R	35:R3	45:R13	61:-LS_R	74:AREA2
1:FWD_R	11:MS3_R	36:R4	46:R14	62:HOMES_R	75:AREA3
2:RVS_R	12:MS4_R	37:R5	47:R15	63:SLIT_R	80:S-BSY
3:HOME_R	13:MS5_R	38:R6	48:M0_R	65:ALM	82:MPS
4:START_R	16:FREE_R	39:R7	49:M1_R	66:WNG	83:STEPOUT
5:SSTART_R	17:AWO_R	40:R8	50:M2_R	67:READY	84:OH
6:+JOG_R	18:STOP_R	41:R9	51:M3_R	68:MOVE	85:ZSG
7:-JOG_R	32:R0	42:R10	52:M4_R	70:HOME-P	86:MBC
8:MS0_R	33:R1	43:R11	53:M5_R	72:TIM	
9:MS1_R	34:R2	44:R12	60:+LS_R	73:AREA1	

9 グループ送信

複数のスレーブでグループを組み、そのグループに対してクエリを一斉に送信します。

■ グループの構成

グループは親スレーブ1 台と子スレーブで構成され、親スレー ブだけがレスポンスを返します。

• グループのアドレス

グループ送信を行なうときは、グループのアドレスをグループ の対象となる子スレーブに対して設定します。 グループのアドレスを設定した子スレーブは、親スレーブに送 信されたクエリを受け取ることができます。

● 親スレーブ

親スレーブには、グループ送信のための設定は必要ありません。親スレーブのアドレスが、グループのアドレスになります。 マスタからクエリが親スレーブに送信されると、親スレーブは要求された処理を実行してレスポンスを返します(ユニキャ ストモードと同じ)。

● 子スレーブ

「グループ」コマンドでグループのアドレスを子スレーブに設定します。グループの変更はユニキャストモードで行なって ください。グループを設定するときは、上位と下位を同時に書き込んでください。

レジスタアドレス		夕称	内容	READ/	設定範囲	
Dec	Hex		P 34	WRITE	設定地団	
48	0030h	グループ (上位)	グループのアドレス	D/M/	-1:グループの指定なし (グループ送信を行ないません。)	
49	0031h	グループ (下位)	を設定します。	K/ VV	1~31:グループのアドレス (親スレーブの号機番号)	

P
[NVメモリー括書き込み]を実行しても、グループ設定は NVメモリに保存されないため、ドライバの電源を遮断するとグループ設定は初期化されます。

■ グループ送信で実行できるファンクションコード

10 運転の設定例

10-1 位置決め運転

例として、次の位置決め運転を実行する方法を説明します。位置決め運転の詳細は86ページをご覧ください。 ここでは、データの書き込みにはファンクションコード「10h」、リモート I/Oの書き込みにはファンクションコード「06h」 を使用して説明しています。

設定例

- スレーブアドレス:1
- 位置(移動量):1,000 step
- 運転速度:5,000 Hz

● 操作手順

1. 次のクエリを送信して、運転データ No.0 の位置(移動量)を1,000 stepに設定します。

クエリ

フィールド名称		データ	内容
スレーブア	'ドレス	01h	スレーブアドレス
ファンクシ	>コンコード	10h	複数の保持レジスタへの書き込み
	レジスタアドレス (上位)	04h	書き込みを行なうレジスタアドレス
	レジスタアドレス(下位)	00h	=位置 No.0 (0400h)
	レジスタ数(上位)	00h	しぶつタマドレフに書き込む物
	レジスタ数(下位)	02h	
データ	バイト数	04h	クエリのレジスタ数の2倍の値
	レジスタアドレスのライト値(上位)	00h	
	レジスタアドレスのライト値(下位)	00h	レジスタアドレスに書き込む値
	レジスタアドレス +1 のライト値 (上位)	03h	=1,000 step(0000 03E8h)
	レジスタアドレス +1 のライト値(下位)	E8h	
エラーチェック(下位)		C1h	CPC 16 の計算結用
エラーチェ	:ック(上位)	D1h	

レスポンス

フィールド名称		データ	内容	
スレーブアドレス		01h		
ファンクシ	>コード	10h		
-" -	レジスタアドレス (上位)	04h	クエリトロい店	
	レジスタアドレス (下位)	00h	ノエリと同し値	
) — 9	レジスタ数(上位)	00h		
	レジスタ数(下位)	02h		
エラーチェック(下位)		40h	CDC 16 の計管対用	
エラーチェック(上位)		F8h	CRC-10 0計昇和未	

2. 次のクエリを送信して、運転データ No.0 の運転速度を5,000 Hzに設定します。

クエリ

フィールド名称		データ	内容
スレーブア	'ドレス	01h	スレーブアドレス
ファンクシ	>コンコード	10h	複数の保持レジスタへの書き込み
	レジスタアドレス (上位)	04h	書き込みを行なうレジスタアドレス
	レジスタアドレス(下位)	80h	=運転速度 No.0 (0480h)
	レジスタ数(上位)	00h	しぶフタマドレフに書き込む物
	レジスタ数(下位)	02h	レジスタアドレスに書き込む数
データ	バイト数	04h	クエリのレジスタ数の2倍の値
	レジスタアドレスのライト値(上位)	00h	
	レジスタアドレスのライト値(下位)	00h	レジスタアドレスに書き込む値
	レジスタアドレス +1 のライト値 (上位)	13h	=5,000 Hz(0000 1388h)
	レジスタアドレス +1 のライト値(下位)	88h	
エラーチェック(下位)		C4h	CPC 16 の計算結果
エラーチェ	:ック(上位)	59h	

レスポンス

フィールド名称		データ	内容	
スレーブアドレス		01h		
ファンクシ	/ョンコード	10h		
データ	レジスタアドレス (上位)	04h	・ クエリと同じ値	
	レジスタアドレス (下位)	80h		
	レジスタ数(上位)	00h		
	レジスタ数(下位)	02h		
エラーチェック(下位)		41h	CPC 16 の計管結甲	
エラーチェック (上位)		10h		

次のクエリを送信して、STARTをONにします。 位置決め運転が始まります。

クエリ

	フィールド名称	データ	内容	
スレーブアドレス		01h	スレーブアドレス	
ファンクションコード		06h	保持レジスタへの書き込み	
データ	レジスタアドレス (上位)	00h	書き込みを行なうレジスタアドレス =ドライバ入力指令(007Dh)	
	レジスタアドレス (下位)	7Dh		
	ライト値(上位)	00h	レジスタアドレスに書き込む値 = START ON (0008h)	
	ライト値(下位)	08h		
エラーチェック(下位)		18h	CRC-16 の計算結果	
エラーチェック(上位)		14h		

レスポンス

	フィールド名称	データ	内容	
スレーブアドレス		01h		
ファンクションコード		06h		
データ	レジスタアドレス (上位)	00h	・クエリと同じ値 -	
	レジスタアドレス (下位)	7Dh		
	ライト値(上位)	00h		
	ライト値(下位)	08h		
エラーチェック(下位)		18h	CPC 16 の計質対甲	
エラーチェック(上位)		14h		

4. 位置決め運転が開始したら、次のクエリを送信して、STARTを OFFに戻します。

クエリ

	フィールド名称	データ	内容	
スレーブアドレス		01h	スレーブアドレス	
ファンクションコード		06h	保持レジスタへの書き込み	
データ	レジスタアドレス (上位)	00h	書き込みを行なうレジスタアドレス =ドライバ入力指令 (007Dh)	
	レジスタアドレス (下位)	7Dh		
	ライト値(上位)	00h	レジスタアドレスに書き込む値 = START OFF (0000h)	
	ライト値(下位)	00h		
エラーチェック(下位)		19h	CRC-16 の計算結果	
エラーチェック(上位)		D2h		

レスポンス

	フィールド名称	データ	内容	
スレーブアドレス		01h		
ファンクションコード		06h		
データ	レジスタアドレス (上位)	00h	クエリトロド店	
	レジスタアドレス (下位)	7Dh		
	ライト値(上位)	00h		
	ライト値(下位)	00h		
エラーチェック(下位)		19h	CPC 16 の計筒は甲	
エラーチェック (上位)		D2h		

10-2 連続運転

例として、次の連続運転を実行する方法を説明します。連続運転の詳細は102ページをご覧ください。 ここでは、データの書き込みにはファンクションコード「10h」、リモート I/Oの書き込みにはファンクションコード「06h」 を使用して説明しています

● 設定例

- スレーブアドレス:1
- 回転方向:正転(FWD)
- 運転速度:5,000 Hz

● 操作手順

1. 次のクエリを送信して、運転データ No.0 の運転速度を5,000 Hzに設定します。

クエリ

フィールド名称		データ	内容	
スレーブアドレス		01h	スレーブアドレス	
ファンクションコード		10h	複数の保持レジスタへの書き込み	
データ	レジスタアドレス (上位)	04h	書き込みを行なうレジスタアドレス =運転速度 No.0 (0480h)	
	レジスタアドレス (下位)	80h		
	レジスタ数(上位)	00h	レジスタアドレスに書き込む数	
	レジスタ数(下位)	02h		
	バイト数	04h	クエリのレジスタ数の2倍の値	
	レジスタアドレスのライト値(上位)	00h	レジスタアドレスに書き込む値 =5,000 Hz (0000 1388h)	
	レジスタアドレスのライト値(下位)	00h		
	レジスタアドレス +1 のライト値 (上位)	13h		
	レジスタアドレス +1 のライト値(下位)	88h		
エラーチェック(下位)		C4h	CRC-16 の計算結果	
エラーチェック (上位)		59h		
レスポンス

フィールド名称		データ	内容
スレーブア	' ドレス	01h	
ファンクシ	/ョンコード	10h	
	レジスタアドレス (上位)	04h	クエリトロド店
データ	レジスタアドレス (下位)	80h	シエリと同し値
	レジスタ数(上位)	00h	
	レジスタ数(下位)	02h	
エラーチェック(下位)		41h	CPC 16 の計管4年
エラーチェ	ニック(上位)	10h	CRC-10 の計昇和未

 次のクエリを送信して、FWDをONにします。 連続運転が始まります。

クエリ

フィールド名称		データ	内容
スレーブアドレス		01h	スレーブアドレス
ファンクシ	>コード	06h	保持レジスタへの書き込み
_" _	レジスタアドレス (上位)	00h	書き込みを行なうレジスタアドレス
	レジスタアドレス (下位)	7Dh	=ドライバ入力指令(007Dh)
) —9	ライト値(上位)	40h	レジスタアドレスに書き込む値
	ライト値(下位)	00h	= FWD ON (4000h)
エラーチェック(下位)		28h	CDC 16 の計管結用
エラーチェ	:ック(上位)	12h	CRC-10 の計算和未

レスポンス

フィールド名称		データ	内容	
スレーブアドレス		01h		
ファンクシ	/ ョンコード	06h		
データ	レジスタアドレス (上位)	00h	クエリと同じ値	
	レジスタアドレス (下位)	7Dh		
	ライト値(上位)	40h		
	ライト値(下位)	00h		
エラーチェック(下位)		28h	CPC 16 の計質対用	
エラーチュ	:ック(上位)	12h		

3. 連続運転を停止するときは、次のクエリを送信して、FWDを OFFに戻します。 モーターが減速停止します。

クエリ

	フィールド名称	データ	内容
スレーブアドレス		01h	スレーブアドレス
ファンクシ	>コード	06h	保持レジスタへの書き込み
-" -	レジスタアドレス (上位)	00h	書き込みを行なうレジスタアドレス
	レジスタアドレス (下位)	7Dh	=ドライバ入力指令(007Dh)
) — 9	ライト値(上位)	00h	レジスタアドレスに書き込む値
	ライト値(下位)	00h	= FWD OFF (0000h)
エラーチェック(下位)		19h	
エラーチェ	エラーチェック(上位)		- CRC-10 の計算和未

レスポンス

フィールド名称		データ	内容	
スレーブア	'ドレス	01h		
ファンクシ	>コード	06h		
	レジスタアドレス(上位)	00h	クエリトロド店	
=" 0	レジスタアドレス (下位)	7Dh	クエリと问し値	
データ	ライト値(上位)	00h		
	ライト値(下位)	00h		
エラーチェック(下位)		19h	CPC 16 の計管対田	
エラーチェック(上位)		D2h	CKC-10 の計算和未	

10-3 原点復帰運転

例として、次の原点復帰運転を実行する方法を説明します。原点復帰運転の詳細は95ページをご覧ください。

● 設定例

- スレーブアドレス:1
- 運転条件:初期値

● 操作手順

次のクエリを送信して、HOMEを ONにします。
 原点復帰運転が始まります。

クエリ

	フィールド名称	データ	内容
スレーブア	^ドレス	01h	スレーブアドレス
ファンクシ	ノョンコード	06h	保持レジスタへの書き込み
-" -	レジスタアドレス (上位)	00h	書き込みを行なうレジスタアドレス
	レジスタアドレス (下位)	7Dh	=ドライバ入力指令(007Dh)
)	ライト値(上位)	00h	レジスタアドレスに書き込む値
	ライト値(下位)	10h	= HOME ON (0010h)
エラーチェック(下位)		18h	
エラーチュ	ニック(上位)	1Eh	

レスポンス

	フィールド名称	データ	内容
スレーブア	' ドレス	01h	
ファンクシ	/ ョンコード	06h	
データ	レジスタアドレス (上位)	00h	クエリトロド店
	レジスタアドレス (下位)	7Dh	クエッと向し他
	ライト値(上位)	00h	
	ライト値(下位)	10h	
エラーチェック(下位)		18h	
エラーチェ	:ック(上位)	1Eh	

2. 原点復帰運転が開始したら、次のクエリを送信して、HOMEを OFFに戻します。

クエリ

	フィールド名称	データ	内容
スレーブア	'ドレス	01h	スレーブアドレス
ファンクシ	>コード	06h	保持レジスタへの書き込み
-" 7	レジスタアドレス(上位)	00h	書き込みを行なうレジスタアドレス
	レジスタアドレス (下位)	7Dh	=ドライバ入力指令(007Dh)
) — 9	ライト値(上位)	00h	レジスタアドレスに書き込む値
	ライト値(下位)	00h	= HOME OFF (0000h)
エラーチェック(下位)		19h	CPC 16 の計管対用
エラーチェック (上位)		D2h	

レスポンス

	フィールド名称	データ	内容	
スレーブア	′ドレス	01h		
ファンクシ	'ヨンコード	06h		
	レジスタアドレス (上位)	00h	クエリと同じ値	
="	レジスタアドレス (下位)	7Dh		
5-9	ライト値(上位)	00h		
	ライト値(下位)	00h		
エラーチェック(下位)		19h		
エラーチェ	ック(上位)	D2h		

11 通信異常の検出

RS-485 通信に異常が発生したことを検出する機能で、通信エラー、アラーム、およびワーニングがあります。

11-1 通信エラー

通信エラーの履歴は RAMに保存されます。通信エラーは **MEXE02** または RS-485 通信の「通信エラー履歴」コマンドで確認 できます。

(memo) ドライバの電源を切ると、通信エラー履歴は消去されます。

通信エラーの種類	エラーコード	原因
RS-485 通信異常	84h	伝送異常が検出されました。 158 ページ「無応答」をご覧ください。
コマンド未定義	88h	例外応答 (例外コード01h、02h) が検出されました。 158 ページをご覧ください。
ユーザー I/F通信中のため実行不可	89h	例外応答(例外コード04h)が検出されました。
NVメモリ処理中のため実行不可	8Ah	158 ページをご覧ください。
設定範囲外	8Ch	例外応答(例外コード03h、04h)が検出されました。 158 ページをご覧ください。
コマンド実行不可	8Dh	例外応答 (例外コード04h) が検出されました。 158 ページをご覧ください。

11-2 アラームとワーニング

アラームが発生すると ALM出力が OFFになり、モーターが停止します。同時に ALM LEDが点滅します。 ワーニングが発生すると、WNG出力が ONになります。ただし、モーターの運転は継続します。ワーニングが発生した原 因が取り除かれると、WNG出力は自動で OFFになります。

(memo) ドライバの電源を切ると、ワーニング履歴は消去されます。

| 通信用スイッチ設定異常(83h)

通信速度設定スイッチ(BAUD)を8~Fのどれかに設定すると、通信用スイッチ設定異常が発生します。

■ RS-485 通信異常(84h)

RS-485 通信異常が発生した際の、アラームとワーニングの関係は表のようになります。

異常の内容	内容
ワーニング	RS-485 通信異常 (84h) が1 回検出されるとワーニングになります。 ワーニングが発生している途中で受信が正常に行なわれると、ワーニングは自動で解除されます。
アラーム	RS-485 通信異常(84h)が、「通信異常アラーム」パラメータに設定した回数だけ連続して検出される とアラームになります。

■ RS-485 通信タイムアウト(85h)

[通信タイムアウト]パラメータで設定した時間を経過してもマスタとの通信が行なわれなかったときは、アラームが発生します。

12 タイミングチャート

■ 通信開始

※ Tb2(送信待ち時間)+C3.5(サイレントインターバル)

■ 運転開始

※1 RS-485 通信による運転開始を含むメッセージ

- ※2 Tb2(送信待ち時間)+C3.5(サイレントインターバル)
- ※3 C3.5(サイレントインターバル)+4 ms以下

運転停止、変速

- ※1 RS-485 通信による運転停止と変速を含むメッセージ
- ※2 Tb2(送信待ち時間)+C3.5(サイレントインターバル)
- ※3 指令速度によって異なります。
- ※4 「STOP停止方法」パラメータの設定によって異なります。

■ 汎用信号

※3 C3.5(サイレントインターバル)+4 ms以下

Configuration

※1 RS-485 通信による Configurationを含むメッセージ

※2 Tb2(送信待ち時間)+C3.5(サイレントインターバル)

※3 内部処理時間 + 1 s以下

※4 ドライバの内部処理が終了してからクエリを実行してください。

FAネットワーク制御

ネットワークコンバータ(別売)を使用して、FAネットワークで制御する方法について説明しています。

◆もくじ

6

1	スイ	′ッチの設定1	88
1	-1	プロトコル 1	88
1	-2	号機番号(スレーブアドレス)1	88
1	-3	通信速度1	89
1	-4	終端抵抗1	89
2	CC-	-Link通信で制御する場合1	90
2	-1	ガイダンス1	90
2	-2	基本的な操作手順1	94
2	-3	NETC01-CCのリモートレジスター覧1	98
2	-4	6 軸接続モードのリモート I/Oの 割り付け1	98
2	-5	12 軸接続モードのリモート I/Oの 割り付け2	201
3	ME	CHATROLINK通信で制御する場合2	05
3	-1	ガイダンス	205
3	-2	基本的な操作手順2	209
3	-3	NETC01-M2 のフィールドマップ2	212
3	-4	NETC01-M3 のフィールドマップ2	213
3	-5	通信フォーマット2	214

4 U	モート I/Oの詳細	216
4-1	ドライバへの入力	
4-2	ドライバからの出力	
5 命	令コード一覧	219
5-1	グループ機能	
5-2	メンテナンスコマンド	
5-3	モニタコマンド	
5-4	運転データ	
5-5	ユーザーパラメータ	

1 スイッチの設定

図は、出荷時設定の状態です。

(memo) スイッチを設定するときは、必ずドライバの電源を切ってください。電源が投入されている状態で設定しても、有効になりません。

1-1 プロトコル

機能設定スイッチ (SW1)の No.2 を OFFにします。ネットワークコンバータが選択されます。

出荷時設定 OFF

SW1-No.2	プロトコル
ON	Modbus RTUプロトコル
OFF	ネットワークコンバータに接続

1-2 号機番号(スレーブアドレス)

号機設定スイッチ(ID)と機能設定スイッチ(SW1)スイッチの No.1 を併用して、号機番号(スレーブアドレス)を設定します。号機番号(スレーブアドレス)は重複しないように設定してください。

出荷時設定 ID:0、SW1-No.1:OFF (スレーブアドレス0)

CC-Link通信の場合

最大接続可能台数は12台です。

スレーブアドレス	0	1	2	3	4	5	6	7	8	9	10	11
ID	0	1	2	3	4	5	6	7	8	9	А	В
SW1-No.1	OFF											
接続モード	6 軸接続モード						1	2 軸接	続モー	ž		

MECHATROLINK通信

最大接続可能台数は16 台です。

スレーブアドレス	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
ID	0	1	2	3	4	5	6	7	8	9	А	В	С	D	Е	F
SW1-No.1		OFF														
接続モード	8 軸接続モード				16 軸接続モード											

1-3 通信速度

通信速度設定スイッチ(BAUD)で、通信速度を625,000 bpsに設定してください。

出荷時設定 7(625,000 bps)

1-4 終端抵抗

ネットワークコンバータから一番離れた位置 (終端) にあるドライバは、RS-485 通信の終端抵抗 (120 Ω) を設定します。 終端抵抗設定スイッチ (TERM.) の No.1 と No.2 を両方とも ONにしてください。

出荷時設定 No.1、No.2 ともに OFF(終端抵抗なし)

