Oriental motor

ACサーボモーター AZXシリーズ/ AZXシリーズ搭載 電動アクチュエータ EtherNet/IP™対応ドライバ

取扱説明書 ソフトウェア編

はじめに

運転準備

運転操作

入出力信号

動力遮断機能

EtherNet/IP制御

パラメータ一覧

トラブルシューティング

拡張機能

付録

お買い上げいただきありがとうございます。

この取扱説明書には、製品の取り扱いかたや安全上の注意事項を示しています。

- 取扱説明書をよくお読みになり、製品を安全にお使いください。
- お読みになった後は、いつでも見られるところに必ず保管してください。

はじめに はじめに......8 関連する取扱説明書.......8 1-2 1-3 取扱説明書の見方.......8 1-4 2 3 ドライバフロントパネルの図記号について.......12 3-1 警告表記.......12 4 運転準備 2 1 2 3 4 5 3 運転操作 1 2 ストアードデータ(SD)運転の種類.......25 データの設定.......28 2-2 2-3 2-4 2-5 シーケンス機能(繰り返し運転).......54 2-6 シーケンス機能(運転の分岐).......58 2-7 2-8 停止動作.......63 2-9 2-10 2-11 3 ダイレクトデータ運転の概要.......65 3-1 ダイレクトデータ運転に必要なOutputデータとパラメータ.......66 3-2 4-1 4-2

5	マクロ]運転	81
	5-1	マクロ運転の種類	81
	5-2	JOG運転	82
	5-3	高速JOG運転	84
	5-4	インチング運転	86
	5-5	複合JOG運転	88
	5-6	連続運転	90
6	広 煙丝	· · · · · · · · · · · · · · · · · · ·	
O			
	6-1	座標管理の概要	
	6-2	座標原点	
	6-3	ABZOセンサに関するパラメータ	
	6-4	機構諸元パラメータ	
	6-5	初期座標生成・ラウンド座標パラメータ	
	6-6	機構リミット	
	6-7	機構保護	
	6-8	座標情報モニタ機能	
7	トルク	7制限機能	108
4	入出	力信号	
1		7信号の概要	
	1-1	入力信号の概要	
	1-2	出力信号の概要	
	1-3	入力信号と出力信号の設定内容	112
2	信号一	-覧	117
	2-1	入力信号一覧	117
	2-2	出力信号一覧	119
3	信号σ)種類	123
	3-1	ダイレクトI/O	
	3-2	リモートI/O	
4			
4		号	
	4-1	運転制御	
	4-2	座標管理	
	4-3	ドライバの管理	145
5	出力信	号	147
	5-1	ドライバの管理	147
	5-2	運転の管理	148
	5-3	ラッチ情報表示	156
	5-4	レスポンス出力	156
6	タイミ	ミングチャート	157
-			
5	動力	· 遮断機能	
.	- 3 117 J		
1			
•	動力遊	医断機能の概要	160

3	人出力	信亏	162
	3-1	入力信号	162
	3-2	出力信号	162
4	動力遮	断機能の動作	163
	4-1	動力遮断状態への移行	163
	4-2	動力遮断状態からの復帰	164
	4-3	動力遮断機能の故障検出	165
5	関連機	能	166
	5-1	入力信号	166
	5-2	出力信号	166
	5-3	パラメータ	167
	5-4	アラーム	168
6	Ethe	erNet/IP制御	
1	ガイダ	ンス	172
2		様	
3		ー レスの設定レ	
	3-1	IPアドレスの設定方法	
	3-2	IPアドレス設定スイッチを使用する場合	
	3-3	パラメータで設定する場合	178
	3-4	DHCPサーバで設定する場合	178
4	Implic	itメッセージ	179
	4-1	Implicitメッセージフォーマット	179
	4-2	Inputデータ	180
	4-3	Outputデータ	183
	4-4	Implicit通信の処理順序	
	4-5	データの書き込み	
	4-6	データの読み出し	188
5	運転の	実行例	190
	5-1	ストアードデータ (SD) 運転	190
	5-2	マクロ運転	
	5-3	ダイレクトデータ運転	193
7	パラ	メータ一覧	
1	パラメ	ータの反映タイミング	198
2	メンテ	ナンスコマンド	199
3	モニタ	コマンド	201
4	運転デ	ータR/Wコマンド	208
4	運転デ 4-1	ータR/Wコマンド 運転データNo.の基準アドレス	
4			208

5	運転I/OイベントR/Wコマンド	212
	5-1 運転I/Oイベントの基準アドレス	212
	5-2 運転I/OイベントR/WコマンドのパラメータID	212
6	プロテクト解除コマンド	213
7	運転データ拡張用設定R/Wコマンド	214
8	パラメータR/Wコマンド	215
	8-1 (p4)基本設定パラメータ	215
	8-2 (p5)モーター・機構(座標/JOG/原点復帰)設定パラメータ	216
	8-3 (p6) Alarm・Info設定パラメータ	218
	8-4 (p7)I/O動作・機能パラメータ	221
	8-5 (p8) Direct-IN機能選択(DIN) パラメータ	224
	8-6 (p9) Direct-OUT機能選択(DOUT) パラメータ	225
	8-7 (p10) Remote-I/O機能選択 (R-I/O) パラメータ	226
	8-8 (p11)EXT-IN•VIR-IN•USR-OUT機能選択(拡張)パラメータ	227
	8-9 (p12)通信・I/F機能パラメータ	229
	8-10 (p13)調整・機能パラメータ	230
9	入出力信号 割り付け一覧	232
	9-1 入力信号	232
	9-2 出力信号	233
8	トラブルシューティング	
1	通信異常の検出	236
	1-1 通信タイムアウト	236
	1-2 IPアドレス競合	236
2	アラーム	237
	2-1 アラームの解除	237
	2-2 アラームの履歴	237
	2-3 アラームの発生条件	238
	2-4 アラーム一覧	239
	2-5 タイミングチャート	244
3	インフォメーション	246
	3-1 インフォメーションの履歴	248
	3-2 インフォメーション一覧	
4	故障の診断と処置	252
9	拡張機能	
1	ゲインチューニング	254
	1-1 負荷慣性の設定	254
	1-2 応答性の設定	
2	振動抑制	257
		257
	2-2 共振抑制	
	2-3 制振制御	259

	2-4	電子ダンパ	259	
3	積算負	荷	260	
4	負荷率	モニタ	262	
5	ラッチ	機能	263	
6	HOME	E PRESETスイッチの機能を変更する	266	
7	A相/B	相出力の割り付けを変更する	267	
8	ドライ	バの動作をシミュレーションする	268	
	8-1	ドライバシミュレーションモードの準備と操作手順	269	
	8-2	座標		
	8-3	モニタ	272	
	8-4	運転		
	8-5	入出力信号		
	8-6	アラーム		
9	汎用信	号を使う	274	
10	付録			
1	運転の	種類と運転データ・パラメータの関係	278	
2	LEDの表示280			

1 はじめに

取扱説明書の構成、製品の概要、安全上のご注意などについて説明しています。

◆もくじ

1	はし	ごめに	8
	1-1	お使いになる前に	8
	1-2	関連する取扱説明書	8
	1-3	取扱説明書の見方	8
	1-4	MEXE02 の画面表示について	9
2	製品	品の概要	10
3	安全	È上のご注意	11
	3-1	ドライバフロントパネルの図記号につい	ハて12
	3-2	警告表記	12
4	使F	目上のお願い	13

1 はじめに

1-1 お使いになる前に

製品の取り扱いは、電気・機械工学の専門知識を持つ有資格者が行なってください。

お使いになる前に、11ページ[3 安全上のご注意]をよくお読みのうえ、正しくお使いください。また、本文中の警告・注意・ 重要に記載されている内容は、必ずお守りください。

この製品は、一般的な産業機器への組み込み用として設計・製造されています。その他の用途には使用しないでください。 この警告を無視した結果生じた損害の補償については、当社は一切その責任を負いませんので、あらかじめご了承ください。

1-2 関連する取扱説明書

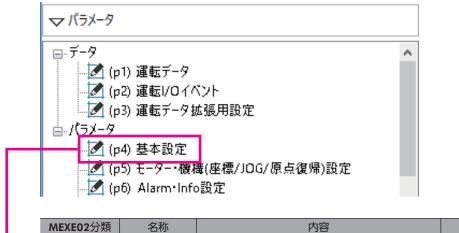
取扱説明書については、当社のWEBサイトからダウンロードしていただくか、支店・営業所にお問い合わせください。 https://www.orientalmotor.co.jp/

- AZXシリーズ/AZXシリーズ搭載電動アクチュエータ EtherNet/IP™対応ドライバ 取扱説明書 ハードウェア編
- AZXシリーズ/AZXシリーズ搭載電動アクチュエータ EtherNet/IP™対応ドライバ 取扱説明書 ソフトウェア編(本書)

モーターや電動アクチュエータについては、次の取扱説明書をお読みください。

- 取扱説明書 モーター編
- 取扱説明書 アクチュエータ編
- 電動アクチュエータ 機能設定編

1-3 取扱説明書の見方


製品をお使いになるときは、AZXシリーズ 取扱説明書のハードウェア編とソフトウェア編(本書)を併せてお読みください。 ハードウェア編では、設置や接続などについて記載しています。

ソフトウェア編では、運転操作、EtherNet/IPでの制御方法、パラメータ一覧、トラブルシューティングなどについて記載 しています。

1-4 **MEXE02**の画面表示について

MEXE02の画面表示を記載する場合、パラメータ分類の前に記載されている「(p4)」などの番号を使って示すことがあります。

表記の例

MEXE02分類	名称	内容	設定範囲	初期値	
> p4	起動速度	ストアードデータ運転または連続マクロ運転の 起動速度を設定します。	0~4,000,000 Hz	500	

8 ♣ (p4) 基本設定パラメータ

パラメ	ータID	 名称	内容	設定範囲	初期値	反映
Dec	Hex	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	N a	一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一	初知但	汉顷
272	0110h	ダイレクトデータ運転 ゼロ速度動作	ダイレクトデータ運転で、「速度」に0が 書き込まれたときの指令を設定します。	0:減速停止指令 1:速度ゼロ指令	0	В

2 製品の概要

■ 制御方法

EtherNet/IPのImplicit通信(周期通信)で運転します。

■ 運転データやパラメータの設定方法

運転データやパラメータは、EtherNet/IPまたはサポートソフトMEXE02で設定できます。

■ ダイレクトデータ運転機能を搭載

ダイレクトデータ運転とは、データの書き換えと運転の開始を同時に行なうことができる機能です。負荷に応じて速度や移動量を変えるなど、頻繁に運転データの設定を変える用途に適しています。

■ 動力遮断機能を搭載

動力遮断機能とは、モーターへの電力供給をハードウェアで遮断する機能です。動力遮断機能は、装置可動部の動作範囲内で作業しなければならない場合に、可動部の予期しない起動を防止する目的で使用することを想定しています。

■ EDSファイルの提供について

EDSファイル (Electronic Data Sheets ファイル) とは、EtherNet/IP対応製品の固有情報を記述しているファイルです。 EDSファイルをスキャナの設定ツールにインポートすることで、ドライバがお手元に届く前にEtherNet/IPの設定を行なえます。

EDSファイルは当社のWEBサイトからダウンロードできます。

https://www.orientalmotor.co.jp/

3 安全上のご注意

ここに示した注意事項は、製品を安全に正しくお使いいただき、お客様や他の人々への危害や損傷を未然に防止するためのものです。内容をよく理解してから製品をお使いください。

⚠警告

この警告事項に反した取り扱いをすると、死亡または重傷を負う場合がある内容を示しています。

注意

この注意事項に反した取り扱いをすると、傷害を負うまたは物的損害が発生する場合がある内容を示しています。

製品を正しくお使いいただくために、お客様に必ず守っていただきたい事項を、本文中の関連する取り扱い項目に記載しています。

本書の理解を深める内容や、関連情報を記載しています。

⚠警告

全般

- 爆発性雰囲気、引火性ガスの雰囲気、腐食性の雰囲気、水のかかる場所、および可燃物のそばでは使用しない。火災・感電・ けがの原因になります。
- 設置、接続、運転・操作、点検・故障診断の作業は、適切な資格を有する人が行なう。火災・感電・けが・装置破損の原因になります。
- 通電状態で移動、設置、接続、点検の作業をしない。感電の原因になります。
- 通電中はドライバに触れない。火災・感電の原因になります。
- ドライバフロントパネルの <u></u> マークで示された端子は高電圧がかかるため、通電中は触れない。火災・感電の原因になります。
- 昇降装置に使用するときは、可動部の位置保持対策を行なう。けが・装置破損の原因になります。
- ドライバのアラーム (保護機能) が発生したときは、原因を取り除いた後でアラーム (保護機能) を解除する。原因を取り除かずに運転を続けると、モーター、ドライバが誤動作して、けが・装置破損の原因になります。

設置

- ドライバは筐体内に設置する。感電・けがの原因になります。
- ドライバはクラス I 機器のため、設置するときは、ドライバに触れないようにするか、接地する。 感電の原因になります。

接続

- ドライバの電源入力電圧は、定格範囲を守る。火災・感電の原因になります。
- 接続図にもとづき、確実に接続する。火災・感電の原因になります。
- ケーブルを無理に曲げたり、引っ張ったり、挟み込まない。火災・感電の原因になります。

運転

- 停電したときは主電源と制御電源を切る。けが・装置破損の原因になります。
- 運転中はモーターを無励磁にしない。モーターが停止し、保持力がなくなるため、けが・装置破損の原因になります。

修理·分解·改造

▶ ドライバを分解・改造しない。けが・装置破損の原因になります。

保守•点検

主電源と制御電源を切った直後はドライバの接続端子に触れない。接続や点検の作業は、主電源と制御電源を切り、 CHARGE LEDが消灯してから行なう。残留電圧によって感電するおそれがあります。

注意

全般

- ドライバの仕様値を超えて使用しない。感電・けが・装置破損の原因になります。
- 指や物をドライバの開口部に入れない。火災・感電・けがの原因になります。
- 運転中や停止後しばらくの間はドライバに触らない。やけどの原因になります。
- ドライバに接続されたケーブルを無理に曲げたり引っ張らない。破損の原因になります。

設置

- 可燃物をドライバの周囲に置かない。火災・やけどの原因になります。
- 通風を妨げる障害物をドライバの周囲に置かない。装置破損の原因になります。

運転

- モーターとドライバは指定された組み合わせで使用する。火災の原因になります。
- 制御電源は、一次側と二次側が強化絶縁された直流電源を使用する。感電の原因になります。
- 装置の故障や動作の異常が発生したときに、装置全体が安全な方向へはたらくよう、非常停止装置または非常停止回路を 外部に設置する。けがの原因になります。
- 主電源と制御電源を投入するときは、ドライバの入力信号をすべてOFFにする。けが・装置破損の原因になります。
- 手動で可動部を動かすときは、モーターを無励磁にする。励磁状態のまま作業すると、けがの原因になります。
- 異常が発生したときは、ただちに運転を停止し、主電源と制御電源を切る。火災・感電・けがの原因になります。
- ドライバのスイッチを操作するときは、静電防止対策を行なう。ドライバの誤動作や装置破損の原因になります。

保守•点検

• 絶縁抵抗測定、絶縁耐圧試験を行なうときは、端子に触れない。感電の原因になります。

3-1 ドライバフロントパネルの図記号について

⚠ 警告

保護接地端子です。感電の原因となるため、必ず接地してください。

⚠警告

モーターコネクタ (CN3)、主電源入力端子 (CN4) には高電圧がかかります。通電中は触れないでください。火災・感電の原因になります。

3-2 警告表記

ドライバには、取り扱い上の警告が表示されています。 取り扱うときは、必ず表示の内容を守ってください。 感電警告ラベル

NARNING - Risk of electric shock.

Read manual before installing. (Multiple rated)
 Do not touch the driver immediately after the power is cut off, or until the CHARGE LED (lit in red) turns off. Doing so may result in electric shock due to residual voltage.

AVERTISSEMENT — Risque de décharge électrique.

Lire le manuel avant l'installation.

Ne pas toucher au variateur immédiatement après la mise hors tension ou avant que la LED "présense de la tension" (Rouge) ne soit éteinte. Le non respect de ces règles pourrait entraîner un choc électrique.