TERMNo.1、No.2	終端抵抗(120 Ω)
両方とも OFF	なし
両方とも ON	あり

(memo) 片方のスイッチだけを ONにすると、通信エラーが発生する場合があります。

例として、次のようなシステムの場合、終端抵抗を設定するドライバは2台になります。

6 FAネットワーク制御

2 CC-Link通信で制御する場合

2-1 ガイダンス

はじめてお使いになるときはここをご覧になり、運転方法のながれについてご理解ください。 ここでは、ネットワークコンバータ NETC01-CCと組み合わせて、CC-Link通信で制御する方法について説明します。

※2 当社でご用意しています。別途お買い求めください。

STEP 2 ネットワークコンバータのパラメータとスイッチを設定します

■ パラメータの設定

1. MEXEO2 を起動し、ネットワークコンバータを選択します。

製品選択		×
🗼 電動アクチュエータ()	取り付けられているモーターのシリーズを選択してください。	
シリーズ名一覧 AR ARL AZ BLE BLE2 BX2 CRK CRK	品名(モード)一覧 NETC CO Unickija NETC CO Unickija NETC CO Unickija NETC MECHATROLINK-IIIdja NETC MECHATROLINK-IIIdja	OK ユーザー単位系設定 支援ウィザード
NETC NY PKA RK2	モーター・アクチュエータ	**>セル
		機種検索

2. MEXE02 で、ネットワークコンバータに接続したドライバの「接続(号機番号)」パラメータを「1:有効」に設定します。

👻 MEXE02 - [新規1*]										
👻 ファイル(F) 編集(E	👻 ファイル(F) 編集(E) 移動(M) 表示(V) 通信(C) ツール(T) ウィンドウ(W) /									
1 6	🛅 😅 🔚 😓 🔊 🥐 🏭 🤄 🖨 🖓 🕼									
■ NETC CC-Link対応		システム								
<u>⊜</u> . パラメータ <u>⊜</u> . アプリケーション		接続(号機番号0) 有效								
—————————————————————————————————————		接続(号機番号1) 無効								
システム		接続(号機番号2) 無効								
		接続(号機番号3) 無効								
		接続(号機番号4) 無効								
		接続(号機番号5) 無効								
		接続(号機番号6) 無効								
		接続(号機番号7) 無効								

MEXE02 ツリー表示	パラメータ名	内容	初期値
システム	接続(号機番号0) ~ 接続(号機番号11)	ネットワークコンバータに接続したドライバの号機 番号を有効にします。 【設定範囲】 0:無効 1:有効	0

(memo) • 複数のドライバを接続したときは、ドライバの数だけ接続パラメータを設定してください。

- 「接続(号機番号)」パラメータは、電源の再投入後に有効になります。
- パラメータは、CC-Link通信でも設定できます。

ネットワークコンバータのスイッチで、次の内容を設定してください。終端抵抗は「ON」(終端抵抗あり)を選択してください。

- CC-Link局番
- RS-485 通信速度
- CC-Link通信速度
- 動作モード
- 終端抵抗

(memo) ネットワークコンバータの設定方法は、別冊の NETC01-CCユーザーズマニュアルをご覧ください。

STEP 3 ドライバのスイッチを設定します

ドライバのスイッチで表の内容を設定してください。プロトコルは「OFF」(ネットワークコンバータ)を選択してください。 設定すると、図のようになります。

設定内容	スイッチ	出荷時設定
プロトコル:ネットワークコンバータ	SW1のNo.2をOFF	OFF
号機番号:0	SW1 の No.1 を OFF、IDを0	SW1のNo.1:OFF、 ID:0
終端抵抗:ON	TERM.の No.1 と No.2 を ON	OFF
通信速度:625,000 bps	BAUDを7	7

STEP 4 電源を再投入し、LEDを確認します

ドライバとネットワークコンバータの LEDが、図の状態になっていることを確認してください。

■ ドライバ

ネットワークコンバータ

- ドライバの C-DAT/C-ERR LEDまたはネットワークコンバータの C-ERR (赤) が点灯しているとき: RS-485 通信の通信速度や号機番号を確認してください。
- ネットワークコンバータの L-ERR (赤) が点灯しているとき: CC-Link通信エラーの内容を確認してください。

STEP 5 CC-Link通信のリモート I/Oで連続運転を実行します

CC-Link通信のリモート I/Oで、号機番号0 の FWDを ONにします。連続運転が始まります。 表に、リモート I/Oの初期値を示します。

RY(マスタ → NETC01-CC)			RY(マスタ → NETC01-CC)		
デバイス No.	信号名	初期値	デバイス No.	信号名	初期値
RYO	NET-IN0	MO	RY8	NET-IN8	MSO
RY1	NET-IN1	M1	RY9	NET-IN9	MS1
RY2	NET-IN2	M2	RYA	NET-IN10	MS2
RY3	NET-IN3	START	RYB	NET-IN11	SSTART
RY4	NET-IN4	HOME	RYC	NET-IN12	+JOG
RY5	NET-IN5	STOP	RYD	NET-IN13	-JOG
RY6	NET-IN6	FREE	RYE	NET-IN14	FWD
RY7	NET-IN7	ALM-RST	RYF	NET-IN15	RVS

STEP 6 運転できましたか?

いかがでしたか。うまく運転できたでしょうか。運転できないときは、次の点を確認してください。

- ドライバまたはネットワークコンバータにアラームが発生していませんか?
- 電源、モーター、RS-485 通信ケーブルは確実に接続されていますか?
- プロトコル、号機番号、終端抵抗は正しく設定されていますか?
- ネットワークコンバータの「接続(号機番号)」パラメータは正しく設定されていますか?
- C-DAT/C-ERR LEDが消灯していませんか?または赤色に点灯していませんか?(通信エラーが発生しています。)
- 運転データは正しく設定されていますか?
- モーターは励磁していますか、または励磁方法の設定は合っていますか?
- ドライバのパラメータは正しく設定されていますか?
- ドライバに運転停止入力が入力されていませんか?

基本的な操作手順 2-2

基本的な操作の手順として、位置決め運転とモニタ機能の方法を説明します。 ここでは例として、NETC01-CCを使って CC-Link通信で制御する手順を紹介します。

■ 位置決め運転

例として、次の位置決め運転を実行する方法を説明します。

設定例

- 号機番号(スレーブアドレス):0
- 運転データ No.3
- 位置(移動量):3,000 step

● 操作手順

1. 次のリモートレジスタを送信して、運転データ No.3 の位置(移動量)を3,000 stepに設定します。

NETC01-CCのリモートレジスタ

RWw(マ	スタ → NETC01-CC)			
アドレス No.	内容			
RWwn0	モニタ0 の命令コード			
RWwn1	モニタ0 の号機番号	-		
RWwn2	モニタ1 の命令コード			
RWwn3	モニタ1 の号機番号			
RWwn4	モニタ2 の命令コード			
RWwn5	モニタ2の号機番号	-		
RWwn6	モニタ3 の命令コード			
RWwn7	モニタ3の号機番号	-		
RWwn8	モニタ4 の命令コード			
RWwn9	モニタ4 の号機番号	-		
RWwnA	モニタ5 の命令コード			
RWwnB	モニタ5 の号機番号	-		
RWwnC	命令コード		入力例	内容
RWwnD	号機番号		1203h※	運転データ No.3 の位置に書き込む
RWwnE	データ(下位)		0	号機番号0
RWwnF	データ (上位)		0BB8h	位置(移動量)3,000 step

※ 223 ページの一覧表から、「位置 No.0」の命令コード (WRITE) は1200hであることが分かります。ここではデータ No.3 に設定するので、命令コード (WRITE) は1200 + 3 = 1203hになります。

 次のリモート I/Oを送信して、コマンド実行要求[D-REQ]を ONにします。 リモートレジスタに設定したデータが書き込まれます。 書き込みが終了すると、D-ENDが ONになります。(レスポンス)

NETC01-CCのリモートI/O

	コマンド RY (マスタ→ NETC01-CC)						
	デバイス No.	信号名	内容				
NETC01-CC 制御入力 /状態出力	RY (n+6) C	D-REQ	コマンド実行要求				

3. D-ENDが ONになったことを確認してから、次のリモート I/Oを送信して、D-REQを OFFに戻します。

NETC01-CCのリモート I/O

	コマンド RY (マスタ → NETC01-CC)							
	デバイス No. 信号名 内容							
NETC01-CC 制御入力 /状態出力	RY (n+6) C	D-REQ	コマンド実行要求					

(**memo)** • D-REQを ONにしたら、必ず OFFに戻してください。

• D-REQでデータを書き込むと、RAMに保存されます。データをNVメモリに保存する場合は、メンテ ナンスコマンドの「NVメモリー括書き込み」を実行してください。

4. 次のリモート I/Oを送信して、号機番号0 の M0、M1、および STARTを ONにします。 位置決め運転が始まります。モーターが3,000 step回転すれば、通信は成功です。

NETC01-CCのリモート I/O(初期値)

	コマンド RY (マスタ→ NETC01-CC)						
	デバイス No.	信号名	内容				
	RY (n) 0	NET-IN0	MO				
	RY (n) 1	NET-IN1	M1				
	RY (n) 2	NET-IN2	M2				
	RY (n) 3	NET-IN3	START				
	RY (n) 4	NET-IN4	HOME				
	RY (n) 5	NET-IN5	STOP				
	RY (n) 6	NET-IN6	FREE				
□梅来□[0]	RY (n) 7	NET-IN7	ALM-RST				
与城田与10]	RY (n) 8	NET-IN8	MSO				
	RY (n) 9	NET-IN9	MS1				
	RY (n) A	NET-IN10	MS2				
	RY (n) B	NET-IN11	SSTART				
	RY (n) C	NET-IN12	+JOG				
	RY (n) D	NET-IN13	-JOG				
	RY (n) E	NET-IN14	FWD				
	RY (n) F	NET-IN15	RVS				

■ モニタ機能

CC-Link通信では、一度に6種類のデータをモニタすることができます。

- 設定例
 - 号機番号(スレーブアドレス):0
 - モニタ項目:現在アラーム
- 操作手順

1. 次のリモートレジスタを送信して、号機番号0の現在アラームをモニタします。

NETC01-CCのリモートレジスタ

RWw(マ	スタ → NETC01-CC)
アドレス No.	内容
RWwn0	モニタ0 の命令コード
RWwn1	モニタ0の号機番号
RWwn2	モニタ1 の命令コード
RWwn3	モニタ1 の号機番号
RWwn4	モニタ2 の命令コード
RWwn5	モニタ2の号機番号
RWwn6	モニタ3 の命令コード
RWwn7	モニタ3の号機番号
RWwn8	モニタ4 の命令コード
RWwn9	モニタ4の号機番号
RWwnA	モニタ5 の命令コード
RWwnB	モニタ5の号機番号
RWwnC	命令コード
RWwnD	号機番号
RWwnE	データ(下位)
RWwnF	データ(上位)

2. 次のリモート I/Oを送信して、モニタ要求0「M-REQ0」を ONにします。

NETC01-CCのリモート I/O

	コマンド RY (マスタ → NETC01-CC)						
	デバイス No.	内容					
NETC01-CC 制御入力 /状態出力	RY (n+6) 0	M-REQ0	モニタ要求0				

号機番号0の現在アラームのモニタが始まります。M-REQ0がONの間、モニタし続けます。 リモートレジスタのレスポンス領域には、読み出された値が反映されます。

NETC01-CCのリモートレジスタ

RWr	r (NETC01-CC→マスタ)		
アドレス No.	内容	出力例	内容
RWrn0	モニタ0 のデータ (下位16bit)	70h	読み出したアラーム
RWrn1	モニタ0 のデータ (上位16bit)	, on	(例:運転データ異常)
RWrn2	モニタ1 のデータ (下位16bit)		
RWrn3	モニタ1 のデータ (上位16bit)		
RWrn4	モニタ2 のデータ (下位16bit)		
RWrn5	モニタ2 のデータ (上位16bit)		
RWrn6	モニタ3 のデータ (下位16bit)		
RWrn7	モニタ3 のデータ (上位16bit)		
RWrn8	モニタ4 のデータ (下位16bit)		
RWrn9	モニタ4 のデータ (上位16bit)		
RWrnA	モニタ5 のデータ (下位16bit)		
RWrnB	モニタ5 のデータ (上位16bit)		
RWrnC	命令コード応答		
RWrnD	号機番号応答		
RWrnE	データ(下位)		
RWrnF	データ(上位)		

3. モニタを終了するときは、次のリモート I/Oを送信して、M-REQ0 を OFFに戻します。

NETC01-CCのリモート I/O

	コマンド RY(マスタ → NETC01-CC)							
	デバイス No. 信号名 内容							
NETC01-CC 制御入力 /状態出力	RY (n+6) 0	M-REQ0	モニタ要求0					

2-3 NETC01-CCのリモートレジスター覧

リモートレジスタは、6軸接続モードと12軸接続モードで共通です。

リモートレジスタを使って、ドライバや NETC01-CCのモニタ、パラメータの読み出しや書き込み、およびメンテナンス コマンドを実行します。

[n]は、CC-Link局番設定によってマスタに割り付けられたアドレスです。

RWw (RWw (マスタ → NETC01-CC)			NETC01-CC→マスタ)
アドレス No.	内容		アドレス No.	内容
RWwn0	モニタ0 の命令コード		RWrn0	モニタ0 のデータ (下位16 bit)
RWwn1	モニタ0の号機番号		RWrn1	モニタ0 のデータ (上位16 bit)
RWwn2	モニタ1 の命令コード		RWrn2	モニタ1 のデータ (下位16 bit)
RWwn3	モニタ1の号機番号		RWrn3	モニタ1 のデータ (上位16 bit)
RWwn4	モニタ2の命令コード		RWrn4	モニタ2 のデータ (下位16 bit)
RWwn5	モニタ2の号機番号		RWrn5	モニタ2 のデータ (上位16 bit)
RWwn6	モニタ3の命令コード		RWrn6	モニタ3 のデータ (下位16 bit)
RWwn7	モニタ3の号機番号		RWrn7	モニタ3 のデータ (上位16 bit)
RWwn8	モニタ4 の命令コード		RWrn8	モニタ4 のデータ (下位16 bit)
RWwn9	モニタ4の号機番号		RWrn9	モニタ4 のデータ (上位16 bit)
RWwnA	モニタ5 の命令コード		RWrnA	モニタ5 のデータ (下位16 bit)
RWwnB	モニタ5の号機番号		RWrnB	モニタ5 のデータ (上位16 bit)
RWwnC	命令コード		RWrnC	命令コード応答
RWwnD	号機番号		RWrnD	号機番号応答
RWwnE	データ(下位)		RWrnE	データ (下位)
RWwnF	データ (上位)		RWrnF	データ (上位)

2-4 6 軸接続モードのリモート I/Oの割り付け

ドライバのリモート I/O割り付けを示します。「n」は、CC-Link局番設定によってマスタに割り付けられたアドレスです。6 軸接続モードについては、NETC01-CCユーザーズマニュアルをご覧ください。

■ リモート I/O割り付け一覧

割り付けの詳細 🖒 200 ページ

コマンド RY (マ	マスタ → NETC01-CC)	レスポンス RX (NETC01-CC →マスタ)			
デバイス No.	内容	デバイス No.	内容		
RYn7 \sim RYn0		RXn7 \sim RXn0			
RYnF \sim RYn8		RXnF \sim RXn8			
$RY(n+1)7 \sim RY(n+1)0$		$RX(n+1)7 \sim RX(n+1)0$			
$RY(n+1)F \sim RY(n+1)8$		$RX(n+1)F \sim RX(n+1)8$			
$RY(n+2)7 \sim RY(n+2)0$		$RX(n+2)7 \sim RX(n+2)0$			
$RY(n+2)F \sim RY(n+2)8$		$RX(n+2)F \sim RX(n+2)8$			
$RY(n+3)7 \sim RY(n+3)0$		$RX(n+3)7 \sim RX(n+3)0$			
$RY(n+3)F \sim RY(n+3)8$		$RX(n+3)F \sim RX(n+3)8$			
$RY(n+4)7 \sim RY(n+4)0$		$RX(n+4)7 \sim RX(n+4)0$			
$RY(n+4) F \sim RY(n+4) 8$		$RX(n+4)F \sim RX(n+4)8$			
$RY(n+5)7 \sim RY(n+5)0$		$RX(n+5)7 \sim RX(n+5)0$			
$RY(n+5) F \sim RY(n+5) 8$		$RX(n+5)F \sim RX(n+5)8$			
$RY(n+6)7 \sim RY(n+6)0$	NETCO1 CCの制御3 力	$RX(n+6)7 \sim RX(n+6)0$			
$RY(n+6) F \sim RY(n+6) 8$	Nercor-ccop前面八刀	$RX(n+6)F \sim RX(n+6)8$	Nercor-cco)状態出力		
$RY(n+7)7 \sim RY(n+7)0$	システム領域の制御入力	$RX(n+7)7 \sim RX(n+7)0$			
$RY(n+7)F \sim RY(n+7)8$		$RX(n+7)F \sim RX(n+7)8$	レイノム東欧の状態山力		

■ リモートI/Oの入出力

● リモート I/O入力

NETC01-CC		ドライバ 号機番号0	_	ドライバ 号機番号1	_	ドライバ 号機番号5
RYnF \sim RYn0 RY(n+1)F \sim RY(n+1)0 RY(n+2)F \sim RY(n+2)0 RY(n+3)F \sim RY(n+3)0 RY(n+4)F \sim RY(n+4)0 RY(n+5)E \sim RY(n+5)0	号機番号「0」 リモートI/O入力 号機番号「1」 リモートI/O入力 号機番号「2」 リモートI/O入力 号機番号「3」 リモートI/O入力 号機番号「4」 リモートI/O入力 号機番号「5」 リモートI/O入力	号機番号「0」 リモートI/O入力		号機番号[1] リモートI/O入力		↓ 号機番号[5]
RY(n+6)F~RY(n+6)0 RY(n+7)F~RY(n+7)0	NETC01-CC 制御入力 システム領域 制御入力					「[リモート /〇入力]

● リモート I/O出力

■ リモート I/O割り付けの詳細

[]内は初期値です。

	コマント	コマンド RY (マスタ→ NETC01-CC)			レスポンス RX (NETC01-CC →マスタ)			
	デバイス No.	信号名	内容		デバイス No.	信号名	内容	
	RY (n) 0	NET-IN0	[M0]		RX (n) 0	NET-OUT0	[M0_R]	
	RY (n) 1	NET-IN1	[M1]		RX (n) 1	NET-OUT1	[M1_R]	
	RY (n) 2	NET-IN2	[M2]		RX (n) 2	NET-OUT2	[M2_R]	
	RY (n) 3	NET-IN3	[START]		RX (n) 3	NET-OUT3	[START_R]	
	RY (n) 4	NET-IN4	[HOME]		RX (n) 4	NET-OUT4	[HOME-P]	
	RY (n) 5	NET-IN5	[STOP]	[STOP]		NET-OUT5	[READY]	
	RY (n) 6	NET-IN6	[FREE]		RX (n) 6	NET-OUT6	[WNG]	
口微云口[0]	RY (n) 7	NET-IN7	[ALM-RST]		RX (n) 7	NET-OUT7	[ALM]	
亏候留亏10」	RY (n) 8	NET-IN8	[MS0]		RX (n) 8	NET-OUT8	[S-BSY]	
	RY (n) 9	NET-IN9	[MS1]		RX (n) 9	NET-OUT9	[AREA1]	
	RY (n) A	NET-IN10	[MS2]		RX (n) A	NET-OUT10	[AREA2]	
	RY (n) B	NET-IN11	[SSTART]		RX (n) B	NET-OUT11	[AREA3]	
	RY (n) C	NET-IN12	[+JOG]		RX (n) C	NET-OUT12	[TIM]	
	RY (n) D	NET-IN13	[-JOG]		RX (n) D	NET-OUT13	[MOVE]	
	RY (n) E	NET-IN14	[FWD]		RX (n) E	NET-OUT14	[未使用]	
	RY (n) F	NET-IN15	[RVS]		RX (n) F	NET-OUT15	[STEPOUT]	
	RY(n+1)0	NET-IN0			RX(n+1)0	NET-OUT0		
号機番号[1]	~	~	号機番号[0]に同じ		~		号機番号[0]に同じ	
	RY (n+1) F	NET-IN15			RX (n+1) F	NET-OUT15		
- 二 二 四 本 元 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二	RY(n+2)0	NET-INO			RX(n+2)0	NET-OUTO		
与版田与[2]	RY (n+2) F	NET-IN15			RX (n+2) F	NET-OUT15	与版曲与しいに回し	
	RY(n+3)0	NET-IN0	号機番号[0]に同じ		RX(n+3)0	NET-OUT0		
号機番号[3]	~	~			~	~	号機番号[0]に同じ	
	RY (n+3) F	NET-IN15			RX (n+3) F	NET-OUT15		
	RY (n+4) 0	NET-IN0			RX (n+4) 0	NET-OUT0		
亏惯奋亏 4]	\sim RV(n+4)F	~ NFT-IN15	亏機番亏101に回じ		\sim RX (n+4) F		亏機番号101に回じ	
	RY(n+5)0	NET-INO		1	RX(n+5)0			
号機番号[5]	\sim	~	号機番号「0」に同じ		~	~	号機番号[0]に同じ	
	RY (n+5) F	NET-IN15			RX (n+5) F	NET-OUT15		
	RY (n+6) 0	M-REQ0	モニタ要求0		RX (n+6) 0	M-DAT0	モニタ中0	
	RY (n+6) 1	M-REQ1	モニタ要求1		RX (n+6) 1	M-DAT1	モニタ中1	
	RY (n+6) 2	M-REQ2	モニタ要求2		RX (n+6) 2	M-DAT2	モニタ中2	
	RY (n+6) 3	M-REQ3	モニタ要求3		RX (n+6) 3	M-DAT3	モニタ中3	
	RY (n+6) 4	M-REQ4	モニタ要求4		RX (n+6) 4	M-DAT4	モニタ中4	
	RY (n+6) 5	M-REQ5	モニタ要求5		RX (n+6) 5	M-DAT5	モニタ中5	
	RY (n+6) 6	-	-		RX (n+6) 6	WNG	ワーニング	
NETC01-CC	RY (n+6) 7	ALM-RST	アラームリセット		RX (n+6) 7	ALM	アラーム	
制御入力 /状態出力	RY (n+6) 8				RX (n+6) 8	C-SUC	RS-485 通信中	
	RY (n+6) 9	_	_		RX (n+6) 9			
	RY (n+6) A				RX (n+6) A	-	-	
	RY (n+6) B				RX (n+6) B			
	RY (n+6) C	D-REQ	コマンド実行要求	,	RX (n+6) C	D-END	コマンド処理完了	
	RY (n+6) D				RX (n+6) D	R-ERR	レジスタエラー	
	RY (n+6) E	-	-	,	RX (n+6) E	S-BSY	システム処理中	
	RY (n+6) F			RX (n+6) F	-	-		