⚠警告 ーけが・感電のおそれがあります。

● 据え付け、運転の前には必ず取扱説明書をお読み下さい。 ●電源を切った直後、CHARGE LED(赤色点灯)が消灯するまで ドライバに触れないで下さい。残留電圧により感電の原因になります。

材質:PET

4 使用上のお願い

製品をお使いいただくうえでの制限やお願いについて説明します。

● モーターとドライバは、必ず当社のケーブルを使用して接続してください

ケーブルの品名は、当社のWEBサイトで確認してください。 https://www.orientalmotor.co.jp/

● 絶縁抵抗測定、絶縁耐圧試験を行なうときは、モーターとドライバを切り離してください
 モーターとドライバを接続した状態で、絶縁抵抗測定、絶縁耐圧試験を行なうと、製品が破損するおそれがあります。

漏れ電流対策

ドライバの動力線と他の動力線間、大地間、およびモーター間には浮遊容量が存在し、これを通して高周波漏れ電流が流れ、周辺の機器に悪影響を与えることがあります。これは、ドライバのスイッチング周波数、ドライバとモーター間の配線長などに左右されます。漏電ブレーカを設置するときは、次のような高周波対策品を使用してください。 三菱電機株式会社 NVシリーズ

● 巻下げ運転などの上下駆動や、大慣性の急激な起動・停止が頻繁に繰り返されるときは、当社の回 生抵抗RGB200を使用してください

出荷時は、内蔵の回生抵抗を使用する設定になっています。内蔵の回生抵抗では、連続回生運転や巻き下げ運転などの上下駆動、および大慣性の急激な起動・停止を頻繁に繰り返す運転を行なえません。そのような運転を行なう場合は、当社の回生抵抗**RGB200**を使用してください。接続方法は取扱説明書 ハードウェア編をご覧ください。

● プラス側を接地した主電源と制御電源を接続するときの注意

ドライバのUSBコネクタ、CN5、CN6、およびCN7コネクタは絶縁されていません。電源のプラス側を接地するときは、マイナス側を接地した機器 (パソコンなど) を接続しないでください。これらの機器とドライバが短絡して、破損するおそれがあります。接続する場合は、機器を接地しないでください。

● NVメモリへのデータ保存

データをNVメモリに書き込んでいる間、および書き込み後5秒以内は、制御電源を切らないでください。書き込みが正常に終了せず、EEPROM異常のアラームが発生する原因になります。NVメモリの書き換え可能回数は、約10万回です。

● ノイズ対策

ノイズ対策については、取扱説明書 ハードウェア編をご覧ください。

2 運転準備

運転を始める前に行なっていただきたい内容について説明しています。

◆もくじ

1	運転準備のながれ	. 16
2	ABZOセンサの固定値(パラメータ)を ドライバにコピーする	. 17
3	分解能の設定	. 18
4	原点の確定	. 20
5	データのバックアップ	21

1 運転準備のながれ

運転準備はMEXE02を使って行ないます。

モーターと電動アクチュエータでは手順が異なりますので、お使いの製品に合わせて運転準備を行なってください。

Ψ

電動アクチュエータ

ABZOセンサの設定値をドライバにコピーする

□ 17ページ

MEXE02でABZOセンサの固定値とドライバパラメータの 設定値を一致させます。

 \mathbf{L}

データのバックアップ ⇒ 21ページ

設定した内容をバックアップします。

2 ABZOセンサの固定値(パラメータ)を ドライバにコピーする

電動アクチュエータのパラメータは、ABZOセンサとドライバでそれぞれ異なる値が保存されています。

電動アクチュエータのABZOセンサには、推奨されるマクロ運転や座標情報など、製品仕様にもとづいた値が保存されています。ABZOセンサに保存されている値は固定値のため、変更はできません。

一方、ドライバパラメータには、標準タイプ(モーター単体)の値が保存されています。

出荷時の状態では、ABZOセンサに保存されているパラメータ(固定値)が優先的に使用されています。しかしMEXE02などでパラメータを変更すると、変更したパラメータだけでなく、すべてのパラメータがドライバに設定されている値に変わってしまいます。そのため、運転を実行したときに予想外の動きをするおそれがあります。このようなトラブルを防ぐため、あらかじめABZOセンサの固定値をドライバにコピーして、ドライバのパラメータをABZOセンサの固定値と一致させてください。

「マニュアル設定」に変更して設定したパラメータ(例:電子ギヤなど)をMEXEO2からドライバに書き込んだ後に、ABZOセンサの固定値をコピーしても、マニュアル設定で変更したパラメータは固定値に戻りません。

■ 手順

MEXE02でABZOセンサの固定値(パラメータ)をドライバにコピーします

- 1. ドライバの制御電源を投入します。
- 2. [通信]メニューの [ABZO (固定値) 情報をドライバへ一括コピー] をクリックします。 ABZO (固定値) 情報がドライバにコピーされます。
- 3. ドライバの制御電源を再投入します。
- 4. ユニット情報モニタ画面で、コピーした値が反映されているか確認します。 各項目の内容は表のとおりです。

項目	内容
実行(採用値)	現在使用されているパラメータ値を表示します。
ドライバパラメータ	MEXE02やEtherNet/IPでドライバに設定したパラメータ値を表示します。
ABZO固定值	ABZOセンサに保存されているパラメータ値を表示します。 固定値のため、変更できません。

3 分解能の設定

ギヤードモーターやアクチュエータなど、機構と組み合わせて使用するときに、分解能を設定してください。 「電子ギヤA」パラメータと「電子ギヤB」パラメータを設定すると、モーター出力軸1回転あたりの分解能を設定できます。 算出して得られた値は、次の設定範囲に収めてください。

分解能の設定範囲:100~10,000 P/R(初期値:1,000 P/R)

分解能(P/R) = 1,000 × 電子ギヤB 電子ギヤA

関連するパラメータ

MEXE02分類	名称	内容	設定範囲	初期値
	機構諸元設定	機構諸元パラメータを変更するときは、 「1:マニュアル設定」を選択してください。	0:ABZO設定を優先 1:マニュアル設定	0
p5	電子ギヤA	電子ギヤの分母を設定します。	1 - 65 525	1
	電子ギヤB	電子ギヤの分子を設定します。	1~65,535	1

- 「機構諸元設定」パラメータを変更したときは、ドライバの制御電源を再投入してください。
- 設定範囲外の分解能を設定すると、電子ギヤ設定異常のインフォメーションが発生します。電子ギヤ設定異常のインフォメーションが発生している状態で、制御電源を再投入またはConfigurationを実行すると、電子ギヤ設定異常のアラームが発生します。
- 「プリセット位置」パラメータが「0」以外の状態でプリセットを行なった後に、分解能を変更したときは、もう一度プリセットを実行してください。「プリセット位置」パラメータが「0」のときは、分解能を変更しても現在位置が自動で再計算されます。

memo

接続する製品によって、分解能の初期値が異なる場合があります。

■ 電子ギヤA/Bの算出方法

ここでは、ボールねじと回転テーブルを例に、電子ギヤA/Bの算出方法を説明します。

- 算出例1:ボールねじの場合
 - リードが12 mmのボールねじを、1ステップあたり0.01 mmで動かしたいとき
 - 減速比:1(モーターとボールねじ間に減速機構がないものとします。)

したがって、電子ギヤA=10、電子ギヤB=12となり、分解能は1,200 P/Rになります。

● 算出例2:回転テーブルの場合

- 1回転の移動量が360°の回転テーブルを、1ステップあたり0.01°で動かしたいとき
- 減速比:10(減速比が10のギヤードモーターを使用)

したがって、電子ギヤA=10、電子ギヤB=36となり、分解能は3,600 P/Rになります。

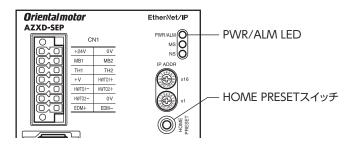
■ A相(ASG)出力、B相(BSG)出力の分解能について

A相出力とB相出力は、ABZOセンサから出力されるパルス信号です。A相/B相出力はモーターの運転に対応してパルスを出力するため、パルス数をカウントすると、モーターの位置をモニタできます。

A相出力とB相出力のパルスの分解能は、制御電源を投入したときのモーター分解能と同じです。モーター分解能を変更すると、A相/B相出力の分解能も変わります。

原点の確定 4

工場出荷時は、原点が設定されていません。運転を行なう前に、必ず原点を確定してください。


原点の確定は、最初に1回だけ行なってください。いったん原点を確定すれば、その後は制御電源を遮断しても原点情報が保 持されています。

原点はNVメモリに書き込まれます。NVメモリの書き込み可能回数は、約10万回です。

▋原点の確定方法

HOME PRESETスイッチで原点を確定します。

- 1. 出力軸を原点にしたい位置まで動かします。
- 2. 制御電源が投入されていることを確認し、HOME PRESETスイッチを1秒間押し続けます。 PWR/ALM LEDの赤色と緑色が、同時に点滅します。(赤色と緑色が重なって、橙色に見えることがあります。)
- 3. PWR/ALM LEDが点滅を始めてから3秒以内に手を離し、手を離してから3秒以内にもう一度HOME PRESETスイッチ を押します。
 - PWR/ALM LEDの赤色と緑色が同時に点灯した後、緑色だけが点灯します。
- 4. 原点が確定されました。