	コマンド RY (マスタ → NETC01-CC)			レスポン	レスポンス RX (NETC01-CC →マスタ)			
	デバイス No.	信号名	内容	デバイス No.	信号名	内容		
システム領域 制御入力 /状態出力		_		RX (n+7) 0				
	RY (n+7) 0 ~ RY (n+7) F		使用禁止	~	-	使用禁止		
				RX (n+7) A				
				RX (n+7) B	CRD	リモート局通信 レディ		
				RX (n+7) C				
				\sim	-	使用禁止		
				RX (n+7) F				

2-5 12 軸接続モードのリモート I/Oの割り付け

ドライバのリモート I/O割り付けを示します。「n」は、CC-Link局番設定によってマスタに割り付けられたアドレスです。 12 軸接続モードについては、**NETC01-CC**ユーザーズマニュアルをご覧ください。

■ リモート I/O割り付け一覧

割り付けの詳細 🖒 203 ページ

コマンド RY (マ	イスタ→ NETC01-CC)	レスポンス RX (NETC01-CC →マスタ)		
デバイス No.	内容	デバイス No.	内容	
RYn7 ~ RYn0	号機番号[0]リモート I/O入力	RXn7 \sim RXn0	号機番号[0]リモート I/O出力	
RYnF \sim RYn8	号機番号「1」リモート I/O入力	RXnF \sim RXn8	号機番号[1]リモート I/O出力	
$RY(n+1)7 \sim RY(n+1)0$	号機番号[2]リモート I/O入力	$RX(n+1)7 \sim RX(n+1)$	0 号機番号[2]リモート I/O出力	
$RY(n+1)F \sim RY(n+1)8$	号機番号[3]リモート I/O入力	$RX(n+1)F \sim RX(n+1)$	8 号機番号[3]リモート I/O出力	
$RY(n+2)7 \sim RY(n+2)0$	号機番号[4]リモート I/O入力	$RX(n+2)7 \sim RX(n+2)$	0 号機番号[4]リモート I/O出力	
$RY(n+2)F \sim RY(n+2)8$	号機番号[5]リモート I/O入力	$RX(n+2)F \sim RX(n+2)$	8 号機番号[5]リモート I/O出力	
$RY(n+3)7 \sim RY(n+3)0$	号機番号[6]リモート I/O入力	$RX(n+3)7 \sim RX(n+3)$	0 号機番号[6]リモート I/O出力	
$RY(n+3)F \sim RY(n+3)8$	号機番号[7]リモート I/O入力	$RX(n+3)F \sim RX(n+3)$	8 号機番号[7]リモート I/O出力	
$RY(n+4)7 \sim RY(n+4)0$	号機番号[8]リモート I/O入力	RX(n+4)7 ~ RX(n+4)	0 号機番号[8]リモート I/O出力	
$RY(n+4)F \sim RY(n+4)8$	号機番号[9]リモート I/O入力	$RX(n+4)F \sim RX(n+4)$	8 号機番号[9]リモート I/O出力	
$RY(n+5)7 \sim RY(n+5)0$	号機番号[10]リモート I/O入力	RX (n+5) 7 \sim RX (n+5)	0 号機番号[10]リモート I/O出力	
$RY(n+5) F \sim RY(n+5) 8$	号機番号[11]リモート I/O入力	RX (n+5) F \sim RX (n+5)	8 号機番号「11」リモート I/O出力	
$RY(n+6)7 \sim RY(n+6)0$		RX(n+6)7 ~ RX(n+6)		
$RY(n+6) F \sim RY(n+6) 8$	Nercor-ccos前面火力	$RX(n+6)F \sim RX(n+6)$	8 Nercor-ccoy(愈出力)	
$RY(n+7)7 \sim RY(n+7)0$	シフテム領域の制御る力	$RX(n+7)7 \sim RX(n+7)$		
$RY(n+7) F \sim RY(n+7) 8$		$RX(n+7)F \sim RX(n+7)$	8	

■ リモート I/Oの入出力

● リモート 1/0入力

● リモート I/O出力

NETC01-CC		ドライバ 号機番号0	_	ドライバ 号機番号1	ドライバ 号機番号11
RXn7~RXn0 RXnF~RXn8 RX(n+1)7~RX(n+1)0 RX(n+1)F~RX(n+1)8 RX(n+2)7~RX(n+2)0 RX(n+2)F~RX(n+2)8 RX(n+3)7~RX(n+3)0 RX(n+3)F~RX(n+3)8 RX(n+4)7~RX(n+3)8 RX(n+4)F~RX(n+4)8 RX(n+5)7~RX(n+5)0 RX(n+5)F~RX(n+5)8	号機番号[0] リモートI/O出力 号機番号[1] リモートI/O出力 号機番号[2] リモートI/O出力 号機番号[3] リモートI/O出力 号機番号[5] リモートI/O出力 号機番号[6] リモートI/O出力 号機番号[6] リモートI/O出力 号機番号[7] リモートI/O出力 号機番号[7] リモートI/O出力 号機番号[10] リモートI/O出力 号機番号[10] リモートI/O出力	- 号機番号「0」 リモートI/O出力		- 号機番号[1] リモートI/O出力	 - 号機番号[11]
$RX(n+6)F \sim RX(n+6)0$ $RX(n+7)E \sim RX(n+7)0$	NETC01-CC 状態出力				
$K_{X}(I_{T}) = K_{X}(I_{T}) U$	システム限以 仏感山力				

■ リモート I/O割り付けの詳細

[]内は初期値です。

	コマンド RY (マスタ→ NETC01-CC)			レスポンス RX (NETC01-CC →マスタ)				
	デバイス No.	信号名	内容	デバイス No.	信号名	内容		
	RY (n) 0	NET-IN0	[M0]	RX (n) 0	NET-OUT0	[M0_R]		
	RY (n) 1	NET-IN1	[M1]	RX (n) 1	NET-OUT1	[M1_R]		
	RY (n) 2	NET-IN2	[M2]	RX (n) 2	NET-OUT2	[M2_R]		
모继국모[0]	RY (n) 3	NET-IN3	[START]	RX (n) 3	NET-OUT3	[START_R]		
与城田与10]	RY (n) 4	NET-IN4	[HOME]	RX (n) 4	NET-OUT4	[HOME-P]		
	RY (n) 5	NET-IN5	[STOP]	RX (n) 5	NET-OUT5	[READY]		
	RY (n) 6	NET-IN6	[FREE]	RX (n) 6	NET-OUT6	[WNG]		
	RY (n) 7	NET-IN7	[ALM-RST]	RX (n) 7	NET-OUT7	[ALM]		
	RY (n) 8	NET-IN0	[M0]	RX (n) 8	NET-OUT0	[M0_R]		
	RY (n) 9	NET-IN1	[M1]	RX (n) 9	NET-OUT1	[M1_R]		
	RY (n) A	NET-IN2	[M2]	RX (n) A	NET-OUT2	[M2_R]		
□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□	RY (n) B	NET-IN3	[START]	RX (n) B	NET-OUT3	[START_R]		
与版田与门」	RY (n) C	NET-IN4	[HOME]	RX (n) C	NET-OUT4	[HOME-P]		
	RY (n) D	NET-IN5	[STOP]	RX (n) D	NET-OUT5	[READY]		
	RY (n) E	NET-IN6	[FREE]	RX (n) E	NET-OUT6	[WNG]		
	RY (n) F	NET-IN7	[ALM-RST]	RX (n) F	NET-OUT7	[ALM]		
号機番号[2]	RY(n+1)0	NET-IN0		RX(n+1)0	NET-OUT0	号機番号[0]に同じ		
	\sim		号機番号[0]に同じ	\sim				
	RY(n+1)/	INET-IN/		RX(n+1)/	NET-OUT/			
号機番号[3]	RY(n+1)8	INE I -IINU		RX(n+1)8		 号機番号[1]に同じ		
	RY (n+1) F	NET-IN7		RX (n+1) F	NET-OUT7	- <u> </u>		
	RY (n+2) 0	NET-IN0		RX (n+2) 0	NET-OUT0	号機番号「0」に同じ		
号機番号[4]	~	~	号機番号[0]に同じ	~	~			
	RY (n+2) 7	NET-IN7		RX (n+2) 7	NET-OUT7			
	RY (n+2) 8	NET-IN0		RX (n+2) 8	NET-OUT0			
亏惯借亏[5]	\sim RY (n+2) F	~ NFT-IN7	ち悈留ち]に回し	\approx RX (n+2) F		ち悈留ち 1]に回し 		
	RY(n+3)0	NET-INO		RX(n+3)0	NET-OUTO			
号機番号[6]	~	~	号機番号[0]に同じ	~	~	号機番号[0]に同じ		
	RY (n+3) 7	NET-IN7		RX (n+3) 7	NET-OUT7			
	RY (n+3) 8	NET-IN0		RX (n+3) 8	NET-OUT0			
号機番号[7]	\sim		号機番号[1]に同じ	~		号機番号[1]に同じ		
	RY(n+3)F	NET-IN/		RX(n+3)F	NET-OUT/			
	RY(n+4)0	INET-IINU		RX(n+4)0		 号機番号[0]に同じ		
	RY (n+4) 7	NET-IN7		RX (n+4) 7	NET-OUT7			
	RY (n+4) 8	NET-IN0		RX (n+4) 8	NET-OUT0			
号機番号[9]	~	~	号機番号[1]に同じ	~	~	号機番号[1]に同じ		
	RY (n+4) F	NET-IN7		RX (n+4) F	NET-OUT7			
	RY (n+5) 0	NET-IN0		RX (n+5) 0	NET-OUT0			
亏機番亏[10]	\sim RY (n+5) 7	~ NFT-INI7	「ち機番号10」に同じ	\sim RX(n+5)7		号機番号[0]に同じ		
	RY(n+5)			RX(n+5)				
号機番号[11]	~	~	号機番号[1]に同じ	~	~			
	RY (n+5) F	NET-IN7		RX (n+5) F	NET-OUT7			

CC-Link通信で制御する場合

	コマン	ドRY(マスタ→	NETC01-CC)		レスポン	ィス RX (NETCO1	-CC→マスタ)
	デバイス No.	信号名	内容		デバイス No.	信号名	内容
	RY (n+6) 0	M-REQ0	モニタ要求0		RX (n+6) 0	M-DAT0	モニタ中0
	RY(n+6)1	M-REQ1	モニタ要求1	-	RX (n+6) 1	M-DAT1	モニタ中1
	RY (n+6) 2	M-REQ2	モニタ要求2		RX (n+6) 2	M-DAT2	モニタ中2
	RY(n+6)3	M-REQ3	モニタ要求3		RX (n+6) 3	M-DAT3	モニタ中3
	RY (n+6) 4	M-REQ4	モニタ要求4		RX (n+6) 4	M-DAT4	モニタ中4
	RY (n+6) 5	M-REQ5	モニタ要求5		RX (n+6) 5	M-DAT5	モニタ中5
	RY (n+6) 6	-	-		RX (n+6) 6	WNG	ワーニング
NETC01-CC	RY (n+6) 7	ALM-RST	アラームリセット		RX (n+6) 7	ALM	アラーム
制御入力 /状態出力	RY (n+6) 8				RX (n+6) 8	C-SUC	RS-485 通信中
	RY (n+6) 9				RX (n+6) 9		
	RY (n+6) A	-	_		RX (n+6) A	-	_
	RY (n+6) B				RX (n+6) B		
	RY(n+6)C	D-REQ	コマンド実行要求		RX (n+6) C	D-END	コマンド処理完了
	RY (n+6) D				RX (n+6) D	R-ERR	レジスタエラー
	RY (n+6) E	-	-		RX (n+6) E	S-BSY	システム処理中
	RY (n+6) F			-	RX (n+6) F	_	_
					RX (n+7) 0		
					\sim RX (n+7) A	-	使用禁止
システム領域 制御入力 /状態出力	RY (n+7) 0			1			リモート局通信
	\sim PV(n±7)E	-	使用禁止		RX (n+7) B	CRD	レディ
	KT (II+7)F			Ī	RX (n+7) C		
					~	-	使用禁止
					RX(n+7)F		

3 MECHATROLINK通信で制御する場合

3-1 ガイダンス

はじめてお使いになるときはここをご覧になり、運転方法のながれについてご理解ください。

ここでは、ネットワークコンバータ NETC01-M2 と組み合わせて、MECHATROLINK-II通信で制御する方法について説明します。

※2 当社でご用意しています。別途お買い求めください。

STEP 2 ネットワークコンバータのパラメータとスイッチを設定します

■ パラメータの設定

1. MEXE02 を起動し、ネットワークコンバータを選択します。

製品選択		X
႔ 電動アクチュエータは取りや	けけられているモーターのシリーズを選択してください。	
シリーズ名一覧 AR ARL	品名(モード)一覧 NETC CC-Link Ver 2対応 NETC CC-Link対応	ОК
AZ BLE BLE2 BX2 CRK	NETC EtherCA1173/26 NETC MECHATROLINK-II方括	ユーザー単位系設定
NA PKA RK2	モーター・アクチュエータ	**>
		機種検索

2. MEXEO2 で、ネットワークコンバータに接続したドライバの「通信(号機番号)」パラメータを「有効」に設定します。

nexe02 - [新規2*]		
👻 ファイル(F) 編集(E) 移動	表示(V) 通信(C) ツール(T) ウ	ィンドウ(W) 📝
1 6 6	🤊 (~ 🏭 🦉 🖨 리	🖏 🖓 🕻
■ NETC MECHATROLINK-II対応	ノステム	
<u>⊜</u> - パラメータ <u>ら</u> アプリケーション	通信(号機番号0) 有効	
	通信(号機番号1) 無効	
システム	通信(号機番号2) 無効	
	通信(号機番号3) 無効	
	通信(号機番号4) 無効	
	通信(号機番号5) 無効	
	通信(号機番号6) 無効	
	通信(号機番号7) 無効	

MEXE02 ツリー表示	パラメータ名	内容	初期値
システム	通信(号機番号0) ~ 通信(号機番号15)	ネットワークコンバータに接続したドライバの号機 番号を有効にします。 【設定範囲】 無効 有効	無効

(memo) ・ ネットワークコンバータのパラメータは MECHATROLINK通信では設定できないため、MEXE02 で設定してください。

- 複数のドライバを接続したときは、ドライバの数だけ通信パラメータを設定してください。
- 「通信(号機番号)」パラメータは、電源の再投入後に有効になります。

■ スイッチの設定

ネットワークコンバータのスイッチで、次の内容を設定してください。

- MECHATROLINK-II 局アドレス
- RS-485 通信速度
- リモート I/O占有サイズ
- 伝送バイト数

(memo) ネットワークコンバータの設定方法は、別冊の NETC01-M2 ユーザーズマニュアルをご覧ください。

STEP 3 ドライバのスイッチを設定します

ドライバのスイッチで表の内容を設定してください。プロトコルは「OFF」(ネットワークコンバータ)を選択してください。 設定すると、図のようになります。

	スイッチ	出荷時設定
プロトコル:ネットワークコンバータ	SW1のNo.2をOFF	OFF
号機番号:0	SW1 の No.1 を OFF、IDを0	SW1のNo.1:OFF、 ID:0
終端抵抗:ON	TERM.の No.1 と No.2 を ON	OFF
通信速度:625,000 bps	BAUDを7	7

■ ドライバ

■ ネットワークコンバータ

- ドライバの C-DAT/C-ERR LEDまたはネットワークコンバータの C-ERR(赤)が点灯しているとき: RS-485 通信の通信速度や号機番号を確認してください。
- ネットワークコンバータの ERR (赤) が点灯しているとき: MECHATROLINK通信エラーの内容を確認してください。

STEP 5 MECHATROLINK通信のリモート I/Oで連続運転を実行します

MECHATROLINK通信の I/Oコマンドで、号機番号0 の FWDを ONにします。連続運転が始まります。 表に、I/Oコマンドの初期値を示します。

bit15	bit14	bit13	bit12	bit11	bit10	bit9	bit8
NET-IN15	NET-IN14	NET-IN13	NET-IN12	NET-IN11	NET-IN10	NET-IN9	NET-IN8
[RVS]	[FWD]	[-JOG]	[+JOG]	[SSTART]	[MS2]	[MS1]	[MS0]
bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
NET-IN7	NET-IN6	NET-IN5	NET-IN4	NET-IN3	NET-IN2	NET-IN1	NET-IN0
[ALM-RST]	[FREE]	[STOP]	[HOME]	[START]	[M2]	[M1]	[M0]

STEP 6 運転できましたか?

いかがでしたか。うまく運転できたでしょうか。運転できないときは、次の点を確認してください。

- ドライバまたはネットワークコンバータにアラームが発生していませんか?
- 電源、モーター、RS-485 通信ケーブルは確実に接続されていますか?
- プロトコル、号機番号、終端抵抗は正しく設定されていますか?
- ネットワークコンバータの「通信(号機番号)」パラメータは正しく設定されていますか?
- C-DAT/C-ERR LEDが消灯していませんか?または赤色に点灯していませんか?(通信エラーが発生しています。)
- 運転データは正しく設定されていますか?
- モーターは励磁していますか、または励磁方法の設定は合っていますか?
- ドライバのパラメータは正しく設定されていますか?
- ドライバに運転停止入力が入力されていませんか?