(memo) 手順3の作業は、必ずPWR/ALM LEDが点滅を始めてから手を離し、3秒以内に行なってください。3秒を過 ぎると、PWR/ALM LEDが緑色の点灯に戻ってしまいます。その場合は、もう一度手順2から行なってく ださい。

データのバックアップ 5

MEXE02に設定した内容をバックアップする方法には、次の2種類があります。

■ データファイルを作成して保存する

MEXE02で編集したデータや、ドライバから読み出したデータを、ファイルとして保存します。 [ファイル]メニューの[名前を付けて保存]で保存してください。

■ ドライバのバックアップ領域に保存する

MEXE02で開いているデータを、ドライバのバックアップ領域に保存します。

● MEXE02で保存する場合

- 1. [通信]メニューの[バックアップ]をクリックします。
- 2. アクセスキーとライトキーを入力します。
- 3. [バックアップ]をクリックします。

(memo) バックアップで保存したデータは、[通信]メニューの[リストア]で読み出すことができます。

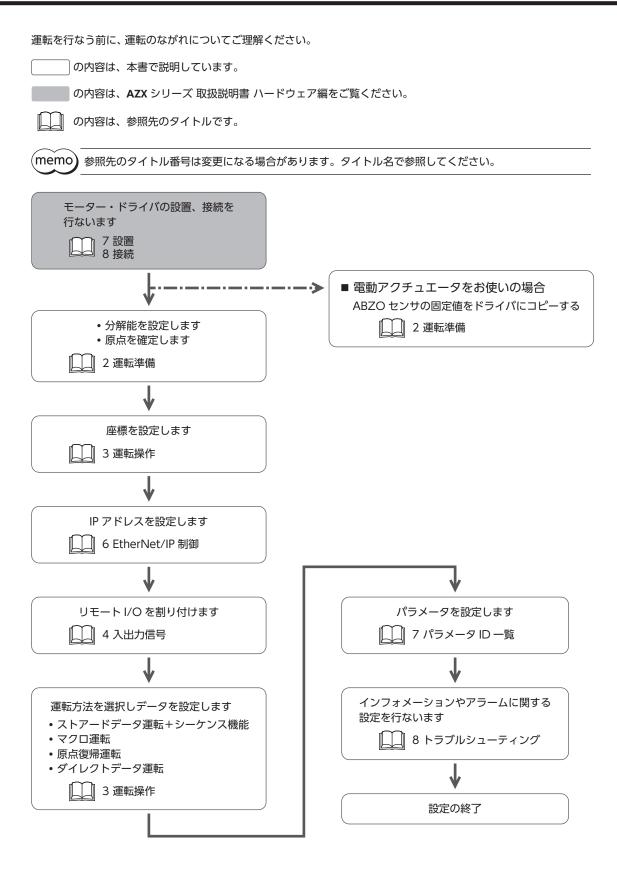
● EtherNet/IPで保存する場合

「バックアップDATAアクセスキー」パラメータと「バックアップDATAライトキー」パラメータでキーコードを設定してか ら、メンテナンスコマンドの「バックアップデータ書き込み」コマンドを実行してください。

関連するパラメータ

パラメ	ータID	名称	内容	キーコード	初期値
Dec	Hex		P)合	キーコード	初知恒
32	0020h	バックアップDATA アクセスキー	バックアップ領域にアクセスするための キーコードを入力します。データの書き 込みと読み出しが可能です。	20519253 (01391955h)	0
33	0021h	バックアップDATA ライトキー	バックアップ領域にデータを書き込むた めのキーコードを入力します。	1977326743 (75DB9C97h)	0
203	00CBh	バックアップデータ 読み出し	すべてのデータをバックアップ領域から 読み出します。	-	-
204	00CCh	バックアップデータ 書き込み	すべてのデータをバックアップ領域に書 き込みます。	_	_

(memo) バックアップで保存したデータを読み出すときは、「バックアップDATAアクセスキー」パラメータでキー コードを設定してから、メンテナンスコマンドの「バックアップデータ読み出し」コマンドを実行してくだ さい。

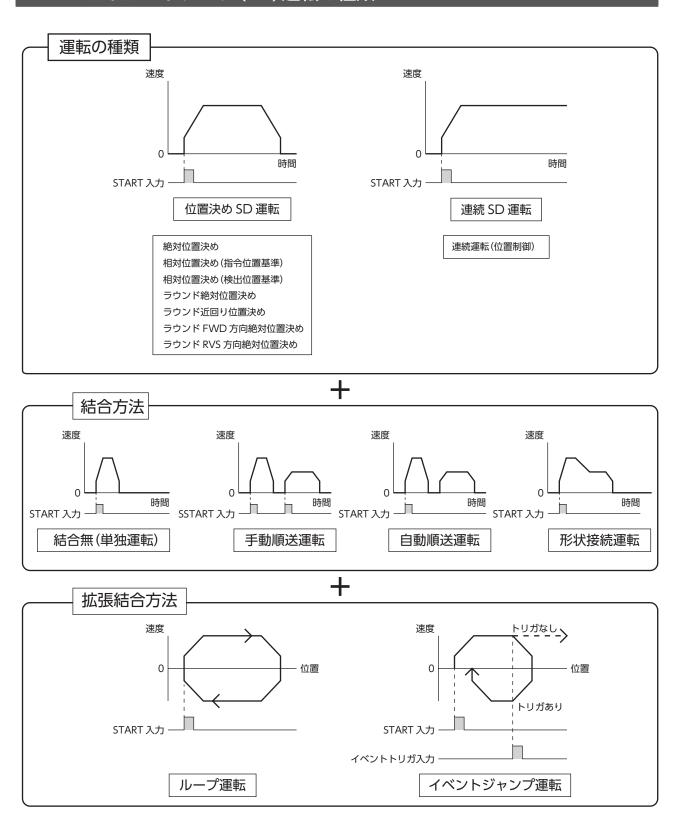

3 運転操作

運転機能やパラメータについて説明しています。

◆もくじ

1 運軸	伝に必要な設定のながれ24	5	₹2	7ロ運転81
2 ス1	トアードデータ(SD)運転25	5-		マクロ運転の種類81
2-1 2-2 2-3	ストアードデータ (SD) 運転の種類25 データの設定28 位置決めSD運転33	5-: 5-: 5-	3	JOG運転 82 高速JOG運転 84 インチング運転 86
2-4 2-5	連続SD運転42 運転データの結合方式43	5-! 5-(6	複合JOG運転
2-6	シーケンス機能(繰り返し運転)54	6	座村	票管理92
2-7	シーケンス機能(運転の分岐)58	6-	1	座標管理の概要92
2-8	運転データ拡張用設定61	6-2	2	座標原点96
2-9	停止動作63	6-3	3	ABZOセンサに関するパラメータ97
2-10	加減速単位64	6-4	4	機構諸元パラメータ98
2-11	起動速度64	6-!	5	初期座標生成・ラウンド座標パラメータ99
3 ダー	イレクトデータ運転65	6-6 6-7	_	機構リミット103 機構保護104
3-1 3-2	ダイレクトデータ運転の概要65 ダイレクトデータ運転に必要な Outputデータとパラメータ66	6-8 7	8	104 座標情報モニタ機能104 レク制限機能108
4 原点	点復帰運転69			
4-1 4-2	高速原点復帰運転69 原点復帰運転71			

1 運転に必要な設定のながれ



2 ストアードデータ(SD)運転

ストアードデータ運転とは、モーターの運転速度や位置(移動量)などを運転データに設定して実行する運転です。

※ 運転を始める前に、必ず原点を確定してください。

2-1 ストアードデータ(SD)運転の種類

■ 運転の種類

● 位置決めストアードデータ(SD)運転

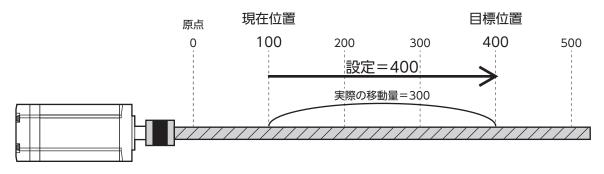
モーターの運転速度や位置(移動量)などを運転データに設定することで、現在位置から目標位置に向かって台形駆動を行ないます。モーターは起動速度で立ち上がり、運転速度になるまで加速します。運転速度に達すると速度は一定になり、停止位置に近づくと減速して停止します。