3-2 基本的な操作手順

基本的な操作の手順として、位置決め運転とモニタ機能の方法を説明します。 ここでは例として、NETC01-M2を使って MECHATROLINK-II通信で制御する手順を紹介します。

■ 位置決め運転

例として、次の位置決め運転を実行する方法を説明します。

● 設定例

- 号機番号(スレーブアドレス):0
- 運転データ No.1
- 位置(移動量):5,000 step

操作手順

 次のリモートレジスタを送信して、運転データ No.1 の位置(移動量)を5,000 stepに設定します。 リモートレジスタに設定したデータが書き込まれます。 書き込みが終了すると、TRIG_Rが ONになります。

NETC01-M2 のリモートレジスタ

バイト	パート分類	種別	コマンド		入力例	内容					
23			し、ジフター機要只		-	0	口 楼 来 日 0				
24				-	0	5版田50					
25			命令コード +TRIG	命令コード +TRIG	命合コード +TRIG	合会コード +TRIG	命会コード +TRIG	命수ㄱㅡド +TRIG		1201h + 4000h=	運転データ No.1 の位置
26	データ部	リモート				5201h ※	に書き込む値+ TRIG				
27		レジスタ	レジスタ								
28					1388h	位罟(移動昙)5 000 stop					
29			DATA		150011	1位但(移動里) 5,000 Step					
30											

※ 223 ページの一覧表から、「位置 No.1」の命令コード (WRITE) は1201hであることが分かります。MECHATROLINK では、命令コードとコマンド実行要求 (TRIG) を同一のコマンドで書き込むため、TRIGのコード (4000h) を加えた [5201h]を書き込んでください。

2. TRIG_Rが ONになったことを確認してから、次のリモートレジスタを送信して、TRIGを OFFに戻します。

NETC01-M2 のリモートレジスタ

バイト	パート分類	種別	コマンド	入力例	内容
25	デーク部	リモート	승수ㄱ_ドㅗ་གᄼ	0	
26	リータ部	レジスタ	טאודין-בתייי	U	TRIG& OFFICIS

(memo) • TRIGを ONにしたら、必ず OFFに戻してください。

• コマンド実行要求 TRIGでデータを書き込むと、RAMに保存されます。データを NVメモリに保存する 場合は、メンテナンスコマンドの「NVメモリー括書き込み」を実行してください。 次のリモート I/Oを送信して、号機番号0の M0 と STARTを ONにします。
 位置決め運転が始まります。モーターが5,000 step回転すれば、通信は成功です。

NETC01-M2 のリモート I/O

バイト	パート分類	種別	コマンド	入力例	内容
7	二" 石市		号機番号[0]	9h	M0とSTARTを
8	テータ部	של=דויט	リモート I/O入力	511	ONにする

リモート I/O入力の通信フォーマット(初期値)

bit15	bit14	bit13	bit12	bit11	bit10	bit9	bit8
NET-IN15	NET-IN14	NET-IN13	NET-IN12	NET-IN11	NET-IN10	NET-IN9	NET-IN8
[RVS]	[FWD]	[-JOG]	[+JOG]	[SSTART]	[MS2]	[MS1]	[MS0]
bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
NET-IN7	NET-IN6	NET-IN5	NET-IN4	NET-IN3	NET-IN2	NET-IN1	NET-INO
[ALM-RST]	[FREE]	[STOP]	[HOME]	[START]	[M2]	[M1]	[M0]

■ モニタ機能

設定例

- 号機番号(スレーブアドレス):0
- モニタ項目:現在アラーム

● 操作手順

次のリモートレジスタを送信して、号機番号0の現在アラームをモニタします。
 号機番号0の現在アラームのモニタが始まります。

NETC01-M2 のリモートレジスタ

バイト	パート分類	種別	コマンド		入力例	内容			
23			しょッフター継承日	-	0	□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□			
24				0	51版曲号0				
25			命令コード +TRIG		2040h + 4000h=	現在アラームの			
26	データ部	リモート			6040h ※	モニタ+ TRIG			
27		レジスタ							
28									
29			DATA						
30				_					

※ 221 ページ[5-3 モニタコマンド]の一覧表から、「現在アラーム」の命令コード (WRITE) は2040hであることが分かり ます。MECHATROLINKでは、命令コードとコマンド実行要求 (TRIG) を同一のコマンドで書き込むため、TRIGのコー ド (4000h) を加えた[6040h] を書き込んでください。

TRIGがONの間、現在アラームのモニタを続けます。

リモートレジスタのレスポンス領域には、読み出された値が反映されます。

NETC01-M2 のリモートレジスタ

バイト	パート分類	種別	レスポンス	出力例	内容
23			しいフター継承中内文	0	□槛来□0
24				0	5 1 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
25			命令コード応答 +	6040h	
26	データ部	リモート	TRIG応答 +STATUS	6040h	はたアフームのモータ
27		レジスタ			
28				701-	読み出したアラーム
29				70h	(例:運転データ異常)
30					

2. モニタを終了するときは、次のリモートレジスタを送信して、TIRGを OFFに戻します。

NETC01-M2 のリモートレジスタ

バイト	パート分類	種別	コマンド	入力例	内容
25	デーク部	リモート	승수ㄱㅡド +TRIG	0	
26		レジスタ		U	TRIG & OFFIC 9 8

(memo) MECHATROLINK-II通信においては、ネットワークコンバータの性能上、1 台のドライバに対して1 種類 のデータしかモニタできません。複数軸のドライバをモニタするときは、号機番号を変更してからモニタ を実行してください。

3-3 NETC01-M2 のフィールドマップ

「DATA_RWA] コマンド(50h) で、リモート I/Oデータの更新(非同期)を行ないます。 リモート I/O占有サイズが16 ビットモード、伝送バイト数が32 バイト(出荷時設定)の場合、I/Oフィールドマップは表の ようになります。その他の I/Oフィールドマップは、**NETC01-M2** ユーザーズマニュアルをご覧ください。

バイト	パート分類	種別	コマンド	レスポンス
1		-	DATA_RWA (50h)	DATA_RWA (50h)
2		-		ALARM
3	ハック部	-	OPTION	ΣΤΛΤΙ Ι Σ
4		_		514105
5			予約	接続ステータス
6		_	L-11C	
7			号機番号[0]リモート1/0入力	号機番号「0」リモート1/0出力
8				
9			号機番号[1]リモート1/0入力	号機番号[1]リモート1/〇出力
10				
11			 	号機番号[2]リモート I/O出力
12				
13			号機番号[3]リモートI/O入力	号機番号[3]リモート I/O出力
14		リモート I/O 号機番号[4]リモート I/O		
15			号機番号[4]リモート I/O入力	号機番号[4]リモート I/O出力
10				
17	データ部		号機番号[5]リモート I/O入力	号機番号[5]リモート I/O出力
19				
20				
21			号機番号[7]リモートI/O入力	号機番号[7]リモート1/〇出力
22				
23			レジスタ号機番号	レジスタ号機番号応答
24				
25			命令コード +TRIG	命令コード応答 +TRIG応答
26		リモートレジスタ		+STATUS
27				
28			DATA	DATA応答
29				
30				
31		-	予約	予約

3-4 NETC01-M3 のフィールドマップ

[DATA_RWA]コマンド(20h)で、リモート I/Oデータの更新(非同期)を行ないます。 リモート I/O占有サイズが16 ビットモード、伝送バイト数が32 バイト(出荷時設定)の場合、I/Oフィールドマップは表の ようになります。その他の I/Oフィールドマップは、**NETC01-M3** ユーザーズマニュアルをご覧ください。

バイト	種別	コマンド	レスポンス			
0	-	DATA_RWA (20h)	DATA_RWA(20h)			
1	-	WDT	RWDT			
2	-	CMD CTR	CMD STAT			
3	-					
4	-	予約	接続ステータス			
5	-	ריא <i>י</i> ר				
6						
7						
8			 			
9						
10						
11						
12		 				
13	リモート 1/0					
14		 				
15						
16		 	 			
17						
18		 	 			
19						
20		号機番号[7] リモート I/O入力	号機番号[7]リモート I/O出力			
21						
22		レジスタ号機番号	レジスタ号機番号応答			
23						
24		命令コード +TRIG	命令コード応答 +TRIG応答 +STATUS			
25	リモートレジスタ					
20	-					
22		DATA	DATA応答			
20						
29						
21	_	予約	予約			
21						

3-5 通信フォーマット

ドライバとネットワークコンバータとの通信フォーマットを示します。

■ リモート I/O入力

リモート I/Oの詳細 🔿 56 ページ [3-2 ネットワーク I/Oの割り付け]

● 8 軸接続モードの場合[16 bitモード]

[]内は初期値です。

bit15	bit14	bit13	bit12	bit11	bit10	bit9	bit8
NET-IN15 [RVS]	NET-IN14 [FWD]	NET-IN13 [–JOG]	NET-IN12 [+JOG]	NET-IN11 [SSTART]	NET-IN10 [MS2]	NET-IN9 [MS1]	NET-IN8 [MS0]
bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
NET-IN7	NET-IN6	NET-IN5	NET-IN4	NET-IN3	NET-IN2	NET-IN1	NET-IN0
[ALM-RST]	[FREE]	[STOP]	[HOME]	[START]	[M2]	[M1]	[M0]

● 16 軸接続モードの場合[8 bitモード]

[]内は初期値です。

bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
NET-IN7	NET-IN6	NET-IN5	NET-IN4	NET-IN3	NET-IN2	NET-IN1	NET-IN0
[ALM-RST]	[FREE]	[STOP]	[HOME]	[START]	[M2]	[M1]	[M0]

リモート I/O出力

リモート I/Oの詳細 🗘 56 ページ [3-2 ネットワーク I/Oの割り付け]

● 8 軸接続モードの場合[16 bitモード]

[]内は初期値です。

bit15	bit14	bit13	bit12	bit11	bit10	bit9	bit8
NET-OUT15	NET-OUT14	NET-OUT13	NET-OUT12	NET-OUT11	NET-OUT10	NET-OUT9	NET-OUT8
[STEPOUT]	[未使用]	[MOVE]	[TIM]	[AREA3]	[AREA2]	[AREA1]	[S-BSY]
bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
NET-OUT7	NET-OUT6	NET-OUT5	NET-OUT4	NET-OUT3	NET-OUT2	NET-OUT1	NET-OUT0
[ALM]	[WNG]	[READY]	[HOME-P]	[START_R]	[M2_R]	[M1_R]	[M0_R]

● 16 軸接続モードの場合[8 bitモード]

[]内は初期値です。

bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
NET-OUT7	NET-OUT6	NET-OUT5	NET-OUT4	NET-OUT3	NET-OUT2	NET-OUT1	NET-OUTO
[AL/VI]	[VVING]			[START_R]			

■ リモートレジスタ入力

● コマンド[NETC01-M2(NETC01-M3)→ドライバ]

空欄は命令コード用です。

bit15	bit14	bit13	bit12	bit11	bit10	bit9	bit8
-	TRIG						
bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0

説明

名称	内容	設定範囲
命令コード	パラメータの読み出しと書き込み、モニタ、およびメンテナンスの 命令コードを指定します。	_
TRIG	命令コードを実行するハンドシェイク用トリガです。 TRIGが0 から1 になると、命令コードと DATAが実行されます。	0:動作なし 1:実行

■ リモートレジスタ出力

● レスポンス[ドライバ→ NETC01-M2(NETC01-M3)]

空欄は命令コード用です。

bit15	bit14	bit13	bit12	bit11	bit10	bit9	bit8
STATUS	TRIG_R						
bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0

説明

名称	内容	設定範囲
TRIG_R	命令コードの実行完了を表わすハンドシェイク用トリガです。 命令コードの実行が完了すると、TRIG_Rが0 から1 になります。	0:未処理 1:実行完了
STATUS	命令コードを実行した結果を示します。	0:正常 1:異常

4 リモート I/Oの詳細

すべてのネットワークコンバータに共通です。

4-1 ドライバへの入力

パラメータで、次の入力信号をリモート I/Oの NET-INO ~ NET-IN 15 に割り付けることができます。 NET-INO ~ NET-IN 15 の配置については、次表をご覧ください。[]内は初期値です。 パラメータについては、224 ページ[5-5 ユーザーパラメータ]をご覧ください。

bit15	bit14	bit13	bit12	bit11	bit10	bit9	bit8
NET-IN15	NET-IN14	NET-IN13	NET-IN12	NET-IN11	NET-IN10	NET-IN9	NET-IN8
[RVS]	[FWD]	[-JOG]	[+JOG]	[SSTART]	[MS2]	[MS1]	[MS0]
bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
NET-IN7	NET-IN6	NET-IN5	NET-IN4	NET-IN3	NET-IN2	NET-IN1	NET-INO
[ALM-RST]	[FREE]	[STOP]	[HOME]	[START]	[M2]	[M1]	[M0]

信号名	機能	設定範囲		
未使用	入力端子を使用しないときに設定します。	-		
FWD	+方向の連続運転を実行します。	0:減速停止		
RVS	 方向の連続運転を実行します。 	1:運転		
HOME	原点復帰運転を実行します。			
START	位置決め運転を実行します。			
SSTART	順送り位置決め運転を実行します。	· 0:動作なし 1:実行		
+JOG	+方向の JOG運転を実行します。			
-JOG	−方向の JOG運転を実行します。			
MS0 ~ MS5	I/Oパラメータで設定した運転データ No.のダイレクト 位置決め運転を実行します。			
FREE	モーターを無励磁にして、電磁ブレーキを解放します。	0:動作なし 1:モーター無励磁、電磁ブレーキ解放		
AWO	モーターの励磁 /無励磁を切り替えます。	0:モーター励磁 1:モーター無励磁		
STOP	モーターを停止させます。	0:動作なし 1:モーター停止		
ALM-RST	アラームをリセットします。	0:動作なし		
P-PRESET	位置プリセットを実行します。	1:実行		
HMI	MEXE02 や OPX-2Aの機能制限を解除します。	0:機能制限 1:機能制限解除		
R0~R15	汎用信号 RS-485 通信で制御するときに使用します。	0:OFF 1:ON		
M0~M5	6 つのビットの ON/OFFを組み合わせて、運転データ No.を選択します。組み合わせの詳細は61 ページをご 覧ください。	0:OFF 1:ON (運転データ No.は0 ~ 63 まで選択可能)		

• 同じ入力信号を複数の入力端子に割り当てないでください。複数の入力端子に割り当てたときは、 どれか入力があれば機能が実行されます。

• HMI入力は、入力端子に割り当てられなかったときは常時 ON(1)になります。また、ダイレクト I/O とリモート I/Oの両方に割り当てたときは、両方とも ON(1)にならないと機能しません。
4-2 ドライバからの出力

パラメータで、次の出力信号をリモート I/Oの NET-OUT0 ~ NET-OUT 15 に割り付けることができます。 NET-OUT0 ~ NET-OUT 15 の配置については、次表をご覧ください。[]内は初期値です。 パラメータについては、224 ページ[5-5 ユーザーパラメータ]をご覧ください。

bit15	bit14	bit13	bit12	bit11	bit10	bit9	bit8
NET- OUT15 [STEPOUT]	NET- OUT14 [未使用]	NET- OUT13 [MOVE]	NET- OUT12 [TIM]	NET- OUT11 [AREA3]	NET- OUT10 [AREA2]	NET-OUT9 [AREA1]	NET-OUT8 [S-BSY]
bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
NET-OUT7 [ALM]	NET-OUT6 [WNG]	NET-OUT5 [READY]	NET-OUT4 [HOME-P]	NET-OUT3 [START_R]	NET-OUT2 [M2_R]	NET-OUT1 [M1_R]	NET-OUT0 [M0_R]

信号名	機能	読み出し内容
未使用	出力端子を使用しないときに設定します。	-
FWD_R	FWD入力に対する応答を出力します。	
RVS_R	RVS入力に対する応答を出力します。	
HOME_R	HOME入力に対する応答を出力します。	
START_R	START入力に対する応答を出力します。	
SSTART_R	SSTART入力に対する応答を出力します。	
+JOG_R	+JOG入力に対する応答を出力します。	
-JOG_R	-JOG入力に対する応答を出力します。	
$MSO_R \sim MS5_R$	MSO ~ MS5 入力に対する応答を出力します。	
FREE_R	FREE入力に対する応答を出力します。	
AWO_R	AWO入力に対する応答を出力します。	
STOP_R	STOP入力に対する応答を出力します。	
$R0 \sim R15$	汎用信号 R0 ~ R15 の状態を出力します。	
$MO_R \sim M5_R$	M0~M5入力に対する応答を出力します。	
+LS_R	+LS入力に対する応答を出力します。	
-LS_R	-LS入力に対する応答を出力します。	
HOMES_R	HOMES入力に対する応答を出力します。	
SLIT_R	SLIT入力に対する応答を出力します。	
ALM	アラーム発生時に出力されます。(A接点)	0:アラームなし 1:アラーム発生中
WNG	ワーニング発生時に出力されます。	0:ワーニングなし 1:ワーニング発生中
READY	ドライバの運転準備が完了すると出力されます。	0:運転不可 1:運転準備完了
MOVE	モーター運転中に出力されます。	0:モーター停止 1:モーター動作中
HOME-P	モーター位置が原点にあるときに出力されます。	0:原点以外 1:原点
TIM	モーター出力軸が7.2°回転するたびに出力されます。	0:OFF 1:ON
AREA1 \sim AREA3	モーターがエリアの範囲内にあるときに出力されます。	0:エリア範囲外 1:エリア範囲内
S-BSY	ドライバが内部処理状態のときに出力されます。	0:内部処理なし 1:内部処理中
MPS	主電源の投入状態を出力します。	0:主電源未投入 1:主電源投入
STEPOUT	偏差に異常があるときに出力されます。	0:偏差異常なし 1:偏差異常発生中
ОН	過熱のワーニングが発生すると出力されます。	0:過熱のワーニングなし 1:過熱のワーニング発生中

I

<u><u> </u></u>		
信号名	機能	読み出し内容
ZSG	エンコーダから ENC-Z信号が入力されると、出力されます。	0:ENC-Z入力なし 1:ENC-Z入力あり
MBC	電磁ブレーキの制御状態を出力します。	0:電磁ブレーキ保持 1:電磁ブレーキ解放

5 命令コード一覧

すべてのネットワークコンバータに共通です。

5-1 グループ機能

ドライバにはグループ機能があります。グループ機能とは、複数のスレーブでグループを組み、そのグループに対して運転指令を一斉に送信することです。

■ グループの構成

グループは親スレーブ1台と子スレーブで構成されます。

■ グループのアドレス

グループ送信を行なうときは、グループのアドレスをグループの対象となる子スレーブに対して設定します。 グループのアドレスを設定した子スレーブは、親スレーブに送信された指令を受け取ることができます。 親スレーブに運転指令を送信することで、同一グループの子スレーブにも指令が送信されます。

● 親スレーブ

親スレーブには、グループ送信のための設定は必要ありません。親スレーブの号機番号が、グループのアドレスになります。

● 子スレーブ

「グループ」(1018h)でグループのアドレスを子スレーブに設定します。

(memo) グループ機能で実行できるのはリモート I/O入力だけです。コマンドやパラメータの読み出し、書き込み は実行できません。

■ グループ設定

グループ設定は、メンテナンスコマンド「NVメモリー括書き込み」を実行しても NVメモリに保存されません。

命令コード		市内	この分析用	切扣店
読み出し	書き込み	内谷		初舟恒
24 (0018h)	4120 (1018h)	グループ	グループのアドレスを設定します。 –1:個別 (グループを指定しません。) 0~ 15:グループのアドレス (親スレーブの号機番号) ※	_1:個別

※ NETC01-CCを使用するときは0~11、その他のネットワークコンバータを使用するときは0~15の範囲で設定して ください。

■ グループ機能の設定例

号機番号0のドライバを親スレーブ、号機番号1と2のドライバを子スレーブにしてグループを組むときは、次のように設定してください。

グループを構成するドライバの NET-IN3 (リモート I/O) に STARTを割り付けたときのタイミングチャートです。

(memo) 親スレーブにリモート I/Oを入力すると、子スレーブも動作します。子スレーブにリモート I/Oを入力しても動作しません。

5-2 メンテナンスコマンド

アラームやワーニング履歴をクリアしたり、NVメモリの一括処理に使用するコマンドです。

命令コード	内容	説明	設定範囲
12480 (30C0h)	アラームのリセット	発生中のアラームを解除します。アラームの種類に よっては解除できないものがあります。	
12482 (30C2h)	アラーム履歴のクリア	アラーム履歴をクリアします。	
12483 (30C3h)	ワーニング履歴のクリア	ワーニング履歴をクリアします。	
12484 (30C4h)	通信エラーコード履歴クリア	通信エラー履歴をクリアします。	
12485 (30C5h)	P-PRESET実行	指令位置とフィードバック位置をプリセットします。	
12486 (30C6h)	Configuration	パラメータの再計算とセットアップを実行します。	0:動作なし 1:実行
12487 (30C7h)	全データ初期化	NVメモリに保存されている運転データとパラメータ を初期値に戻します。ただし通信パリティ、通信ス トップビット、および送信待ち時間は初期化されま せん。	
12488 (30C8h)	NVメモリー括読出し	NVメモリに保存されている運転データとパラメータ をRAMに読み出します。RAMに保存されていた運 転データとパラメータはすべて上書きされます。	
12489 (30C9h)	NVメモリー括書込み	RAMに保存されている運転データとパラメータを NVメモリに書き込みます。	
12490 (30CAh)	エンコーダカウンタプリセット	エンコーダカウンタを「エンコーダカウンタプリセッ ト値」パラメータの値に更新します。	

(memo) NVメモリの書き換え可能回数は、約10万回です。

5-3 モニタコマンド

ドライバの状態をモニタするコマンドです。

命令コード	内容	説明		
8256 (2040h)	現在アラーム	発生中のアラームコードを示します。		
8257 (2041h)	アラーム履歴1			
8258 (2042h)	アラーム履歴2			
8259 (2043h)	アラーム履歴3			
8260 (2044h)	アラーム履歴4			
8261 (2045h)	アラーム履歴5	アラーム履歴1 ~ 10 を示します。		
8262 (2046h)	アラーム履歴6			
8263 (2047h)	アラーム履歴7			
8264 (2048h)	アラーム履歴8			
8265 (2049h)	アラーム履歴9			
8266 (204Ah)	アラーム履歴10			
8267 (204Bh)	現在ワーニング	発生中のワーニングコードを示します。		
8268 (204Ch)	ワーニング履歴1			
8269 (204Dh)	ワーニング履歴2			
8270 (204Eh)	ワーニング履歴3			
8271 (204Fh)	ワーニング履歴4			
8272 (2050h)	ワーニング履歴5	ワーニング履歴1 ~ 10 を示します。		
8273 (2051h)	ワーニング履歴6			
8274 (2052h)	ワーニング履歴7			
8275 (2053h)	ワーニング履歴8			
8276 (2054h)	ワーニング履歴9			
8277 (2055h)	ワーニング履歴10			
8278 (2056h)	現在通信エラーコード	前回受信した通信エラーコードを示します。		
8279 (2057h)	通信エラーコード履歴1			
8280 (2058h)	通信エラーコード履歴2	これまでに発生した通信エラーコード履歴1 ~ 4 を示します		
8281 (2059h)	通信エラーコード履歴3			
8282 (205Ah)	通信エラーコード履歴4			