目標位置の設定方法	運転方式	説明	
絶対位置決め (アブソリュート)	絶対位置決め	現在位置から設定した目標位置へ位置決め運転を行ないます。	
相対位置決め	相対位置決め(指令位置基準)	現在の指令位置から設定した移動量の位置決め運転 を行ないます。	
(インクリメンタル)	相対位置決め(検出位置基準)	現在の検出位置から設定した移動量の位置決め運転 を行ないます。	
	ラウンド絶対位置決め	ラウンド範囲内の目標位置へ位置決め運転を行ない ます。	
ラウンド絶対位置決め (ラウンドアブソリュート)	ラウンド近回り位置決め	最短距離でラウンド範囲内の目標位置へ位置決め運 転を行ないます。	
	ラウンドFWD方向絶対位置決め	ラウンド範囲内の目標位置へFWD方向の位置決め運転を行ないます。	
	ラウンドRVS方向絶対位置決め	ラウンド範囲内の目標位置へRVS方向の位置決め運 転を行ないます。	

● 連続ストアードデータ (SD) 運転

設定した運転速度で、運転し続けます。

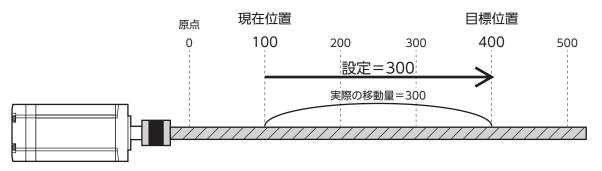
運転方式	説明
連続運転(位置制御)	モーターは起動速度で立ち上がり、運転速度になるまで加速します。運転速度に達すると、速度を維持したまま位置偏差を監視しながら運転を続けます。


■ 目標位置の設定方法

目標位置の設定方法には、次の3種類があります。

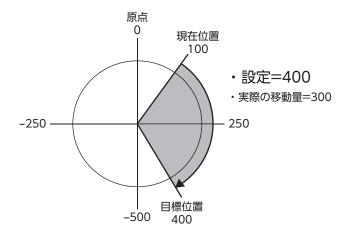
● 絶対位置決め(アブソリュート)

原点を基準とした座標上の目標位置を設定します。


例:現在位置[100]から目標位置[400]へ移動する場合の設定

● 相対位置決め(インクリメンタル)

移動した先を次の移動の開始点として、目標位置を設定します。同じ移動量を繰り返すような運転に適しています。


例:現在位置[100]から目標位置[400]へ移動する場合の設定

● ラウンド絶対位置決め(ラウンドアブソリュート)

「ラウンド(RND)設定」パラメータを「1:有効」に設定して使用します。ラウンド範囲内の目標位置を設定します。

例:現在位置[100]から目標位置[400]へ移動する場合の設定

2-2 データの設定

ストアードデータ運転に関する設定には、次の3種類があります。

● 運転データ

ストアードデータ運転に必要な運転方式、目標位置、運転速度、加減速レート、トルク制限値などを設定します。

● 運転I/Oイベント

イベントジャンプ機能に必要なイベントを発生させる条件や、イベントが発生したときの運転の結合先、結合方法などを設定します。イベントジャンプ機能を使用するときにお使いください。

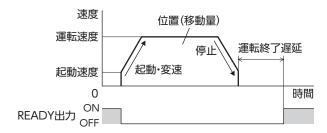
● 運転データ拡張用設定

拡張ループ機能に必要なループ開始位置やループ終了位置、ループ回数などを設定します。 運転データでは設定できない回数(256回以上)のループ運転を実行するときにお使いください。

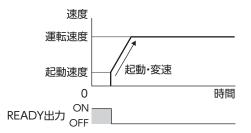
■ 運転データ

ストアードデータ運転に必要な運転データは次のとおりです。運転データは、最大256点(No.0~255)まで設定できます。

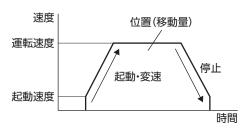
MEXE02分類	名称	内容	設定範囲※1	初期値
	方式	運転方式を選択します。	1:絶対位置決め 2:相対位置決め(指令位置基準) 3:相対位置決め(検出位置基準) 7:連続運転(位置制御) 8:ラウンド絶対位置決め 9:ラウンド近回り位置決め 10:ラウンドFWD方向絶対位置決め 11:ラウンドRVS方向絶対位置決め	2
	位置	目標位置(移動量)を設定します。連続SD運転では使用しません。	−2,147,483,648~ 2,147,483,647 step	0
	速度	運転速度を設定します。 位置決め運転は、絶対値の運転速度 で運転します。連続運転は、正の値を 設定するとFWD方向、負の値を設定 するとRVS方向へ回転します。	-4,000,000~4,000,000 Hz	1,000
	起動・変速レート	起動・変速時の加減速レートまたは加 減速時間を設定します。	1~1,000,000,000(1=0.001) %2	1,000,000
	停止レート	停止時の減速レートまたは減速時間 を設定します。	1~1,000,000,000(1=0.001) %2	1,000,000
トルク制限値		トルク制限値を設定します。	0~10,000 (1=0.1 %)	1,000
рι	運転終了遅延	運転終了後に発生する待ち時間を設 定します。	0~65,535(1=0.001 s)	0
	結合	結合方法を設定します。	0:結合無 1:手動順送 2:自動順送 3:形状接続	0
	結合先	結合先を設定します。	-256:結合しない[Stop] -2:2つ先の運転データNo.[↓↓(+2)] -1:次の運転データNo.[↓(+1)] 0~255:運転データNo.	-1
	オフセット(エリア)	MAREA出力がONになる範囲の中心 位置から、位置決め運転の目標位置 までの距離を設定します。 連続運転の場合は、運転開始位置ま での距離を設定します。	-2,147,483,648~ 2,147,483,647 step	0
	幅(エリア)	MAREA出力がONになる範囲を設定 します。	−1:無効 0~4,194,303 step	-1
	カウント(Loop)	ループ回数を設定します。	0:ループしない[-] 2〜255:ループ回数 [loop 2{〜loop 255{]	0


MEXE02分類	名称	内容	設定範囲※1	初期値
	位置オフセット ループをするたびに位置(移動量)を オフセットします。		-4,194,304~4,194,303 step	0
	終了(Loop)	ループを終了する運転データNo.に 設定します。	0:ループ終了点ではない[-] 1:ループ終了点[]L-End]	0
p1	弱イベント p1	弱イベントを発生させるための、運転I/Oイベントの番号を設定します。 イベントを発生させる条件は、運転I/Oイベントで設定します。		
強イベント		強イベントを発生させるための、運転I/Oイベントの番号を設定します。 弱イベントと強イベントが同時に発生した場合は、強イベントが優先されます。イベントを発生させる条件は、運転I/Oイベントで設定します。	-1:無効[-] 0〜31:運転I/Oイベント番号	-1

- ※1 []内はMEXE02の画面表記です。
- ※2 設定単位は「加減速単位」パラメータに従います。


● 位置、速度、起動・変速レート、停止レート、運転終了遅延

ストアードデータ運転に必要な目標位置、運転速度、加減速レート(加減速時間)を設定します。


• 位置決め運転

• 連続運転

• 起動速度<運転速度の場合

• 運転速度≦起動速度の場合

● 結合・結合先

種類	内容
結合無	1つの運転データNo.で運転を1回実行します。(単独運転)
手動順送	SSTART入力を入力するたびに、「結合先」に設定した運転データNo.の運転を実行します。SSTART入力は、READY出力がONのときに有効です。
自動順送	「運転終了遅延」に設定した時間だけ停止した後、「結合先」に設定した運転データNo.の運転が自動で開始します。
形状接続	モーターを停止せずに、「結合先」に設定した運転データNo.の運転を続けて実行します。

● オフセット(エリア)、幅(エリア)

オフセット(エリア)や幅(エリア)を設定することで、運転データごとにMAREA出力の範囲を設定できます。

運転方向がFWD方向の場合

• 位置決め運転

速度 速度 運転速度 運転速度 起動速度 起動速度 位置 位置 オフセット(エリア) ▶ オフセット(エリア) 目標位置 目標位置 幅 幅 幅 幅 ON ON MAREA出力 OFF MAREA出力 OFF

• 連続運転

● カウント(Loop)、位置オフセット(Loop)、終了(Loop)

カウント(Loop)、位置オフセット(Loop)、終了(Loop)を設定すると、ループ機能が有効になります。 (♪54ページ[ループ機能])

● 弱イベント、強イベント

弱イベントと強イベントを設定すると、イベントジャンプ機能が有効になります。弱イベントと強イベントが同時に発生したときは、強イベントが優先されます。 (♪58ページ「イベントジャンプ機能」)