命令コード	内容	説明
8283 (205Bh)	通信エラーコード履歴5	
8284 (205Ch)	通信エラーコード履歴6	
8285 (205Dh)	通信エラーコード履歴7	
8286 (205Eh)	通信エラーコード履歴8	これはでに先生した通信エノーコート履歴5~10を小しより。
8287 (205Fh)	通信エラーコード履歴9	
8288 (2060h)	通信エラーコード履歴10	
8289 (2061h)	現在の選択データ No.	選択されている運転データ No.を示します。
8290 (2062h)	現在の運転データ No.	位置決め運転中の運転データ No.を示します。連結運転と順送り位置決め運転で使用できます。停止中は、最後に運転したデータ No.が示されます。電源を投入してから位置決め運転が実行されるまでは、「-1」が表示されます。
8291 (2063h)	指令位置	指令位置を示します。
8292 (2064h)	指令速度	指令速度を示します。 (r/min)
8293 (2065h)	指令速度	指令速度を示します。 (Hz)
8294 (2066h)	フィードバック位置※	フィードバック位置を示します。
8297 (2069h)	ドウェルの残り時間	連結運転2 で使用するドウェル時間の残りを示します。
8298 (206Ah)	ダイレクト I/O、電磁ブレー キの状態	ダイレクトI/Oと電磁ブレーキの状態を示します。詳細は次表をご覧く ださい。
8320 (2080h)	エンコーダカウンタ※	エンコーダカウンタの値を示します。

※ エンコーダ付のみ

ダイレクト I/O、電磁ブレーキの状態(206Ah)

バイト	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
0	IN7	IN6	IN5	IN4	IN3	IN2	IN1	IN0
1	-	-	-	-	SLIT	HOMES	–LS	+LS
2	-	-	OUT5	OUT4	OUT3	OUT2	OUT1	OUT0
3	-	-	-	-	-	-	-	MB

5-4 運転データ

設定できる運転データ数は64 個です(データ No.0 ~ 63)。 運転データを変更すると、すぐに再計算とセットアップが行なわれ、変更した値が反映されます。

命令日	コード	中应	いつちの	切扣/古	
読み出し	書き込み		i又是単出出	10月11月	
512 (0200h) ~ 575 (023Fh)	4608 (1200h) ~ 4671 (123Fh)	位置 No.0 ~ 位置 No.63	-8,388,608 ~ 8,388,607 step	0	
576 (0240h) ~ 639 (027Fh)	4672 (1240h) ~ 4735 (127Fh)	運転速度 No.0 ~ 運転速度 No.63	0 ~ 1,000,000 Hz	1,000	
640 (0280h) ~ 703 (02BFh)	4736 (1280h) ~ 4799 (12BFh)	運転方式 No.0 ~ 運転方式 No.63	0:INC (インクリメンタル) 1:ABS (アブソリュート)	0	
704 (02C0h) ~ 767 (02FFh)	4800 (12C0h) ~ 4863 (12FFh)	運転機能 No.0 ~ 運転機能 No.63	0:単独 1:連結 2:連結2	0	
768 (0300h) ~ 831 (033Fh)	4864 (1300h) ~ 4927 (133Fh)	加速 No.0 ~ 加速 No.63	1 ~ 1,000,000 (1=0.001 ms/kHz または1=0.001 s) ※1 ※2	30,000	
832 (0340h) ~ 895 (037Fh)	4928 (1340h) ~ 4991 (137Fh)	減速 No.0 ~ 減速 No.63	1 ~ 1,000,000 (1=0.001 ms/kHz または1=0.001 s) ※1 ※2	30,000	
960 (03C0h) ~ 1023 (03FFh)	5056 (13C0h) ~ 5119 (13FFh)	順送り位置決め No.0 ~ 順送り位置決め No.63	0:無効 1:有効	0	
1024 (0400h) ~ 1087 (043Fh)	5120 (1400h) ~ 5183 (143Fh)	ドウェル時間 No.0 ~ ドウェル時間 No.63	0~50,000(1=0.001 s)	0	

※1 「加減速選択」パラメータが「独立」のときに有効です。「共通」のときは、「共通加速」「共通減速」パラメータの設定値 が使用されます(初期値:独立)。

※2 「加減速単位」パラメータで、加減速レート(ms/kHz)か加減速時間(s)を選択できます(初期値:加減速レート)。

ユーザーパラメータ 5-5

パラメータは RAMまたは NVメモリに保存されます。RAMのパラメータは DC24 V電源を遮断すると消去されますが、 NVメモリのパラメータは DC24 V電源を遮断しても保存されています。

ドライバに DC24 V電源を投入すると、NVメモリのパラメータが RAMに転送され、RAM上でパラメータの再計算やセッ トアップが行なわれます。

FAネットワークで設定したパラメータはRAMに保存されます。RAMに保存されたパラメータをNVメモリに保存するには、 メンテナンスコマンドの[NVメモリー括書き込み]を行なってください。

MEXE02 で設定したパラメータは、「データの書き込み」を行なうと NVメモリに保存されます。

パラメータを変更したときに、変更した値が反映されるタイミングはパラメータによって異なります。反映タイミングの 詳細は「表記の規則」でご確認ください。

- (memo) FAネットワークで設定したパラメータは RAMに保存されます。 DC24 V電源の再投入が必要なものは、 電源を切る前に必ず NVメモリへ保存してください。
 - NVメモリへの書き込み可能回数は、約10万回です。

■ 表記の規則

本書では、それぞれの反映タイミングをアルファベットで表わしています。

表記	内容
А	パラメータを書き込むと、すぐに再計算とセットアップが行なわれます。
В	運転を停止すると、再計算とセットアップが行なわれます。
С	Configurationの実行後または DC24 V電源の再投入後に、再計算とセットアップが行なわれます。
D	DC24 V電源の再投入後に再計算とセットアップが行なわれます。

I/Oパラメータ

命令コード		夕称	設定筋囲	初期佔	反映
読み出し	書き込み				(P.224)
256 (0100h)	4352 (1100h)	STOP入力停止方法	0:即停止 1:減速停止 2:即停止+カレントオフ 3:減速停止+カレントオフ	1	
257 (0101h)	4353 (1101h)	ハードウェアオーバー トラベル	0:無効 1:有効	1	
258 (0102h)	4354 (1102h)	オーバートラベル動作	0:即停止 1:減速停止	0	
261 (0105h)	4357 (1105h)	AREA1 +方向位置			
262 (0106h)	4358 (1106h)	AREA1 -方向位置	−8,388,608 ~ 8,388,607 step		А
263 (0107h)	4359 (1107h)	AREA2 +方向位置		0	
264 (0108h)	4360 (1108h)	AREA2 -方向位置			
265 (0109h)	4361 (1109h)	AREA3 +方向位置			
266 (010Ah)	4362 (110Ah)	AREA3 -方向位置			
267 (010Bh)	4363 (110Bh)	MOVE出力最小時間	0 ~ 255 ms	0	
268 (010Ch)	4364 (110Ch)	±LS接点設定	0:A接点(N.O.)	0	C
269 (010Dh)	4365 (110Dh)	HOMES接点設定	1:B接点(N.C.)	0	C

命令二	コード	名称	設定範囲	初期値	反映
読み出し	書き込み				(P.224)
270 (010Eh)	4366 (110Eh)	SLIT接点設定	0:A接点(N.O.) 1:B接点(N.C.)	0	С
2048 (0800h)	6144 (1800h)	MS0 運転 No.選択		0	
2049 (0801h)	6145 (1801h)	MS1 運転 No.選択		1	
2050 (0802h)	6146 (1802h)	MS2 運転 No.選択	0 62	2	D
2051 (0803h)	6147 (1803h)	MS3 運転 No.選択	0~05	3	D
2052 (0804h)	6148 (1804h)	MS4 運転 No.選択		4	
2053 (0805h)	6149 (1805h)	MS5 運転 No.選択		5	
2054 (0806h)	6150 (1806h)	HOME-P出力機能選択	0:原点出力 1:原点復帰完了出力	0	А

■ モーターパラメータ

命令コード		夕称	設定範囲	初期値	反映
読み出し	書き込み		一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一	初知道	(P.224)
288 (0120h)	4384 (1120h)	RUN電流	0~1,000(1=0.1%)	1,000	٨
289 (0121h)	4385 (1121h)	STOP電流	0~600(1=0.1%)	500	A
293 (0125h)	4389 (1125h)	速度フィルタ	0 ~ 200 ms	1	P
294 (0126h)	4390 (1126h)	移動平均時間	0 ~ 200 ms	1	D
2064 (0810h)	6160 (1810h)	フィルタ選択	0:速度フィルタ 1:移動平均フィルタ	0	С

■ 運転パラメータ

命令コード			設定範囲	初期値	反映
読み出し	書き込み				(P.224)
320 (0140h)	4416 (1140h)	共通加速	1~1,000,000(1=0.001 ms/kHz または1=0.001 s)※1 ※2	30,000	
321 (0141h)	4417 (1141h)	共通減速	1 ~ 1,000,000 (1=0.001 ms/kHz または1=0.001 s) ※1 ※2	30,000	
322 (0142h)	4418 (1142h)	起動速度	0~1,000,000 Hz	100	
323 (0143h)	4419 (1143h)	JOG運転速度	1 ~ 1,000,000 Hz	1,000	В
324 (0144h)	4420 (1144h)	JOG加減速	1~1,000,000(1=0.001 ms/kHz または1=0.001 s)※2	30,000	
325 (0145h)	4421 (1145h)	JOG起動速度	0~1,000,000 Hz	100	
326 (0146h)	4422 (1146h)	加減速選択	0:共通 1:独立	1	
327 (0147h)	4423 (1147h)	加減速単位	0:ms/kHz 1:s	0	С
2084 (0824h)	6180 (1824h)	JOG移動量	1~8,388,607 step	1	В

※1 「加減速選択」パラメータが「共通」のときに有効です。(初期値:独立)

※2 「加減速単位」パラメータで、加減速レート (ms/kHz) か加減速時間 (s) を選択できます。(初期値:加減速レート)

■ 原点復帰パラメータ

命令コード					反映
読み出し	書き込み	名称	設定範囲	初期値	(P.224)
352 (0160h)	4448 (1160h)	原点復帰方法	0:2 センサ方式 1:3 センサ方式	1	
353 (0161h)	4449 (1161h)	原点復帰運転速度	1 ~ 1,000,000 Hz	1,000	
354 (0162h)	4450 (1162h)	原点復帰加減速	1 ~ 1,000,000 (1=0.001 ms/kHz または1=0.001 s) ※	30,000	
355 (0163h)	4451 (1163h)	原点復帰起動速度	1 ~ 1,000,000 Hz	100	
356 (0164h)	4452 (1164h)	原点復帰オフセット	-8,388,608 ~ 8,388,607 step	0	В
357 (0165h)	4453 (1165h)	原点復帰開始方向	0:一側 1:+側	1	
358 (0166h)	4454 (1166h)	原点復帰 SLITセンサ検出	0:無効 1:有効	0	
359 (0167h)	4455 (1167h)	原点復帰 TIM信号検出	0:無効 1:TIM信号有効 2:ZSG信号有効	0	
2096 (0830h)	6192 (1830h)	2 センサ原点復帰戻り量	0~32,767 step	200	

※ 「加減速単位」パラメータで、加減速レート (ms/kHz) か加減速時間 (s) を選択できます。(初期値:加減速レート)

■ アラーム・ワーニングパラメータ

命令コード		夕称	シテ新田	勿抑病	反映
読み出し	書き込み		設た単四	初知但	(P.224)
388 (0184h)	4484 (1184h)	原点復帰未完了アラーム	0:無効 1:有効	0	С
416 (01A0h)	4512 (11A0h)	過熱ワーニング	40 ~ 85 °C	85	
419 (01A3h)	4515 (11A3h)	過電圧ワーニング	120~450 V	435	А
420 (01A4h)	4516 (11A4h)	不足電圧ワーニング	120~280 V	120	

■ 座標パラメータ

命令コード		内容	シマ新田	勿抑/古	反映	
読み出し	書き込み		設た範囲	初知恒	(P.224)	
448 (01C0h)	4544 (11C0h)	電子ギヤA	1~65,535	1		
449 (01C1h)	4545 (11C1h)	電子ギヤ B	1~65,535	1	С	
450 (01C2h)	4546 (11C2h)	モーター回転方向	0:+側=CCW 1:+側=CW	1		
451 (01C3h)	4547 (11C3h)	ソフトウェア オーバートラベル	0:無効 1:有効	1		
452 (01C4h)	4548 (11C4h)	+ソフトウェアリミット	-8,388,608 ~ 8,388,607 step	8,388,607	٨	
453 (01C5h)	4549 (11C5h)	ーソフトウェアリミット	-8,388,608 ~ 8,388,607 step	-8,388,608	A	
454 (01C6h)	4550 (11C6h)	プリセット位置	-8,388,608 ~ 8,388,607 step	0		

命令コード		内容	設定範囲	初期値	反映
読み出し	書き込み				(P.224)
455 (01C7h)	4551 (11C7h)	ラウンド設定	0:無効 1:有効	0	
456 (01C8h)	4552 (11C8h)	ラウンド設定範囲	1 ~ 8,388,607 step	500	С
2144 (0860h)	6240 (1860h)	エンコーダ分解能	100~10,000 P/R	500	
2145 (0861h)	6241 (1861h)	エンコーダカウンタ プリセット値	-8,388,608 ~ 8,388,607 step	0	А
2146 (0862h)	6242 (1862h)	脱調検出	0:無効 1:有効	0	С
2147 (0863h)	6243 (1863h)	脱調検出幅	1~3,600(1=0.1°)	72	
2148 (0864h)	6244 (1864h)	脱調検出動作	0:動作なし 1:ワーニング出力 2:アラーム出力	0	A

■ 共通パラメータ

命令コード		内容	設定範囲	初期佔	反映
読み出し	書き込み				(P.224)
480 (01E0h)	4576 (11E0h)	データ設定器速度表示	0:符号あり 1:絶対値	0	^
481 (01E1h)	4577 (11E1h)	データ設定器編集	0:無効 1:有効	1	A

■ 通信パラメータ

命令コード		内容	設定範囲	初期値	反映
読み出し	書さ込み				(P.224)
2304 (0900h)	6400 (1900h)	通信タイムアウト	0 ms:監視なし 1 ~ 10,000 ms	0	^
2305 (0901h)	6401 (1901h)	通信異常アラーム	1~10 🗆	3	

I/O機能パラメータ

命令コード		内容	設定範囲	初期値	反映
読み出し	書き込み				(P.224)
2176 (0880h)	6272 (1880h)	IN0 入力機能選択		3:HOME	
2177 (0881h)	6273 (1881h)	IN1 入力機能選択		4:START	
2178 (0882h)	6274 (1882h)	IN2 入力機能選択		48:M0	
2179 (0883h)	6275 (1883h)	IN3 入力機能選択		49:M1	
2180 (0884h)	6276 (1884h)	IN4 入力機能選択		50:M2	
2181 (0885h)	6277 (1885h)	IN5 入力機能選択		16:FREE	
2182 (0886h)	6278 (1886h)	IN6 入力機能選択		18:STOP	
2183 (0887h)	6279 (1887h)	IN7 入力機能選択		24:ALM-RST	

命令コード		由应	沙宁符田	勿扣,	反映
読み出し	書き込み	内谷	家 走戰世	初期但	(P.224)
2192 (0890h)	6288 (1890h)	IN0 入力接点設定			
2193 (0891h)	6289 (1891h)	IN1 入力接点設定			
2194 (0892h)	6290 (1892h)	IN2 入力接点設定			
2195 (0893h)	6291 (1893h)	IN3 入力接点設定	0:A接点(N.O.)	0	
2196 (0894h)	6292 (1894h)	IN4 入力接点設定	1:B接点(N.C.)	U	
2197 (0895h)	6293 (1895h)	IN5 入力接点設定			C
2198 (0896h)	6294 (1896h)	IN6 入力接点設定			
2199 (0897h)	6295 (1897h)	IN7 入力接点設定			C
2208 (08A0h)	6304 (18A0h)	OUT0 出力機能選択		70:HOME-P	
2209 (08A1h)	6305 (18A1h)	OUT1 出力機能選択		68:MOVE	
2210 (08A2h)	6306 (18A2h)	OUT2 出力機能選択	かまた ご覧 ノ だ さい	73:AREA1	
2211 (08A3h)	6307 (18A3h)	OUT3 出力機能選択	八次でし見てんじい。	67:READY	
2212 (08A4h)	6308 (18A4h)	OUT4 出力機能選択		66:WNG	
2213 (08A5h)	6309 (18A5h)	OUT5 出力機能選択		65:ALM	

● IN入力機能選択の設定範囲

0:未使用	7:-JOG	16:FREE	33:R1	40:R8	47:R15
1:FWD	8:MS0	17:AWO	34:R2	41:R9	48:M0
2:RVS	9:MS1	18:STOP	35:R3	42:R10	49:M1
3:HOME	10:MS2	24:ALM-RST	36:R4	43:R11	50:M2
4:START	11:MS3	25:P-PRESET	37:R5	44:R12	51:M3
5:SSTART	12:MS4	27:HMI	38:R6	45:R13	52:M4
6:+JOG	13:MS5	32:R0	39:R7	46:R14	53:M5

● OUT出力機能選択の設定範囲

0:未使用	10:MS2_R	35:R3	45:R13	61:-LS_R	74:AREA2
1:FWD_R	11:MS3_R	36:R4	46:R14	62:HOMES_R	75:AREA3
2:RVS_R	12:MS4_R	37:R5	47:R15	63:SLIT_R	80:S-BSY
3:HOME_R	13:MS5_R	38:R6	48:M0_R	65:ALM	82:MPS
4:START_R	16:FREE_R	39:R7	49:M1_R	66:WNG	83:STEPOUT
5:SSTART_R	17:AWO_R	40:R8	50:M2_R	67:READY	84:OH
6:+JOG_R	18:STOP_R	41:R9	51:M3_R	68:MOVE	85:ZSG
7:-JOG_R	32:R0	42:R10	52:M4_R	70:HOME-P	86:MBC
8:MS0_R	33:R1	43:R11	53:M5_R	72:TIM	
9:MS1_R	34:R2	44:R12	60:+LS_R	73:AREA1	

■ I/O機能[RS-485]パラメータ

命令コード		中亞	司合在国	勿期/庙	反映
読み出し	書き込み		設定創出	10月11月11月11月11月11月11月11月11月11月11月11月11月1	(P.224)
2224 (08B0h)	6320 (18B0h)	NET-INO 入力機能選択		48:M0	
2225 (08B1h)	6321 (18B1h)	NET-IN1 入力機能選択		49:M1	
2226 (08B2h)	6322 (18B2h)	NET-IN2 入力機能選択		50:M2	
2227 (08B3h)	6323 (18B3h)	NET-IN3 入力機能選択		4:START	
2228 (08B4h)	6324 (18B4h)	NET-IN4 入力機能選択		3:HOME	
2229 (08B5h)	6325 (18B5h)	NET-IN5 入力機能選択		18:STOP	
2230 (08B6h)	6326 (18B6h)	NET-IN6 入力機能選択		16:FREE	
2231 (08B7h)	6327 (18B7h)	NET-IN7 入力機能選択	次ページをご覧ください	24:ALM-RST	
2232 (08B8h)	6328 (18B8h)	NET-IN8 入力機能選択		8:MS0	
2233 (08B9h)	6329 (18B9h)	NET-IN9 入力機能選択		9:MS1	
2234 (08BAh)	6330 (18BAh)	NET-IN10 入力機能選択		10:MS2	
2235 (08BBh)	6331 (18BBh)	NET-IN11 入力機能選択		5:SSTART	
2236 (08BCh)	6332 (18BCh)	NET-IN12入力機能選択		6:+JOG	
2237 (08BDh)	6333 (18BDh)	NET-IN13 入力機能選択		7:-JOG	С
2238 (08BEh)	6334 (18BEh)	NET-IN14 入力機能選択		1:FWD	
2239 (08BFh)	6335 (18BFh)	NET-IN15 入力機能選択		2:RVS	
2240 (08C0h)	6336 (18C0h)	NET-OUT0 出力機能選択		48:M0_R	
2241 (08C1h)	6337 (18C1h)	NET-OUT1 出力機能選択		49:M1_R	
2242 (08C2h)	6338 (18C2h)	NET-OUT2 出力機能選択		50:M2_R	
2243 (08C3h)	6339 (18C3h)	NET-OUT3 出力機能選択		4:START_R	
2244 (08C4h)	6340 (18C4h)	NET-OUT4 出力機能選択		70:HOME-P	
2245 (08C5h)	6341 (18C5h)	NET-OUT5 出力機能選択	次ページをご覧ください。	67:READY	
2246 (08C6h)	6342 (18C6h)	NET-OUT6 出力機能選択		66:WNG	
2247 (08C7h)	6343 (18C7h)	NET-OUT7 出力機能選択		65:ALM	
2248 (08C8h)	6344 (18C8h)	NET-OUT8 出力機能選択		80:S-BSY	
2249 (08C9h)	6345 (18C9h)	NET-OUT9 出力機能選択		73:AREA1	
2250 (08CAh)	6346 (18CAh)	NET-OUT10 出力機能選択		74:AREA2	

6 FAネットワーク制御

命令コード		内容	設定筋囲	勿期病	反映
読み出し	書き込み			初舟喧	(P.224)
2251 (08CBh)	6347 (18CBh)	NET-OUT11 出力機能選択		75:AREA3	
2252 (08CCh)	6348 (18CCh)	NET-OUT12 出力機能選択		72:TIM	
2253 (08CDh)	6349 (18CDh)	NET-OUT13 出力機能選択	次表をご覧ください。	68:MOVE	С
2254 (08CEh)	6350 (18CEh)	NET-OUT14 出力機能選択		0:未使用	
2255 (08CFh)	6351 (18CFh)	NET-OUT15 出力機能選択		83:STEPOUT	

• NET-IN入力機能選択の選択範囲

0:未使用	7:-JOG	16:FREE	33:R1	40:R8	47:R15
1:FWD	8:MS0	17:AWO	34:R2	41:R9	48:M0
2:RVS	9:MS1	18:STOP	35:R3	42:R10	49:M1
3:HOME	10:MS2	24:ALM-RST	36:R4	43:R11	50:M2
4:START	11:MS3	25:P-PRESET	37:R5	44:R12	51:M3
5:SSTART	12:MS4	27:HMI	38:R6	45:R13	52:M4
6:+JOG	13:MS5	32:R0	39:R7	46:R14	53:M5

● NET-OUT出力機能選択の選択範囲

0:未使用	10:MS2_R	35:R3	45:R13	61:-LS_R	74:AREA2
1:FWD_R	11:MS3_R	36:R4	46:R14	62:HOMES_R	75:AREA3
2:RVS_R	12:MS4_R	37:R5	47:R15	63:SLIT_R	80:S-BSY
3:HOME_R	13:MS5_R	38:R6	48:M0_R	65:ALM	82:MPS
4:START_R	16:FREE_R	39:R7	49:M1_R	66:WNG	83:STEPOUT
5:SSTART_R	17:AWO_R	40:R8	50:M2_R	67:READY	84:OH
6:+JOG_R	18:STOP_R	41:R9	51:M3_R	68:MOVE	85:ZSG
7:-JOG_R	32:R0	42:R10	52:M4_R	70:HOME-P	86:MBC
8:MS0_R	33:R1	43:R11	53:M5_R	72:TIM	
9:MS1_R	34:R2	44:R12	60:+LS_R	73:AREA1	

7 OPX-2Aによる操作

OPX-2Aの概要や操作方法について説明します。

◆もくじ

1	OP)	(-2Aの概要	232
	1-1	各部の名称と機能	
	1-2	表示部の見方	
	1-3	OPX-2A のエラー表示	
2	面面	遷移	236
3	Ŧ=	タモード	242
	3-1	モニタモードの概要	
	3-2	モニタ項目	
4	デー	・タモード	244
	4-1	設定項目	
	4-2	設定例	
	4-3	指定した運転データの初期化	
	4-4	全運転データの初期化	
5	パラ	ダータモード	247
	5-1	設定例	
	5-2	パラメーター覧	
	5-3	パラメータの初期化	

6 テ	ストモード	253
6-1	テストモードの概要	
6-2	ダイレクトI/Oテスト	
6-3	JOG運転	
6-4	データNo.選択運転	
6-5	原点復帰運転	
6-6	位置プリセット	
6-7	エンコーダカウンタプリセット	
6-8	ティーチング	
7 🗆	ピーモード	256
7-1	コピーモードの概要	
7-2	コピーモードの異常	

1 OPX-2Aの概要

OPX-2Aを使用すると、通信時間をモニタしたり、パラメータを設定できます。また、ドライバのパラメータを保存してお くこともできます。保存先(データバンク)は4つあります。

OPX-2Aは、次のような使い方ができます。

- ドライバのパラメータを設定できます。
- 通信時間や通信の状態をモニタできます。
- アラーム履歴を確認したり、履歴を削除できます。
- ドライバで設定したパラメータをOPX-2Aに保存しておくことができます。
- OPX-2Aに保存したパラメータを別のドライバにコピーできます。

表記について

本文内でキーを説明するときは、【^{MODE}】【SET】【**个】【↓】【 ← 】【 →**】の記号を使用しています。 また、表示部やLED表示部は、図のように省略して表記しています。

8	8	8	8	8	8	8	8	8	

■ 編集ロック機能

パラメータの編集や消去を禁止するときは、編集ロック機能を有効にしてください。 編集ロック機能が有効になっている間は、変更・削除できなくなります。

● 編集ロック機能の設定

各操作モードのトップ画面で、【^{MODE}】を5秒以上押します。 [LocK]が表示され、編集ロック機能が有効になります。 LED表示部の[LOCK]LEDが点灯します。

Loch	
	「LOCK」点灯

● 編集ロック機能の解除

再度、トップ画面で【^{MODE}】を5秒以上押します。 「UnLocK」が表示され、編集ロック機能が解除されます。 LED表示部の「LOCK」LEDが消灯します。

Ц	пL	00	<u>:</u>		
				LOCK	

1-1 各部の名称と機能

1-2 表示部の見方

表示部は7セグメントLEDです。(アラビア数字の「5」とアルファベットの「S」は同じ表示です。)

LED表示部の見方

モードが変わったり、アラームやワーニングが発生すると、LEDが点灯します。 また、モーターの運転中や、編集ロック機能を有効にしているときも、LEDが点灯します。

1-3 OPX-2Aのエラー表示

OPX-2Aに表示されるエラーの内容です。

エラー表示	内容	処置
E INE OUE LL	OPX-2A とドライバとの間で、通 信異常が発生しました。	 OPX-2Aが確実に接続されているか確認してください。 OPX-2Aのケーブルに断線や、キズなどの異常がないか確認してください。 OPX-2Aまたはドライバの通信部分が破損したおそれがあります。最寄りのお客様ご相談センターにお問い合わせください。
		12000

235

2 画面遷移

(memo) ・編集ロック機能が有効になっている間は、次の制限があります。

- ・データモード、パラメータモード:画面に表示されますが、操作はできません。
- アラームとワーニング履歴の消去、データクリア、位置プリセット、エンコーダカウンタプリセット、
 ティーチング、コピーモード:画面に表示されません。
- HMI入力がOFFになっているときは、モニタモード、アップロード、照合、およびパラメータモードの 閲覧しかできません。

トップ画面から下の階層は、(MODE)を押すと1つ上の階層に戻る

237

7 OPX-2Aによる操作

トップ画面から下の階層は、 () を押すと1つ上の階層に戻る

→ コピーモード

---- は、RS-485通信で内部処理を行なっているときは実行できません。 (set) を押しても「mEm-bUSy」が表示されます。

7 OPX-2Aによる操作

トップ画面から下の階層は、(MODE を押すと1つ上の階層に戻る

---- は、RS-485通信で内部処理を行なっているときは実行できません。 (SET) を押しても「mEm-bUSy」が表示されます。

3 モニタモード

3-1 モニタモードの概要

● 動作状態のモニタ

モーターの速度、指令位置、エンコーダカウンタ値、運転中の運転データNo.、選択されている運転データNo.、およびドラ イバの内部温度をリアルタイムでモニタできます。

(Memo) OPX-2Aでモニタできる範囲は-19,999,999~19,999の最大8桁です。しかし、OPX-2Aの表示部に 表示できるのは7桁のため、モニタした値が8桁のときは下7桁だけが表示され、さらに表示部の右下に丸 印が付きます。

• 表示例

実際の値	-19,999,999	-10,000,001	-10,000,000	10,000,000	10,000,001	19,999,999
表示	-99999999.	-0000001.	-0000000.	0000000.	0000001.	99999999.

● アラーム・ワーニングの確認と履歴の消去、アラームの解除

- アラームやワーニングが発生した場合、アラームコードやワーニングコードが表示されるので、内容を確認できます。
- 最新のものから順に、10個のアラーム・ワーニング履歴を確認できます。また、履歴の消去もできます。
- 発生中のアラームを解除できます。

入出力信号の確認

ドライバの入出力信号のON/OFF状態を確認できます。

3-2 モニタ項目

■ 速度

モーターの速度を確認できます(単位:Hz)。

CCW方向に回転中は「-」が表示されますが、絶対値で表示させているときは、回転方向を示す符号が付きません。数値の表 示形式は、「データ設定器速度表示」パラメータで選べます。

■ 指令位置

原点を基準としたモーターの指令位置を確認できます。 分解能を設定しているときは、分解能に応じた値が動作したステップ数として表示されます。

🔳 エンコーダカウンタ

エンコーダ付のみ、エンコーダのカウンタ値を確認できます。

■ 運転番号

位置決め運転の運転データNo.を確認できます。

■ 選択番号

選択されている運転データNo.を確認できます。

🔳 アラーム

アラームが発生すると、アラームコードが表示されます。また、アラームを解除したり、アラーム履歴の確認と消去も実行 できます。アラームの詳細は260ページをご覧ください。

要

) アラームを解除したり、アラーム履歴を消去している間 (表示が点滅している間) はドライバの電源を切ら ないでください。データが破損するおそれがあります。

(memo) アラームの種類によっては、OPX-2Aで解除できないものがあります。260ページ[アラーム一覧]で確認 してください。これらのアラームはドライバの電源を再投入して解除してください。

■ ワーニング

ワーニングが発生すると、ワーニングコードが表示されます。また、ワーニング履歴を確認したり、ワーニング履歴を消去 できます。ワーニングコードの詳細は262ページをご覧ください。

ワーニング履歴を消去している間(表示が点滅している間)はドライバの電源を切らないでください。デー タが破損するおそれがあります。

(memo) ワーニング履歴は、ドライバの電源を切っても自動で消去されます。

ダイレクトI/Oモニタ

ドライバの入出力信号のON/OFF状態を確認できます。 7セグメントLEDがそれぞれの信号に対応しています。信号がONのときは点灯、OFFのときは消灯します。

● 出力信号

■ ドライバ温度

ドライバの内部温度を確認できます。

例:ドライバの内部温度が40°Cのとき

4 データモード

モーターの運転データを64個まで設定できます。設定した運転データはドライバに記憶されます。 OPX-2Aをドライバから 取り外しても、データが消えることはありません。

運転データはモーターの動作に大きく影響しています。内容を十分に理解してから、設定してください。

•編集ロック機能やHMI入力で操作が制限されているときは、運転データを編集できません。

- パラメータモードでIDを選択しても運転データを設定できます。
- 設定範囲外の値を入力したときは、「Error」が1秒間表示されます。設定範囲内の数値を入力しなおして ください。
- RS-485通信で内部処理を行なっているときに【SET】キーを押すと、「mEm-bUSy」が表示される場合 があります。「mEm-bUSy」が表示されるタイミングは、236ページ「2 画面遷移」で確認してください。 必ず内部処理が終了してから、【SET】キーを押してください。

4-1 設定項目

項目	内容	設定範囲	初期値
運転方式	位置決め運転の位置(移動量)の指定方法(アブソ リュート方式またはインクリメンタル方式)を選択し ます。	0:インクリメンタル方式 1:アブソリュート方式	0
位置	位置決め運転の位置(移動量)を設定します。	-8,388,608~+8,388,607 step	0
運転速度	位置決め運転と連続運転の運転速度を設定します。	0∼1,000,000 Hz	1,000
運転機能	位置決め運転の単独または連結を設定します。	0:単独 1:連結 2:連結2	0
順送り位置決め	順送り位置決め運転の有効/無効を設定します。	0:無効 1:有効	0
加速	位置決め運転と連続運転の加速レートまたは加速時 間を設定します。※1※2	0.001~1000.000 ms/kHz	30.000
減速	位置決め運転と連続運転の減速レートまたは減速時 間を設定します。※1※2	または0.001~1000.000 s	30.000
ドウェル時間	連結運転2で使用するドウェル時間を設定します。	0.000~50.000 s	0.000

※1 「加減速選択」パラメータが「独立」のときに有効となります。「共通」のときは、「共通加速」パラメータと「共通減速」パ ラメータの値が使用されます。

※2 「加減速単位」パラメータで、加減速レート(ms/kHz)か加減速時間(s)を選択できます(初期値:加減速レート)。

■ ドウェル時間の設定方法

「運転機能」で「連結2」を表示させ、【SET】を押すと、ドウェル時間を設定する画面が表示されます。 【**个】【↓】【←】【→】**でドウェル時間を入力し、【SET】を押してください。

4-2 設定例

- ここでは、運転データNo.0の運転方式と位置を変更する方法を説明します。
- 運転方式:インクリメンタル方式をアブソリュート方式に変更する。
- 位 置:0 stepを10,000 stepに変更する。
- 1.【^{MODE} ESC】でデータモードに移行します。 「DATA」LEDが点灯します。
- データモードのトップ画面で【SET】を押します。 運転データNo.0に移行します。
- 【SET】を押します。
 運転方式に移行します。
- 再度、【SET】を押します。 運転方式の現在の設定値が点滅表示されます。
- 5. 【↓】を1回押して、「1」を選択します。
- (SET)を押します。
 入力した値の点滅が早くなり、確定します。
 運転方式に戻ります。
- 【↓】を押します。
 位置に移行します。
- 8.【SET】を押します。 位置の現在の設定値が点滅表示されます。
- (个)(↓)(←)(→)で[10000]を入力します。
 選択している桁だけが点滅表示されます。
- 【SET】を押します。
 入力した値の点滅が早くなり、確定します。
 位置に戻ります。
- 【MODE ESC】を押します。
 運転データNo.0に戻ります。

データモードのトップ画面
d R E R
SET
です。 運転データNo.0
d R E R - 00
SET
運転方式
SET
運転方式の現在値(点滅)
\downarrow \checkmark
アブソリュート方式に変更(点滅)
SET
変更した値を確定(早い点滅)
8
運転方式に戻る
00- inc 865
位置
00-Po5
SET
位置の現在値(点滅)
← → で桁移動
↓ (♪) ↓ で数値増減
10,000を入力(点滅)
00 10000
SET
変更した値を確定(早い点滅)
↓ 位置に戻る
00-Po5
MODE
運転データNo.0に戻る

4-3 指定した運転データの初期化

指定した運転データNo.の設定値をすべて初期値に戻すことができます。データモードの「データクリア」を実行してください。操作は、237ページのデータモードの画面遷移でご確認ください。

4-4 全運転データの初期化

ドライバに保存されているすべての運転データを初期値に戻すことができます。コピーモードの「運転データ初期化」を実行してください。操作は、240ページのコピーモードの画面遷移でご確認ください。

5 パラメータモード

モーターの動作や制御に関するパラメータを設定します。パラメータはドライバのNVメモリに保存されます。 各パラメータには固有のIDがあります。OPX-2Aでは、IDを選択してパラメータを設定します。 パラメータを変更したときに、変更した値が反映されるタイミングはパラメータによって異なります。反映タイミングの詳 細は「表記の規則」でご確認ください。

(memo) • 編集ロック機能やHMI入力で操作が制限されているときは、パラメータを編集できません。

- 設定範囲外の値を入力したときは、「Error」が1秒間表示されます。設定範囲内の数値を入力しなおしてください。
- RS-485通信で内部処理を行なっているときに【SET】キーを押すと、「mEm-bUSy」が表示される場合 があります。「mEm-bUSy」が表示されるタイミングは、236ページ「2 画面遷移」で確認してください。 必ず内部処理が終了してから、【SET】キーを押してください。
- 存在しないパラメータIDを入力したときは、「id-Err」が1秒間表示されます。IDを確認して入力しなおしてください。
- NVメモリへの書き込み可能回数は、約10万回です。

■ 表記の規則

本書では、それぞれの反映タイミングをアルファベットで表わしています。

表記	内容
А	パラメータを書き込むと、すぐに再計算とセットアップが行なわれます。
В	運転を停止すると、再計算とセットアップが行なわれます。
С	DC24 V電源の再投入後に、再計算とセットアップが行なわれます。

パラメータモード

<u>5-2</u> パラメーター覧

■ 運転データ

運転データは、データモードでも設定できます。

ID	名称	設定範囲	初期値	反映 (P.247)
640 ~ 703	運転方式No.0 ~ 運転方式No.63	0:インクリメンタル方式 1:アブソリュート方式	0	
512 ~ 575	位置No.0 ~ 位置No.63	-8,388,608~ +8,388,607 step	0	
576 ~ 639	運転速度No.0 ~ 運転速度No.63	0∼1,000,000 Hz	1,000	
704 ~ 767	運転機能No.0 ~ 運転機能No.63	0:単独 1:連結 2:連結2	0	в
960 ~ 1023	順送り位置決めNo.0 ~ 順送り位置決めNo.63	0:無効 1:有効	0	
768 ~ 831	加速No.0 ~ 加速No.63	0.001~1000.000 ms/kHzまたは 0.001~1000.000 s※1※2	30.000	

ID	名称	設定範囲	初期値	反映 (P.247)
832 ~ 895	減速No.0 ~ 減速No.63	0.001~1000.000 ms/kHzまたは 0.001~1000.000 s※1※2	30.000	
1024 ~ 1087	ドウェル時間No.0 ~ ドウェル時間No.63	0.000~50.000 s	0.000	D

※1 「加減速選択」パラメータが「独立」のときに有効となります。「共通」のときは、「共通加速」パラメータと「共通減速」パ ラメータの値が使用されます。(初期値:独立)

※2 「加減速単位」パラメータで、加減速レート (ms/kHz) か加減速時間 (s) を選択できます (初期値:加減速レート)。

■ パラメータ

	ID	名称	設定範囲	初期値	反映 (P.247)
	256	STOP入力停止方法	0:即停止 1:減速停止 2:即停止+カレントオフ 3:減速停止+カレントオフ	1	
-	257	ハードウェアオーバートラベル	0:無効 1:有効	1	
	258	オーバートラベル動作	0:即停止 1:減速停止	0	
	261	AREA1+方向位置			~
	262	AREA1-方向位置			
	263	AREA2+方向位置		0	
	264	AREA2-方向位置	-0,300,000~0,300,007 Step	0	
	265	AREA3+方向位置			
	266	AREA3-方向位置			
	267	MOVE出力最小時間	0~255 ms	0	
I	268	±LS接点設定			
	269	HOMES接点設定	0:A接点(N.O.) 1:B接点(N.C.)	0	С
ĺ	270	SLIT接点設定			
	288	RUN電流	0.0~100.0 %	100.0	^
	289	STOP電流	0.0~60.0 %	50.0	A
	293	速度フィルタ	0~200 ms	1	
	294	移動平均時間	0~200 ms	1	
	320	共通加速	0.001~1000.000 ms/kHz	30,000	
	321	共通減速	または0.001~1000.000 s※	50.000	
	322	起動速度	0~1,000,000 Hz	100	
	323	JOG運転速度	1~1,000,000 Hz	1,000	В
	324	JOG加減速	0.001~1000.000 ms/kHz または0.001~1000.000 s※	30.000	
ĺ	325	JOG起動速度	0~1,000,000 Hz	100	
	326	加減速選択	0:共通 1:独立	1	
	327	加減速単位	0:ms/kHz 1:s	0	С
	352	原点復帰方法	0:2センサ方式 1:3センサ方式	1	
	353	原点復帰運転速度	1~1,000,000 Hz	1,000	
	354	原点復帰加減速	0.001~1000.000 ms/kHz または0.001~1000.000 s※	30.000	В
I	355	原点復帰起動速度	1~1,000,000 Hz	100	
Ĵ	356	原点復帰オフセット	-8,388,608~8,388,607 step	0	

ID	名称	設定範囲	初期値	反映 (P.247)
357	原点復帰開始方向	0:一側 1:+側	1	
358	原点復帰SLITセンサ検出	0:無効 1:有効	0	В
359	原点復帰TIM信号検出	0:無効 1:TIM信号有効 2:ZSG信号有効	0	
388	原点復帰未完了 アラーム	0:無効 1:有効	0	С
416	過熱ワーニング	40~85 °C	85	
419	過電圧ワーニング	120~450 V	435	А
420	不足電圧ワーニング	120~280 V	120	
448	電子ギヤA	1~65,535	1	
449	電子ギヤB	1~65,535	1	
450	モーター回転方向	0:+側=CCW 1:+側=CW	1	
451	ソフトウェアオーバートラベル	0:無効 1:有効	1	
452	+ソフトウェアリミット	-8,388,608~8,388,607 step	8,388,607	А
453	ーソフトウェアリミット	-8,388,608~8,388,607 step	-8,388,608	
454	プリセット位置	-8,388,608~8,388,607 step	0	
455	ラウンド設定	0:無効 1:有効	0	С
456	ラウンド設定範囲	1~8,388,607 step	500	
480	データ設定器速度表示	0:符号あり 1:絶対値	0	
481	データ設定器編集	0:無効 1:有効	1	A
2048	MS0運転No.選択		0	
2049	MS1運転No.選択	_	1	
2050	MS2運転No.選択		2	D
2051	MS3運転No.選択	- 0~63	3	В
2052	MS4運転No.選択		4	
2053	MS5運転No.選択	_	5	
2054	HOME-P出力機能選択	0:原点出力 1:原点復帰完了出力	0	А
2064	フィルタ選択	0:速度フィルタ 1:移動平均フィルタ	0	С
2084	JOG移動量	1~8,388,607 step	1	D
2096	2センサ原点復帰戻り量	0~32,767 step	200	В
2144	エンコーダ分解能	100~10,000 P/R	500	С
2145	エンコーダカウンタプリセット値	-8,388,608~8,388,607 step	0	А
2146	脱調検出	0:無効 1:有効	0	С
2147	脱調検出幅	0.1~360.0°	7.2	
2148	脱調検出動作	0:動作なし 1:ワーニング出力 2:アラーム出力	0	A
2176	IN0入力機能選択		3	
2177	IN1入力機能選択		4	1
2178	IN2入力機能選択		48	
2179	IN3入力機能選択	252ハーンの衣をと見くたさい。	49	
2180	IN4入力機能選択		50	
2181	IN5入力機能選択		16	