■ 運転I/Oイベント

運転データの弱イベントや強イベントの設定に必要な、運転I/Oイベントです。

MEXE02分類	名称	内容	設定範囲※	初期値
	結合	イベントトリガ検出後の、結合方法 を設定します。	0:結合無 1:手動順送 2:自動順送 3:形状接続	0
	結合先	結合先を設定します。	-256:結合しない[Stop] -2:2つ先の運転データNo.[↓↓(+2)] -1:次の運転データNo.[↓(+1)] 0~255:運転データNo.	-256
	Dwell	イベントトリガ検出後に発生する待 ち時間を設定します。	0~65,535(1=0.001 s)	0
p2	イベントトリガI/O	イベントトリガとして使用するI/O を設定します。	出力信号一覧 → 233ページ	0:未使用
r-	イベントトリガタイプ	イベントトリガを検出するタイミン グを設定します。詳細は59ペー ジをご覧ください。	0:設定なし[non] 1:ON(加減算累積msec) 2:ON(msec) 3:OFF (加減算累積msec) 4:OFF (msec) 5:ONエッジ 6:OFFエッジ 7:ON(単純累積msec) 8:OFF (単純累積msec)	0
	イベントトリガカウント	イベントトリガを検出するための判 定時間、または検出回数を設定しま す。	0~65,535(1=1 msまたは1=1回)	0

^{※ []}内はMEXE02の画面表記です。

● 結合、結合先

イベントトリガが検出されたときの結合方法と結合先を設定します。結合には次の4種類があります。

種類	内容
結合無	イベントを無視します。
手動順送	現在の運転を減速停止します。その後、「Dwell」で設定した時間が経過したら、READY出力がONになります。SSTART入力をONにすると、「結合先」に設定した運転データNo.の運転を開始します。
自動順送	現在の運転を減速停止します。その後、「Dwell」で設定した時間が経過したら、「結合先」に設定した運転データNo.の運転を自動で開始します。
形状接続	運転を停止せずに、「結合先」に設定した運転データNo.の運転を開始します。

■ 運転データNo.の選択

起動する運転データNo.の選択方法には、次の2種類があります。

- ダイレクト選択(D-SEL0~D-SEL7)
- M0~M7入力による選択

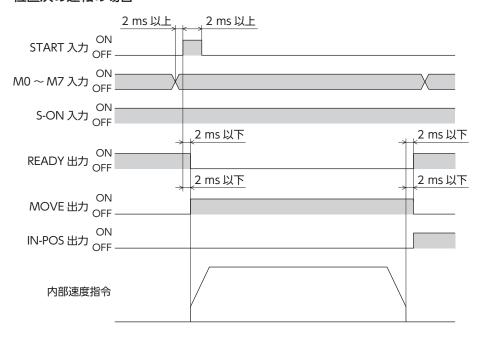
優先順位は、ダイレクト選択、MO~M7入力の順です。

● ダイレクト選択

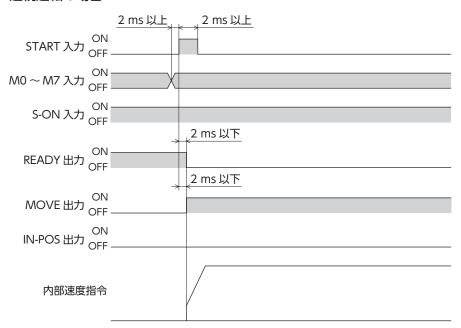
ダイレクト選択とは、パラメータで運転データNo.を設定し、D-SEL0~D-SEL7入力で運転データNo.を選択する方法です。 D-SEL0~D-SEL7入力がすべてOFF、または2つ以上の入力がONになると、ダイレクト選択は無効になり、 $M0\sim M7$ 入力による選択が有効になります。

関連するパラメータ

MEXE02分類	名称	内容	設定範囲	初期値
	D-SEL運転起動	D-SEL入力がONになったときに運転 を起動させるかを設定します。	0:運転データNo.選択のみ 1:運転データNo.選択+ START機能	1
	D-SEL0 No.選択 D-SEL1 No.選択			0
		D-SEL入力に対応させる運転データ	0~255:運転データNo.	1
p7	D-SEL2 No.選択			2
·	D-SEL3 No.選択			3
	D-SEL4 No.選択	No.を設定します。		4
_	D-SEL5 No.選択			5
	D-SEL6 No.選択			6
	D-SEL7 No.選択			7


M0~M7入力による選択

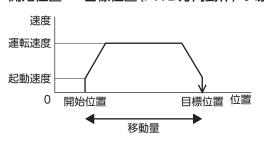
M0~M7入力のON/OFFを組み合わせて、運転データNo.を選択する方法です。

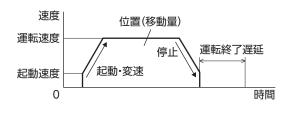

運転データNo.	M7	M6	M5	M4	M3	M2	M1	MO
0	OFF							
1	OFF	ON						
2	OFF	OFF	OFF	OFF	OFF	OFF	ON	OFF
3	OFF	OFF	OFF	OFF	OFF	OFF	ON	ON
•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•
253	ON	ON	ON	ON	ON	ON	OFF	ON
254	ON	OFF						
255	ON							

■ タイミングチャート

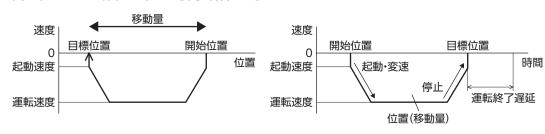
● 位置決め運転の場合

● 連続運転の場合




2-3 位置決めSD運転

位置決めSD運転とは、モーターの運転速度や位置(移動量)などを、運転データに設定して実行する運転です。位置決めSD運転を実行すると、起動速度で立ち上がり、運転速度になるまで加速します。運転速度に達すると速度は一定になり、目標位置に近づくと減速して停止します。


● 運転動作

開始位置 < 目標位置 (FWD方向動作) の場合

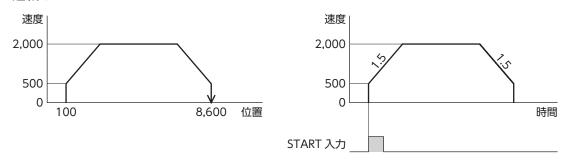
開始位置 > 目標位置 (RVS方向動作) の場合

位置決めSD運転の最大移動量は2,147,483,647 stepです。モーターの移動量が最大移動量を超えると、運転データ異常のアラームが発生します。

- 位置決めSD運転の回転方向(FWD/RVS)は、運転データの「位置」の設定で決まります。 プラスの値を設定するとFWD方向、マイナスの値を設定するとRVS方向へ回転します。
- 運転データの「速度」にマイナスの値を設定したときは、絶対値の速度として動作します。

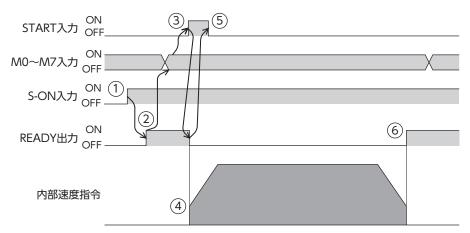
■ 絶対位置決め

原点を基準とした座標上の目標位置を設定します。


● 使用例

指令位置100の位置から、目標位置8,600へ運転する場合

運転データの設定


方式	位置[step]	速度[Hz]	起動・変速レート[kHz/s]	停止レート[kHz/s]
絶対位置決め	8,600	2,000	1.500	1.500

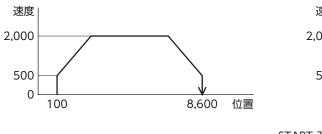
運転イメージ

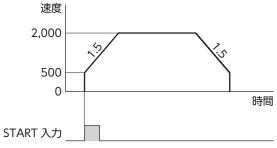
運転方法

- 1. S-ON入力をONにします。
- 2. READY出力がONであることを確認します。
- 3. MO~M7入力で運転データNo.を選択し、START入力をONにします。
- 4. READY出力がOFFになり、モーターが運転を開始します。
- 5. READY出力がOFFになっていることを確認し、START入力をOFFにします。
- 6. 運転が終わると、READY出力がONになります。

■ 相対位置決め(指令位置基準)

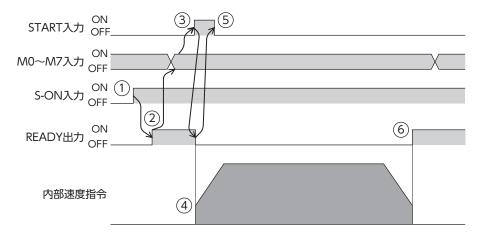
現在の指令位置から目標位置までの移動量を設定します。


● 使用例


指令位置100の地点から目標位置8,600へ運転する場合

運転データの設定

方式	位置[step]	速度[Hz]	起動・変速レート[kHz/s]	停止レート[kHz/s]
相対位置決め(指令位置基準)	8,500	2,000	1.500	1.500