ID	名称	設定範囲	初期値	反映 (P.247)
2182	IN6入力機能選択	ってった。このまたご覧ください	18	
2183	IN7入力機能選択	252ページの表をこ見くたさい。	24	
2192	INO入力接点設定			
2193	IN1入力接点設定			
2194	IN2入力接点設定			
2195	IN3入力接点設定	0:A接点(N.O.)	0	
2196	IN4入力接点設定	1:B接点(N.C.)	0	
2197	IN5入力接点設定			
2198	IN6入力接点設定			
2199	IN7入力接点設定			
2208	OUT0出力機能選択		70	
2209	OUT1出力機能選択		68	
2210	OUT2出力機能選択		73	
2211	OUT3出力機能選択	252ページの表をご覧ください。	67	
2212	OUT4出力機能選択		66	
2213	OUT5出力機能選択		65	
2224	NET-IN0入力機能選択		48	
2225	NET-IN1入力機能選択		49	
2226	NET-IN2入力機能選択		50	
2227	NET-IN3入力機能選択		4	
2228	NET-IN4入力機能選択		3	
2229	NET-IN5入力機能選択		18	
2230	NET-IN6入力機能選択		16	
2231	NET-IN7入力機能選択		24	
2232	NET-IN8入力機能選択	252ページの表をご覧ください。	8	C
2233	NET-IN9入力機能選択		9	
2234	NET-IN10入力機能選択		10	
2235	NET-IN11入力機能選択		5	
2236	NET-IN12入力機能選択		6	
2237	NET-IN13入力機能選択		7	
2238	NET-IN14入力機能選択		1	
2239	NET-IN15入力機能選択		2	
2240	NET-OUT0出力機能選択		48	
2241	NET-OUT1出力機能選択		49	
2242	NET-OUT2出力機能選択		50	
2243	NET-OUT3出力機能選択		4	
2244	NET-OUT4出力機能選択		70	
2245	NET-OUT5出力機能選択		67	
2246	NET-OUT6出力機能選択		66	
2247	NET-OUT7出力機能選択		65	
2248	NET-OUT8出力機能選択	252ページの表をご覧ください。	80	
2249	NET-OUT9出力機能選択		73	
2250	NET-OUT10出力機能選択	1	74	
2251	NET-OUT11出力機能選択		75	
2252	NET-OUT12出力機能選択		72	
2253	NET-OUT13出力機能選択		68	
2254	NET-OUT14出力機能選択		0	
2255	NET-OUT15出力機能選択		83	
2304	通信タイムアウト	0~10,000 ms	0	_
2305	通信異常アラーム	1~10□	3	A

ID	名称	設定範囲	初期値	反映 (P.247)
2563	通信パリティ	0:なし 1:偶数 2:奇数	1	C
2564	通信ストップビット	0:1ビット 1:2ビット	0	C
2565	送信待ち時間	0.0~1,000.0 ms	10.0	

※ 「加減速単位」パラメータで、加減速レート (ms/kHz) か加減速時間 (s) を選択できます (初期値:加減速レート)。

■機能選択パラメータの設定範囲

● IN入力機能選択パラメータ

0:未使用	7:-JOG	16:FREE	33:R1	40:R8	47:R15
1:FWD	8:MS0	17:AWO	34:R2	41:R9	48:M0
2:RVS	9:MS1	18:STOP	35:R3	42:R10	49:M1
3:HOME	10:MS2	24:ALM-RST	36:R4	43:R11	50:M2
4:START	11:MS3	25:P-PRESET	37:R5	44:R12	51:M3
5:SSTART	12:MS4	27:HMI	38:R6	45:R13	52:M4
6:+JOG	13:MS5	32:R0	39:R7	46:R14	53:M5

● OUT出力機能選択パラメータ

0:未使用	10:MS2_R	35:R3	45:R13	61:-LS_R	74:AREA2
1:FWD_R	11:MS3_R	36:R4	46:R14	62:HOMES_R	75:AREA3
2:RVS_R	12:MS4_R	37:R5	47:R15	63:SLIT_R	80:S-BSY
3:HOME_R	13:MS5_R	38:R6	48:M0_R	65:ALM	82:MPS
4:START_R	16:FREE_R	39:R7	49:M1_R	66:WNG	83:STEPOUT
5:SSTART_R	17:AWO_R	40:R8	50:M2_R	67:READY	84:O.H.
6:+JOG_R	18:STOP_R	41:R9	51:M3_R	68:MOVE	85:ZSG
7:-JOG_R	32:R0	42:R10	52:M4_R	70:HOME-P	86:MBC
8:MS0_R	33:R1	43:R11	53:M5_R	72:TIM	
9:MS1_R	34:R2	44:R12	60:+LS_R	73:AREA1	

● NET-IN入力機能選択パラメータ

0:未使用	7:-JOG	16:FREE	33:R1	40:R8	47:R15
1:FWD	8:MS0	17:AWO	34:R2	41:R9	48:M0
2:RVS	9:MS1	18:STOP	35:R3	42:R10	49:M1
3:HOME	10:MS2	24:ALM-RST	36:R4	43:R11	50:M2
4:START	11:MS3	25:P-PRESET	37:R5	44:R12	51:M3
5:SSTART	12:MS4	27:HMI	38:R6	45:R13	52:M4
6:+JOG	13:MS5	32:R0	39:R7	46:R14	53:M5

● NET-OUT出力機能選択パラメータ

0:未使用	10:MS2_R	35:R3	45:R13	61:-LS_R	74:AREA2
1:FWD_R	11:MS3_R	36:R4	46:R14	62:HOMES_R	75:AREA3
2:RVS_R	12:MS4_R	37:R5	47:R15	63:SLIT_R	80:S-BSY
3:HOME_R	13:MS5_R	38:R6	48:M0_R	65:ALM	82:MPS
4:START_R	16:FREE_R	39:R7	49:M1_R	66:WNG	83:STEPOUT
5:SSTART_R	17:AWO_R	40:R8	50:M2_R	67:READY	84:O.H.
6:+JOG_R	18:STOP_R	41:R9	51:M3_R	68:MOVE	85:ZSG
7:-JOG_R	32:R0	42:R10	52:M4_R	70:HOME-P	86:MBC
8:MS0_R	33:R1	43:R11	53:M5_R	72:TIM	
9:MS1_R	34:R2	44:R12	60:+LS_R	73:AREA1	
		1	1	1	1

5-3 パラメータの初期化

ドライバに保存されているパラメータを初期値に戻すことができます。コピーモードの「パラメータ初期化」を実行してください。操作は、240ページのコピーモードの画面遷移でご確認ください。
6 テストモード

6-1 テストモードの概要

- **ダイレクトI/Oテスト** ドライバの入力信号のON/OFF状態を確認できます。また、**OPX-2A**で出力信号のON/OFFを切り替えられます。ドライ バの接続状態を確認するときに、ダイレクトI/Oテストを実行してください。
- JOG運転
 OPX-2Aのキー操作で、モーターを運転できます。
- データNo.選択運転
 位置決め運転を実行できます。
- 原点復帰運転
 原点復帰運転を実行できます。
- 位置プリセット
 指令位置を設定した値にプリセットできます。
- エンコーダカウンタプリセット
 エンコーダカウンタ値を設定した値にプリセットできます。
- ティーチング

OPX-2Aのキー操作でモーターを動かして、移動した位置を運転データに反映できます。

(memo) ・モーターの運転を停止してから、テストモードに切り替えてください。

- 項目選択画面から下の階層に移行すると、次の入力は無効になります。
 START、SSTART、HOME、±JOG、FWD、RVS、MS0~MS5
- ダイレクトI/Oテストでは、下の階層に移行すると、すべての入出力信号や動作が無効になります。
- RS-485通信で内部処理を行なっているときに【SET】キーを押すと、「mEm-bUSy」が表示される場合 があります。「mEm-bUSy」が表示されるタイミングは、236ページ「2 画面遷移」で確認してください。 必ず内部処理が終了してから、【SET】キーを押してください。
- データNo.選択運転、原点復帰運転、位置プリセット、エンコーダカウンタプリセット、およびティーチングを実行しようとしたときに [Error]が表示された場合は、アラームが発生していないか確認してください。
- HMI入力がOFFのときは、テストモードを実行できません。

運転中は、テストモードのトップ画面から下の階層には移れません。 【SET】を押してもエラーになり、「oPE-Err」が表示されます。 必ずモーターの運転を停止してから、【SET】を押してください。

	0	Р	F	-	F	r	r	
--	---	---	---	---	---	---	---	--

6-2 ダイレクトレ/のテスト

ドライバの接続状態を確認するときに、ダイレクトI/Oテストを実行してください。 7セグメントLEDがそれぞれの信号に対応しています。 入力信号はONのとき点灯、OFFのとき消灯します。 出力信号は【个】【↓】でON/OFFを切り替えられ、ONのとき「**ロ**」、OFFのとき「-」になります。

6-3 JOG運転

OPX-2Aのキー操作で、モーターを運転できます。

【个】を1回押すと、正転方向へ1ステップ回転します。押し続けると、正転方向へ連続で回転します。 【↓】を1回押すと、逆転方向へ1ステップ回転します。押し続けると、逆転方向へ連続で回転します。

運転速度は、「JOG運転速度」パラメータで設定した値になります。

ただし[JOG起動速度]パラメータの値が、[JOG運転速度]パラメータよりも大きいときは、JOG起動速度で運転します。

運転中は、キーを押している間、設定された運転速度でモーターが回転します。 装置の状態や周囲の状況 を考慮し、モーターの回転による危険がないことを十分確認してから実行してください。

6-4 データNo.選択運転

運転データNo.を選択して【SET】を押すと、位置決め運転を実行できます。

運転中は、設定された運転速度でモーターが回転します。装置の状態や周囲の状況を考慮し、モーターの 回転による危険がないことを十分確認してから実行してください。

6-5 原点復帰運転

原点復帰運転を実行できます。

運転速度は、「原点復帰運転速度」パラメータで設定した値になります。

運転中は、設定された運転速度でモーターが回転します。装置の状態や周囲の状況を考慮し、モーターの 回転による危険がないことを十分確認してから実行してください。

6-6 位置プリセット

指令位置を「プリセット位置」パラメータの値に書き換えてプリセットします。

(memo) 編集ロック機能で操作が制限されているときはプリセットできません。

6-7 エンコーダカウンタプリセット

エンコーダのカウンタ値を「エンコーダカウンタプリセット値」パラメータの値に書き換えてプリセットします。

(memo) 編集ロック機能で操作が制限されているときはプリセットできません。

6-8 ティーチング

OPX-2Aのキー操作でモーターを動かして、移動した位置を運転データに反映できます。 ティーチングで設定された位置データの運転方式はアブソリュート方式になります。 ティーチングの運転速度、加減速レート、および起動速度は、JOG運転と同じになります。

運転中は、設定された運転速度でモーターが回転します。装置の状態や周囲の状況を考慮し、モーターの 回転による危険がないことを十分確認してから実行してください。

)編集ロック機能で操作が制限されているときはティーチングを実行できません。

7 コピーモード

コピーモード

7-1 コピーモードの概要

● ダウンロード

OPX-2Aに保存されているパラメータをドライバにコピー します。ダウンロードに異常があったときは、異常の内容 が点滅表示されます。ダウンロードは実行されず、ダウ ンロードのトップ画面に戻ります。 異常の表示については「7-2 コピーモードの異常」をご覧 ください。

OPX-2Aのパラメータを ドライバにダウンロード ドライバ

Loch-Err

- アップロード
 ドライバに保存されているパラメータをOPX-2Aにコピーします。
- ●照合

OPX-2Aのパラメータと、ドライバのパラメータを照合します。 照合の結果、パラメータが一致しているときは「Good」、一致していないときは「Error」が表示されます。 照合に異常があったときは、異常の内容が点滅表示されます。照合は実行されず、照合のトップ画面に戻ります。 異常の表示については「7-2 コピーモードの異常」をご覧ください。

● パラメータの初期化

ドライバに保存されているパラメータを初期値に戻します。

■ 編集ロック中に [SET] キーを押した場合

編集ロック中は、コピーモードのトップ画面から下の階層には移れません。【SET】キーを 押してもエラーになり、「LocK-Err」が表示されます。 必ず編集ロックを解除してから、【SET】キーを押してください。編集ロックの解除方法は、 232ページをご覧ください。

7-2 コピーモードの異常

ダウンロードや照合に異常があったときは、異常の内容が点滅表示されます。 処理は実行されず、ダウンロードや照合のトップ画面に戻ります。

点滅表示	内容	対処
Prod-Err	処理先の製品が間違っていま す。	 製品を確認してください。 OPX-2AのデータバンクNo.を確認してください。
HERd-Err	加亜中に異営がありました	再度、処理を実行してください。それでも同じエラー が発生するときは、OPX-2Aに保存されているパラ
bcc - Err		を行ない、 OPX-2A のパラメータを設定しなおしてく ださい。
no-dRER	指定したデータバンクNo.に パラメータが存在しません。	データバンクNo.を確認してください。

重要

処理中(表示が点滅している間)はドライバの電源を切らないでください。パラメータが破損するおそれが あります。

(memo) 変更したパラメータは、電源を再投入した時点で有効になります。ダウンロードによってパラメータが変更されたときは、ドライバの電源を再投入してください。

8 点検とトラブルの処置

定期的な点検方法や、トラブル発生時の確認事項と対処方法について説明しています。

◆もくじ

1	点标	€•保守	
	1-1	点検	
	1-2	保証	
	1-3	廃棄	
2	アラ	ラームとワーニン	グ259
	2-1	アラーム	
	2-2	ワーニング	
	2-3	通信エラー	
3	故國	章の診断と処置	

1-1 点検

モーターの運転後は、定期的に次の項目について点検することをおすすめします。異常があるときは使用を中止し、お客 様ご相談センターにお問い合わせください。

■ 点検項目

- モーターの取付ねじに緩みがないか確認してください。
- モーターの軸受部(ボールベアリング)などから異常な音が発生していないか確認してください。
- モーターケーブルに傷やストレスがないか確認してください。
- ケーブルとドライバの接続部に緩みがないか確認してください。
- 出力軸と負荷軸に心ズレが出ていないか確認してください。
- ドライバの開口部が目詰まりしていないか確認してください。
- ドライバの取付箇所に緩みがないか確認してください。
- ドライバに埃などが付着していないか確認してください。
- ドライバに異臭や異常がないか確認してください。

ドライバには半導体素子が使われています。静電気などによって半導体素子が破損するおそれがあるため、 取り扱いには注意してください。

1-2 保証

■ 製品の保証について

保証期間中、お買い求めいただいた製品に当社の責により故障を生じた場合は、その製品の修理を無償で行ないます。 なお、保証範囲は製品本体(回路製品については製品本体および製品本体に組み込まれたソフトウェアに限ります)の修理 に限るものといたします。納入品の故障により誘発される損害およびお客様側での機会損失につきましては、当社は責任 を負いかねます。

また、製品の寿命による故障、消耗部品の交換は、この保証の対象とはなりません。

■ 保証期間

お買い求めいただいた製品の保証期間は、ご指定場所に納入後2年間といたします。

■ 免責事由

次に該当する場合は、この保証の対象範囲から除外するものといたします。

- 1) カタログまたは別途取り交わした仕様書等にて確認された以外の不適切な条件・環境・取り扱いならびに使用による 場合
- 2) 故障の原因が納入品以外の事由による場合
- 3) 当社以外による改造または修理による場合
- 4) 製品本来の使い方以外の使用による場合
- 5) 当社出荷時の科学・技術の水準では予見できなかった事由による場合
- 6) その他天災、災害など当社側の責ではない原因による場合

以上の内容は、日本国内での取引および使用を前提としています。

1-3 廃棄

製品は、法令または自治体の指示に従って、正しく処分してください。

2 アラームとワーニング

ドライバには、温度上昇、接続不良、運転操作の誤りなどからドライバを保護するアラーム(保護機能)と、アラームが発生する前に警告を出力するワーニング(警告機能)が備わっています。

2-1 アラーム

アラームが発生すると ALM出力が OFFになり、モーターが停止します。同時に ALM LEDが点滅します。ALM LEDの点 滅回数を数える、または MEXE02、OPX-2A、RS-485 通信のどれかで、発生中のアラームを確認できます。

例:過電圧のアラーム(点滅回数3回)

■ アラームの解除

必ず、アラームが発生した原因を取り除き、安全を確保してから、次のどれかの方法でアラームを解除してください。 タイミングチャートは139 ページをご覧ください。

- ALM-RST入力を OFFから ONにする。(ONエッジで有効です。)
- RS-485 通信のアラームリセットを実行する。
- MEXE02 または OPX-2Aでアラームリセットを実行する。
- DC24 V電源を再投入する。

(memo) アラームの種類によっては、ALM-RST入力、MEXE02、OPX-2A、RS-485 通信で解除できないものがあ ります。次ページ以降の表で確認してください。これらのアラームは DC24 V電源を再投入して解除し てください。

■ アラーム履歴

発生したアラームは、最新のものから順に10 個まで NVメモリに保存されます。次のどれかを行なうと、保存されている アラーム履歴を取得・消去できます。

- RS-485 通信のモニタコマンドでアラーム履歴を取得する。
- RS-485 通信のメンテナンスコマンドでアラーム履歴を消去する。
- MEXE02 または OPX-2Aでアラーム履歴を取得・消去する。

■ アラーム一覧

コード	ALM LED 点滅数	アラームの種類	原因
10h	4	位置偏差過大	「脱調検出動作」パラメータを「アラーム出力」に設定しているときに、エン コーダ位置と指令位置の偏差が「脱調検出幅」パラメータの設定値を超えまし た。
20h	5	過電流	モーター、ケーブル、およびドライバ出力回路が短絡しました。
21h	2	主回路過熱	ドライバの内部温度が約85 ℃に達しました。
22h	2	過電圧	 ●電源の電圧が許容値を超えました。 ●大きな慣性負荷を急停止した、または昇降運転を行ないました。
23h	3	主電源オフ	 主電源が遮断されているときに、モーターを起動しました。 モーターの起動時に、DC24 V電源が瞬間的に遮断されました。
25h		不足電圧	電源が瞬間的に遮断された、または電圧が不足しました。
2Ch	5	電解コンデンサ異常	主回路の電解コンデンサが破損しました。
34h	2	指令パルス異常	指令パルスの周波数が仕様を超えました。
41h	9	EEPROM異常	ドライバの保存データが破損しました。
4Ah		原点復帰未完了	「原点復帰未完了アラーム」パラメータが「有効」のとき、座標が確定していな い状態で位置決め運転を開始しました。
60h		±LS同時入力	「ハードウェアオーバートラベル」パラメータが「有効」のとき、+LS入力と -LS入力の両方が検出されました。
61h		±LS逆接続	3 センサ方式または2 センサ方式の原点復帰運転中、運転方向とは逆の LS入 力が検出されました。
62h		原点復帰運転異常	原点復帰シーケンスを正常に終了できませんでした。
63h		HOMES未検出	3 センサ方式の原点復帰運転で、+LS入力と –LS入力の間に HOMES入力が 検出されませんでした。
64h	7	TIM、ZSG、SLIT信号 異常	原点復帰運転中に、TIM出力、ZSG出力、SLIT入力を検出できませんでした。
66h	,	ハードウェア オーバートラベル	「ハードウェアオーバートラベル」パラメータが「有効」のとき、+LS入力また は -LS入力が検出されました。
67h		ソフトウェア オーバートラベル	「ソフトウェアオーバートラベル」パラメータが「有効」のとき、ソフトウェア リミットに達しました。
6Ah		原点復帰運転 オフセット異常	原点復帰運転でオフセット移動しているときに、LS入力が検出されました。
70h		運転データ異常	 連結運転で、回転方向が異なる運転データが連結されました。 運転データが5 個以上連結されました。 運転速度が0 r/minの位置決め運転を行ないました。
71h		電子ギヤ設定異常	「電子ギヤ」パラメータで設定した分解能が仕様の範囲外でした。
81h		ネットワークバス異常 	モーターの動作中、ネットワークコンバータの上位ネットワークが解列状態 になりました。
83h		通信用スイッチ設定異常	通信速度 設定スイッチ (BAUD) が仕様外でした。

処置	解除方法	モーター励磁 ※1
 ●負荷を軽くするか、加減速を長くしてください。 ●「脱調検出幅」パラメータの設定を確認してください。 	 ALM-RST入力を OFF (0) から ON (1) にする。 アラームリセットを実行する。※2 	励磁
電源を切り、モーター、ケーブル、ドライバ出力回路が短絡していない か確認してから、電源を再投入してください。	電源を再投入する。	
筐体内の換気条件を見直してください。	 ALM-RST入力を OFF (0) から ON (1) にする。 アラームリセットを実行する。 	
 ・電源の入力電圧を確認してください。 ・運転時に発生するときは、負荷を軽くするか、加減速を長くしてください。 	電源を再投入する。	
主電源と DC24 V電源が正常に投入されているか確認してください。	• ALM-RST入力を OFF (0) から ON (1) にする。	無励磁
電源の入力電圧を確認してください。	• アラームリセットを実行する。	
お客様ご相談センターまたは最寄りの営業所にお問い合わせください。	電源を再投入する。	
指令パルスの周波数を低くしてください。	• ALM-RST入力を OFF (0) から ON (1) にする。	-
	 アフームリセットを実行する。 	
すべてのパラメータを初期化してください。	電源を冉投人する。	
位置プリセットまたは原点復帰運転を実行してください。 設置したリミットセンサの論理と、「±LS接点設定」パラメータを確認し てください。 LS入力の配線を確認してください。 ・負荷を確認してください。 ・リミットセンサの設置位置と、運転の開始方向を見直してください。 ・設置したリミットセンサの論理と、「±LS接点設定」パラメータを確認し てください		
HOMEセンサは+側センサと-側センサの間に設置してください。		
 HOMES入力がONの間に各信号がONになるよう、出力軸と負荷の結合状態やHOMEセンサの位置を調整してください。 各信号を使用しないときは、「原点復帰TIM信号検出」パラメータや「原点復帰SLITセンサ検出」パラメータを「無効」に設定してください。 	 ALM-RST入力を OFF (0) から ON (1) にする。 アラームリセットを実行する。 	励磁
連続運転または原点復帰運転でLS入力から脱出してください。		
単独運転のときは、データがソフトウェアリミット値を超えていないか 確認してください。連結運転のときは、連結結果がソフトウェアリミッ ト値を超えていないか確認してください。		
オフセット値を確認してください。		
運転データを確認してください。		
「電子ギヤ」パラメータを正しく設定し、電源を再投入してください。	電源を再投入する。	無励磁
上位ネットワークのコネクタやケーブルを確認してください。	 ALM-RST入力を OFF (0) から ON (1) にする。 アラームリセットを実行する。 	励磁
通信速度設定スイッチ (BAUD) を確認してください。	電源を再投入する。	無励磁

コード	ALM LED 点滅数	アラームの種類	原因
84h		RS-485 通信異常	RS-485 通信の連続異常回数が「通信異常アラーム」パラメータの設定値に達しました。
85h	7	RS-485 通信タイム アウト	「通信タイムアウト」パラメータに設定した時間を経過しても、上位システム との通信が行なわれませんでした。
8Eh		ネットワークコンバータ 異常	ネットワークコンバータでアラームが発生しました。
F0h	点灯	CPU異常	CPUが誤動作しました。

※1 アラーム発生時のモーター動作は、次のようになります。

無励磁:アラームが発生するとモーターの電流が遮断されて、モーターの保持力がなくなります。 電磁ブレーキ付モーターの場合は、電磁ブレーキが自動で保持されます。

励磁: アラームが発生してもモーターの電流は遮断されず、モーターの位置が保持されます。

※2 ALM-RST入力を ONにしただけではアラームを解除できません。必ず先に ALM-RST入力でアラームを解除し、その後に偏差異 常から回復してください。偏差異常からの回復方法については、83 ページをご確認ください。

2-2 ワーニング

ワーニングが発生すると、WNG出力が ONになります。モーターの運転は継続します。

ワーニングが発生した原因が取り除かれると、WNG出力は自動で OFFになります。

■ ワーニング履歴

発生したワーニングは、最新のものから順に10 個まで RAMに保存されます。次のどれかを行なうと、保存されているワーニング履歴を取得・消去できます。

- RS-485 通信のモニタコマンドでワーニング履歴を取得する。
- RS-485 通信のメンテナンスコマンドでワーニング履歴を消去する。
- MEXE02 または OPX-2Aでワーニング履歴を取得・消去する。

(memo) ワーニング履歴は、DC24 V電源を切っても消去できます。

■ ワーニング一覧

コード	ワーニングの種類	原因	処置
10h	位置偏差過大	「脱調検出動作」パラメータを「ワーニン グ出力」に設定しているときに、エンコー ダ位置と指令位置の偏差が「脱調検出幅」 パラメータの設定値を超えました。	 負荷を軽くするか、加減速を長くして ください。 「脱調検出幅」パラメータの設定を確認 してください。
21h	主回路過熱	ドライバの内部温度が「過熱ワーニング」 パラメータの設定値を超えました。	筐体内の換気状態を見直してください。
22h	過電圧	 ・電源の電圧が「過電圧ワーニング」パラ メータの設定値を超えました。 ・大きな慣性負荷を急停止した、または 昇降運転を行ないました。 	 ・電源の入力電圧を確認してください。 ・運転時に発生するときは、負荷を軽くするか、加減速を長くしてください。
25h	不足電圧	 ・電源の電圧が、「不足電圧ワーニング」 パラメータの設定値を下回りました。 ・電源が瞬間的に遮断された、または電 圧が不足しました。 	電源の入力電圧を確認してください。
71h	電子ギヤ設定異常	「電子ギヤ」パラメータで設定した分解能 が仕様の範囲外でした。	「電子ギヤ」パラメータの設定を確認して ください
84h	RS-485 通信異常	RS-485 通信の異常が検出されました。	 ・上位システムとの接続を確認してください。 ・RS-485 通信の設定を確認してください。

処置	解除方法	モーター励磁 ※1
•上位システムとの接続を確認してください。	• ALM-RST入力を OFF (0) から ON (1)	
• RS-485 通信の設定を確認してください。	にする。	励磁
上位システムとの接続を確認してください。	 アラームリセットを実行する。 	
ネットワークコンバータのアラームコードを確認してください。	• ALM-RST入力を OFF (0) から ON (1) にする。	励磁
	 アラームリセットを実行する。 	
電源を再投入してください。	_	-

2-3 通信エラー

通信エラーは、最新のものから順に10 個まで RAMに保存され、MEXE02 または RS-485 通信で確認できます。

■ 通信エラー履歴

通信エラーは、最新のものから順に10 個まで RAMに保存されます。次のどれかを行なうと、保存されている通信エラー 履歴を取得・消去できます。

- RS-485 通信のモニタコマンドで通信エラー履歴を取得する。
- RS-485 通信のメンテナンスコマンドで通信エラー履歴を消去する。
- MEXE02 のステータスモニタで通信エラー履歴を取得・消去する。

(**memo)**通信エラー履歴は、DC24 V電源を切っても消去できます。

■ 通信エラー一覧

コード	通信エラーの種類	原因	処置
84h	RS-485 通信異常	次の異常が検出されました。 ・フレーミングエラー ・BCCエラー	 ・上位システムとの接続を確認してください。 ・RS-485 通信の設定を確認してください。
88h	コマンド未定義	マスタから要求されたコマンドは未定義 のため、実行できませんでした。	 コマンドの設定値を確認してください。 フレーム構成を確認してください。
89h	ユーザー I/F通信中 のため実行不可	MEXE02 または OPX-2Aとドライバが通 信中のため、マスタから要求されたコマ ンドを実行できませんでした。	MEXE02 や OPX-2Aの処理が終了するま でお待ちください。
8Ah	NVメモリ処理中の ため実行不可	ドライバが NVメモリ処理中のため、実 行できませんでした。 ・内部処理中 (S-BSYが ON) ・EEPROM異常のアラームが発生中	 内部処理が終了するまでお待ちください。 EEPROM異常が発生したときは、 MEXEO2、OPX-2A、および RS-485 通信のどれかで、すべてのパラメータを 初期化してください。
8Ch	設定範囲外	マスタから要求された設定データは範囲 外のため、実行できませんでした。	設定データを確認してください。
8Dh	コマンド実行不可	コマンドが実行できないときに、実行し ようとしました。	ドライバの状態を確認してください。

3 故障の診断と処置

モーターの運転時、設定や接続の誤りなどで、モーター、ドライバが正常に動作しないことがあります。 モーターの運転操作を正常に行なえないときは、この章をご覧になり、適切な処置を行なってください。 それでも正常に運転できないときは、最寄りのお客様ご相談センターにお問い合わせください。

現象	予想される原因	処置
 モーターが励磁しない。 	AWO入力が ONになっている。	AWO入力を OFFにして、モーターが励磁され ることを確認してください。
● 手で出刀軸を回せる。	FREE入力が ONになっている。	FREE入力を OFFにしてください。
	電磁ブレーキ付モーターの場合、電 磁ブレーキが保持状態になっている。	電磁ブレーキの接続状態を確認してください。
	STOP入力が ONになっている。	STOP入力を OFFにしてください。
モーターが回転しない。	位置決め運転のとき、運転データに 位置(移動量)が設定されていない。	運転データを確認してください。
	連続運転のとき、FWD入力と RVS 入力が同時に ONになっている。	FWD入力または RVS入力の片方を ONにしてく ださい。
モーターが指定した方向とは 逆へ回転する。	「モーター回転方向」パラメータの設 定が間違っている。	「モーター回転方向」パラメータの設定を確認し てください。
ギヤ出力軸がモーター出力軸	モーター出力軸と回転方向が逆にな	•TSギヤードタイプは、減速比が20と30のとき、 モーター出力軸とは逆方向へ回転します。
とは逆方向へ回転する。	るタイプのギヤを使用している。	 ハーモニックギヤードタイプは、モーター出力 軸とは逆方向へ回転します。
	モーターケーブルや電源ケーブルの 接続不良。	モーターや電源の接続を確認してください。
モーターの動作が不安定	「RUN電流」または「STOP電流」パラ メータの設定値が小さすぎる。	「RUN電流」または「STOP電流」パラメータを初 期値に戻して、モーターの動作を確認してくださ い。電流値が小さいとトルクも小さくなり、動作 が不安定になります。
振動が大きい。	負荷が小さい。	「RUN電流」パラメータで電流を下げてください。 負荷に対してモーターの出力トルクが大きすぎ ると、振動が大きくなります。
電磁ブレーキが解放されな い。	電磁ブレーキに電源が供給されてい ない。	電磁ブレーキの接続状態を確認してください。

(m

(memo) • アラームが発生しているときは、アラームの内容を確認してください。

• MEXEO2、OPX-2A、および RS-485 通信で入出力信号をモニタできます。入出力信号の配線状態の確認などにご利用ください。

9 ケーブル・周辺機器

製品と組み合わせて使用するケーブルや周辺機器について説明しています。

◆もくじ

<u>1</u> ታ	ーブル	
1-1	モーターケーブル	
1-2	入出力信号用ケーブル	
1-3	サポートソフト用通信ケーブル	
1-4	RS-485 通信ケーブル	
2 周	辺機器	269
2-1	データ設定器	
2-2	サージ電圧吸収用 CR回路	
2-3	CR回路モジュール	

ケーブル

ケーブル

モーターケーブル 1-1

RKIIシリーズには、モーターとドライバを接続するケーブルが付属しているタイプと、付属していないタイプがあります。 モーターとドライバ間をさらに延長する場合、付属のケーブルでは長さが足りないため、接続ケーブルセットまたは中継 ケーブルセットを使用してください。

電磁ブレーキ付用のケーブルセットは、モーター用と電磁ブレーキ用の2本組です。

エンコーダ付用のケーブルセットは、モーター用とエンコーダ用の2本組です。

モーターを可動部分に取り付けるときは、可動ケーブルを使用してください。

- 接続ケーブルだけで接続するとき
- 中継ケーブルを使って接続するとき

付属のケーブルを使用しません。

中継ケーブルを付属のケーブルに継ぎ足します。

(memo) 付属のケーブルと中継ケーブルを継ぎ足して延長するときは、ケーブル全長を20 m以下にしてください。

■ 接続ケーブルセット

電磁ブレーキ付モーター用は、モーター用と電磁ブレーキ用の2本組です。 エンコーダ付モーター用は、モーター用とエンコーダ用の2本組です。

● 接続ケーブルセット

標準モーター用

品名	長さ(m)
CC010VPF	1
CC020VPF	2
CC030VPF	3
CC050VPF	5
CC070VPF	7
CC100VPF	10
CC150VPF	15
CC200VPF	20

電磁ブレーキ付モーター用

品名	長さ(m)
CC010VPFB	1
CC020VPFB	2
CC030VPFB	3
CC050VPFB	5
CC070VPFB	7
CC100VPFB	10
CC150VPFB	15
CC200VPFB	20

エンコーダ付モーター用

品名	長さ(m)
CC010VPFE	1
CC020VPFE	2
CC030VPFE	3
CC050VPFE	5
CC070VPFE	7
CC100VPFE	10
CC150VPFE	15
CC200VPFE	20

● 可動接続ケーブルセット

標準モーター用

品名	長さ(m)
CC010VPR	1
CC020VPR	2
CC030VPR	3
CC050VPR	5
CC070VPR	7
CC100VPR	10
CC150VPR	15
CC200VPR	20

電磁ブレーキ付モーター用

品名	長さ(m)
CC010VPRB	1
CC020VPRB	2
CC030VPRB	3
CC050VPRB	5
CC070VPRB	7
CC100VPRB	10
CC150VPRB	15
CC200VPRB	20

モーター側

エンコーダ付モーター用

品名	長さ(m)
CC010VPRE	1
CC020VPRE	2
CC030VPRE	3
CC050VPRE	5
CC070VPRE	7
CC100VPRE	10
CC150VPRE	15
CC200VPRE	20

● 接続ケーブルセットのコネクタ配列

モーター用ケーブル					
ピン No.	色	線径			
1	黒				
2	赤				
3	黄	$\Lambda M (C22 (0.2 mm^2))$			
4	青	AVVG22(0.3 mm ⁻)			
5	橙				
6	緑				

電磁ブレーキ用ケーブル

ピン No.	色	線径
1	白	$\Lambda M = 20 (0.5 \text{ mm}^2) \times 10^{-2}$
2	黒	AvvG20(0.5 mm) %

※ 可動ケーブルの場合は AWG21 (0.5 mm²)です。

• ドライバ側

品番:5557-06R-210 (日本モレックス合同会社)

品番:5559-02P-210 (日本モレックス合同会社)

エンコーダ用ケーブル

ピン No.	色	線径
1	赤	
2	桃	
3	緑	$\Lambda M C 26 (0.14 \text{ mm}^2)$
4	青	AVVG20(0.14 IIIII)
5	黄	
6	橙	
7	白	$\Lambda M (C 22 (0.2 mm^2))$
8	黒	AVVGZZ (0.5 MM)
9	-	_
10	ドレインワイヤ	AWG25 (0.16 mm ²)

モーター側

品番:5559-06P-210

(日本モレックス合同会社)

モーター側

	1	0	8	6	4	2	2	
	F		F	+	-16	-	Ч	
		ו כ	±	Ċ	Ċ	Ċ	ן נ	Ш
4		וק	P	φ	φ	Ģ	ıþ	Ľ
				ф				
	c))	7	5	3	1		

品番:XADR-10V

• ドライバ側

9	7	5	53	31		
<u>۲</u>	ļ			IJ	-	
ļĻ					Ы	
1(8 C	6	5 4	1 2	2	

品番:PUDP-10V-K (日本圧着端子製造株式会社) (日本圧着端子製造株式会社)

■ 中継ケーブルセット

電磁ブレーキ付モーター用は、モーター用と電磁ブレーキ用の2本組です。 エンコーダ付モーター用は、モーター用とエンコーダ用の2本組です。

● 中継ケーブルセット

標準モーター用

品名	長さ(m)
CC010VPF	1
CC020VPF	2
CC030VPF	3
CC050VPF	5
CC070VPF	7
CC100VPF	10
CC150VPF	15

電磁ブレーキ付モーター用

品名	長さ(m)
CC010VPFBT	1
CC020VPFBT	2
CC030VPFBT	3
CC050VPFBT	5
CC070VPFBT	7
CC100VPFBT	10
CC150VPFBT	15

エンコーダ付モーター用 品名 長さ(m

品名	長さ(m)
CC010VPFET	1
CC020VPFET	2
CC030VPFET	3
CC050VPFET	5
CC070VPFET	7
CC100VPFET	10
CC150VPFET	15

● 可動中継ケーブルセット

標準モーター用

品名	長さ(m)
CC010VPR	1
CC020VPR	2
CC030VPR	3
CC050VPR	5
CC070VPR	7
CC100VPR	10
CC150VPR	15

電磁ブレーキ付モーター用

品名	長さ(m)
CC010VPRBT	1
CC020VPRBT	2
CC030VPRBT	3
CC050VPRBT	5
CC070VPRBT	7
CC100VPRBT	10
CC150VPRBT	15

T ;	シコ	-9	1可	t-	-2-	一用

品名	長さ(m)
CC010VPRET	1
CC020VPRET	2
CC030VPRET	3
CC050VPRET	5
CC070VPRET	7
CC100VPRET	10
CC150VPRET	15

1-2 入出力信号用ケーブル

耐ノイズ性に優れた、ドライバの制御入出力用のシールドケーブルです。接地に便利なアース線がケーブル両端から出て います。接続する入出力信号の数に合ったケーブルをお選びください。

汎用タイプ

ケーブル長さ	リード線の心数			
(m)	6本	10本	12本	16本
0.5	CC06D005B-1	CC10D005B-1	CC12D005B-1	CC16D005B-1
1	CC06D010B-1	CC10D010B-1	CC12D010B-1	CC16D010B-1
1.5	CC06D015B-1	CC10D015B-1	CC12D015B-1	CC16D015B-1
2	CC06D020B-1	CC10D020B-1	CC12D020B-1	CC16D020B-1

1-3 サポートソフト用通信ケーブル

サポートソフト MEXEO2 をインストールしたパソコンとドライバを接続するときは、必ずお買い求めください。 PCインターフェースケーブルと USBケーブルの2本1 組です。パソコンとの接続は USBになります。 MEXEO2 は WEBサイトからダウンロードできます。

品名:CC05IF-USB(5 m)

1-4 RS-485 通信ケーブル

RS-485 通信コネクタ(CN6、CN7)に接続して、ドライバ間を接続できます。

品名:CC002-RS4(0.25 m)

2 周辺機器

2-1 データ設定器

運転データやパラメータを簡単に設定できるほか、モニタとしてもお使いいただけます。

品名:OPX-2A

2-2 サージ電圧吸収用 CR回路

リレー接点部で発生するサージを抑制する効果があります。リレーやスイッチの接点保護にお使いください。

品名:EPCR1201-2

2-3 CR回路モジュール

リレー接点部で発生するサージを抑制する効果があります。リレーやスイッチの接点保護にお使いください。 コンパクトな基板にサージ電圧吸収用 CR回路を4 個搭載し、DINレールに取り付け可能です。端子台接続にも対応してい るため、簡単で確実に配線できます。

品 名:VCS02

- このマニュアルの一部または全部を無断で転載、複製することは、禁止されています。
 損傷や紛失などにより、マニュアルが必要なときは、最寄りの支店または営業所に請求してください。
- マニュアルに記載されている情報、回路、機器、および装置の利用に関して産業財産権上の問題が生じても、当社は一切の責任を負いません。
- 製品の性能、仕様および外観は改良のため予告なく変更することがありますのでご了承ください。
- マニュアルには正確な情報を記載するよう努めていますが、万一ご不審な点や誤り、記載もれなどにお気づきの点がありましたら、 最寄りのお客様ご相談センターまでご連絡ください。
- Orientalmotor と (FLEX) は、日本その他の国におけるオリエンタルモーター株式会社の登録商標または商標です。 Modbusは Schneider Automation Inc.の登録商標です。 CC-Linkは CC-Link協会の登録商標です。 MECHATROLINKは MECHATROLINK協会の登録商標です。 EtherCAT®は、Beckhoff Automation GmbH(ドイツ)よりライセンスを受けた特許取得済み技術であり登録商標です。 その他の製品名、会社名は各社の登録商標または商標です。このマニュアルに記載の他社製品名は推奨を目的としたもので、それらの製品の性能を保証するものではありません。オリエンタルモーター株式会社は、他社製品の性能につきましては一切の責任を負い

ません。

© Copyright ORIENTAL MOTOR CO., LTD. 2012

2023年3月制作

オリエンタルモーター株式会社		
お問い合わせ窓口(フリーコールです。携帯・PHSからもご利用いただけます。)		
技術的なお問い合わせ・訪問・お見積・ご注文 総合窓口 あ客様ご相談センター <u>受付時間 平日/9:00~19:00</u> TEL 0120-925-410 FAX 0120-925-601	CC-Link・MECHATROLINKなどのFAネットワークや Modbus RTUに関するお問い合わせ ネットワーク対応製品専用ダイヤル TEL 0120-914-271 受付時間 平日/9:00 ~ 17:30 故障かな?と思ったときの検査修理窓口 アフターサービスセンター 受付時間 平日/9:00 ~ 17:30 TEL 0120-911-271 FAX 0120-984-815	

WEBサイトでもお問い合わせやご注文を受け付けています。 https://www.orientalmotor.co.jp/