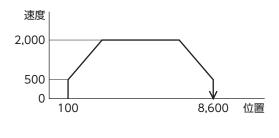

運転イメージ

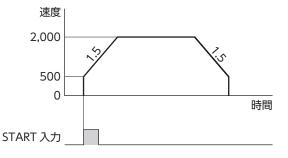
運転方法

- 1. S-ON入力をONにします。
- 2. READY出力がONであることを確認します。
- 3. MO~M7入力で運転データNo.を選択し、START入力をONにします。
- 4. READY出力がOFFになり、モーターが運転を開始します。
- 5. READY出力がOFFになっていることを確認し、START入力をOFFにします。
- 6. 運転が終わると、READY出力がONになります。

■ 相対位置決め(検出位置基準)

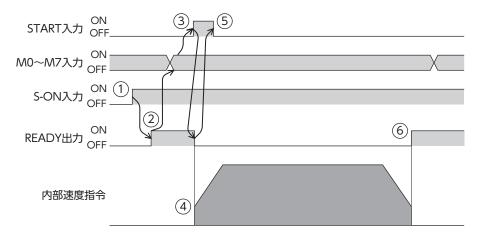
現在の検出位置から目標位置までの移動量を設定します。


● 使用例


検出位置100の地点から目標位置8,600へ運転する場合

運転データの設定

方式	位置[step]	速度[Hz]	起動・変速レート[kHz/s]	停止レート[kHz/s]
相対位置決め(検出位置基準)	8,500	2,000	1.500	1.500


運転イメージ

運転方法

- 1. S-ON入力をONにします。
- 2. READY出力がONであることを確認します。
- 3. MO~M7入力で運転データNo.を選択し、START入力をONにします。
- 4. READY出力がOFFになり、モーターが運転を開始します。
- 5. READY出力がOFFになっていることを確認し、START入力をOFFにします。
- 6. 運転が終わると、READY出力がONになります。

memo

検出位置基準の運転は、負荷によって基準位置が変化します。指令位置と検出位置が異なる状態から次の 運転を開始するときに便利な方法です。

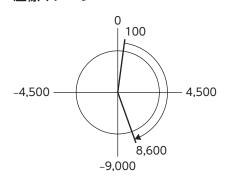
■ ラウンド絶対位置決め

運転データにラウンド範囲内の目標位置を設定します。

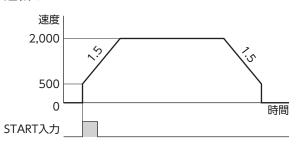
● 使用例

指令位置100の地点から目標位置8,600へ運転する場合 (ラウンド設定範囲18 rev、ラウンドオフセット比率50 %)

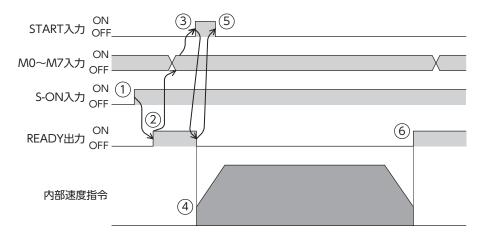
ラウンド機能の設定


ラウンド機能の詳細は99ページ[ラウンド機能]をご覧ください。

MEXE02分類	名称	設定値
	初期座標生成・ラウンド座標設定	マニュアル設定
p5	初期座標生成・ラウンド設定範囲	18 rev
	初期座標生成・ラウンドオフセット比率設定	50 %
	ラウンド (RND) 設定	有効


運転データの設定

方式	位置[step]	速度[Hz]	起動・変速レート[kHz/s]	停止レート[kHz/s]
ラウンド絶対位置決め	8,600	2,000	1.500	1.500


座標イメージ

運転イメージ

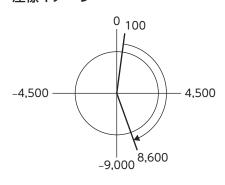
- 1. S-ON入力をONにします。
- 2. READY出力がONであることを確認します。
- 3. MO~M7入力で運転データNo. を選択し、START入力をONにします。
- 4. READY出力がOFFになり、モーターが運転を開始します。
- 5. READY出力がOFFになっていることを確認し、START入力をOFFにします。
- 6. 運転が終わると、READY出力がONになります。

■ ラウンド近回り位置決め

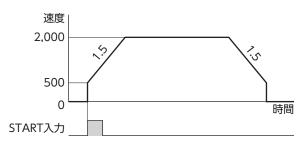
ラウンド範囲内の目標位置を設定します。目標位置に近い回転方向へ位置決めSD運転を実行します。

● 使用例

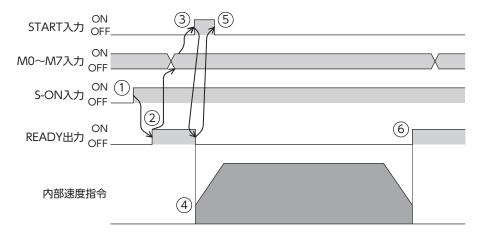
指令位置100の地点から目標位置8,600へ運転する場合 (ラウンド設定範囲18 rev、ラウンドオフセット比率50 %)


ラウンド機能の設定

MEXE02分類	名称	設定値
	初期座標生成・ラウンド座標設定	マニュアル設定
p5	初期座標生成・ラウンド設定範囲	18 rev
	初期座標生成・ラウンドオフセット比率設定	50 %
	ラウンド (RND) 設定	有効


運転データの設定

方式	位置[step]	速度[Hz]	起動・変速レート[kHz/s]	停止レート[kHz/s]
ラウンド近回り位置決め	8,600	2,000	1.500	1.500


座標イメージ

運転イメージ

- 1. S-ON入力をONにします。
- 2. READY出力がONであることを確認します。
- 3. MO~M7入力で運転データNo. を選択し、START入力をONにします。
- 4. READY出力がOFFになり、モーターが運転を開始します。
- 5. READY出力がOFFになっていることを確認し、START入力をOFFにします。
- 6. 運転が終わると、READY出力がONになります。

■ ラウンドFWD方向絶対位置決め

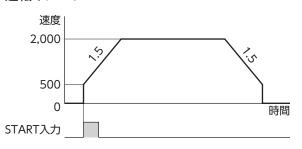
運転データにラウンド範囲内の目標位置を設定します。目標位置に関わらず、常にFWD方向へ位置決めSD運転を実行します。

● 使用例

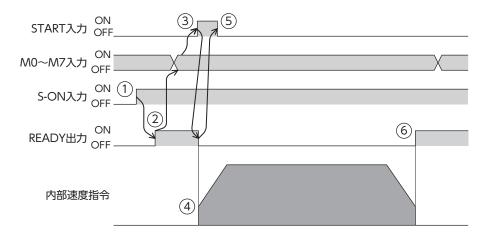
指令位置100の地点から目標位置8,600へ運転する場合 (ラウンド設定範囲18 rev、ラウンドオフセット比率50 %)


ラウンド機能の設定

MEXE02分類	名称	設定値
	初期座標生成・ラウンド座標設定	マニュアル設定
p5	初期座標生成・ラウンド設定範囲	18 rev
	初期座標生成・ラウンドオフセット比率設定	50 %
	ラウンド (RND) 設定	有効


運転データの設定

方式	位置[step]	速度[Hz]	起動・変速レート[kHz/s]	停止レート[kHz/s]
ラウンドFWD方向絶対位置決め	8,600	2,000	1.500	1.500


座標イメージ

運転イメージ

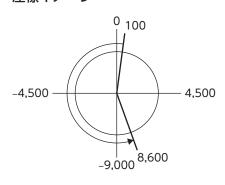
- 1. S-ON入力をONにします。
- 2. READY出力がONであることを確認します。
- 3. MO~M7入力で運転データNo. を選択し、START入力をONにします。
- 4. READY出力がOFFになり、モーターが運転を開始します。
- 5. READY出力がOFFになっていることを確認し、START入力をOFFにします。
- 6. 運転が終わると、READY出力がONになります。

■ ラウンドRVS方向絶対位置決め

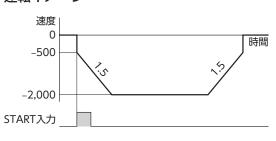
ラウンド範囲内の目標位置を設定します。目標位置に関わらず、常にRVS方向へ位置決めSD運転を実行します。

● 使用例

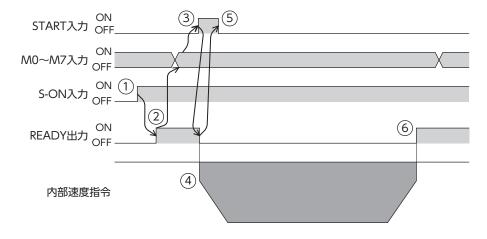
指令位置100の地点から目標位置8,600へ運転する場合 (ラウンド設定範囲18 rev、ラウンドオフセット比率50 %)


ラウンド機能の設定

MEXE02分類	名称	設定値
	初期座標生成・ラウンド座標設定	マニュアル設定
p5	初期座標生成・ラウンド設定範囲	18 rev
	初期座標生成・ラウンドオフセット比率設定	50 %
	ラウンド (RND) 設定	有効


運転データの設定

方式	位置[step]	速度[Hz]	起動・変速レート[kHz/s]	停止レート[kHz/s]
ラウンドRVS方向絶対位置決め	8,600	2,000	1.500	1.500


座標イメージ

運転イメージ

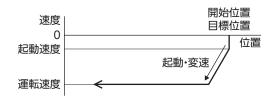
- 1. S-ON入力をONにします。
- 2. READY出力がONであることを確認します。
- 3. MO~M7入力で運転データNo. を選択し、START入力をONにします。
- 4. READY出力がOFFになり、モーターが運転を開始します。
- 5. READY出力がOFFになっていることを確認し、START入力をOFFにします。
- 6. 運転が終わると、READY出力がONになります。

● 位置決めSD運転の軌道の比較

ラウンド設定範囲1 rev、ラウンドオフセット比率50 %とします。(♪99ページ「ラウンド機能」) □で囲んだ値は、モーターが停止した位置の座標を表わしています。

\## \-\	初期値 → 運転データ	の「位置」に設定した値
運転方式	250 → 900	250 → −1,400
・絶対位置決め原点から目標位置の座標を設定	-250 -500 250	-250 -400 -500
・相対位置決め(指令位置基準) ・相対位置決め(検出位置基準) 指令位置または検出位置から目標位置までの移動量を設定	-250 150 -500	-250 -500
・ラウンド絶対位置決め 原点を基準とした座標上の目標位置を設定、 ラウンド範囲内で運転	-250 -500 250	-250 -500 -500
・ラウンド近回り位置決め 原点を基準とした座標上の目標位置を設定、 ラウンド範囲内の目標位置に最短距離で 運転	-250 -500 250	-250 -400 -500
・ラウンド FWD 方向絶対位置決め 原点を基準とした座標上の目標位置を設定、 ラウンド範囲内の目標位置に向かって FWD 方向へ運転	-250 -500 250	-250 -500 250
・ラウンド RVS 方向絶対位置決め 原点を基準とした座標上の目標位置を設定、 ラウンド範囲内の目標位置に向かって RVS 方向へ運転	-250 -500 250	-250 -400 -500

2-4 連続SD運転


連続SD運転とは、運転データに運転速度を設定して実行する運転です。運転速度を正の値にするとFWD方向、負の値にするとRVS方向へ一定の速度で運転し続けます。

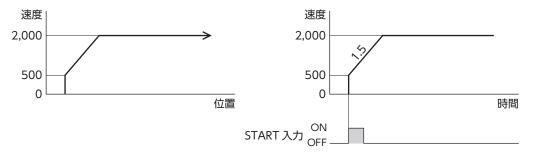
● 運転動作

0 < 運転速度(FWD方向)の場合

0 > 運転速度(RVS方向)の場合

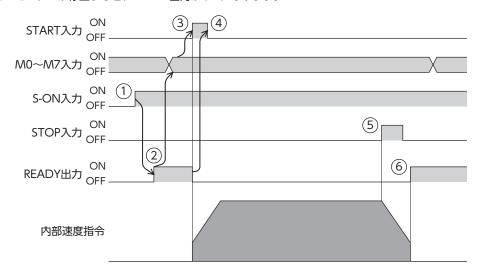
memo

連続SD運転の目標位置は、開始位置(指令位置)です。運転データの「位置」は設定しません。


■ 連続運転(位置制御)

運転データに運転速度を設定して運転を実行します。運転を実行すると起動速度で立ち上がり、運転速度になるまで加速します。運転速度に達すると、速度を維持したまま運転を続けます。位置偏差を監視しながら運転を実行するため、モーターのトルクを超える負荷が加わると、過負荷または位置偏差過大のアラームが発生します。

● 使用例


運転データの設定

方式	速度[Hz]	起動・変速レート[kHz/s]	停止レート[kHz/s]
連続運転(位置制御)	2,000	1.500	1.500

運転方法

- 1. S-ON入力をONにします。
- 2. READY出力がONであることを確認します。
- 3. MO~M7入力で運転データNo. を選択し、START入力をONにします。 READY出力がOFFになり、モーターが運転を開始します。
- 4. READY出力がOFFになっていることを確認し、START入力をOFFにします。
- 5. STOP 入力をONにすると、モーターが減速停止を始めます。
- 6. モーターが停止すると、READY出力がONになります。

2-5 運転データの結合方式

2つ以上の運転データNo.の運転を結合します。MO〜M7入力やD-SELO〜D-SEL7入力で結合運転の基点を変更すると、複数のパターンで結合運転を設定できます。ワークごとに異なる運転パターンを設定したいときにお使いいただけます。 結合先の運転データNo.に遷移するタイミングは、運転の種類によって異なります。

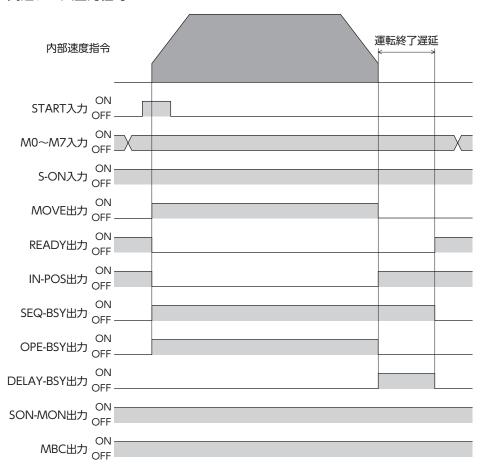
● 位置決めSD運転の場合

- 指令位置が目標位置に到達したとき
- NEXT入力がONになったとき
- イベントジャンプ機能が実行されたとき(♪58ページ[イベントジャンプ機能])

● 連続SD運転の場合

- NEXT入力がONになったとき
- イベントジャンプ機能が実行されたとき(□ 58ページ[イベントジャンプ機能])

関連する運転データ


MEXE02分類	名称	設定範囲※	初期値
n1	結合	0:結合無 1:手動順送 2:自動順送 3:形状接続	0
ρι	p1 結合先	-256:結合しない[Stop] -2:2つ先の運転データNo.[↓↓(+2)] -1:次の運転データNo.[↓(+1)] 0~255:運転データNo.	-1

※ []内はMEXEO2の画面表記です。

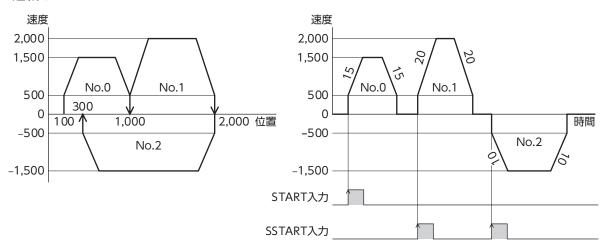
■ 結合無(単独運転)

1つの運転データNo.で運転を1回実行します。

関連する入出力信号

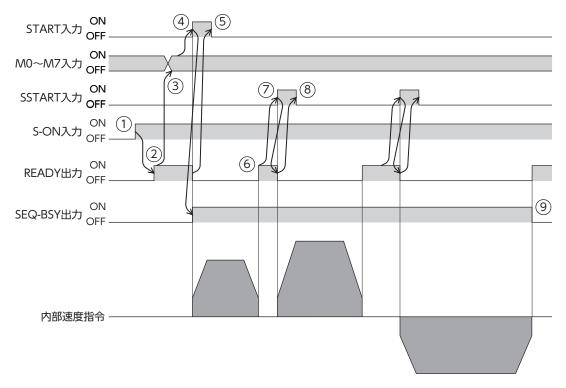
■ 手動順送運転

SSTART入力をONにするたびに、結合先に設定されている運転データNo.の運転を実行します。運転データNo.を選択する操作が省けるため、位置決め運転を順番に行ないたいときに便利な方法です。

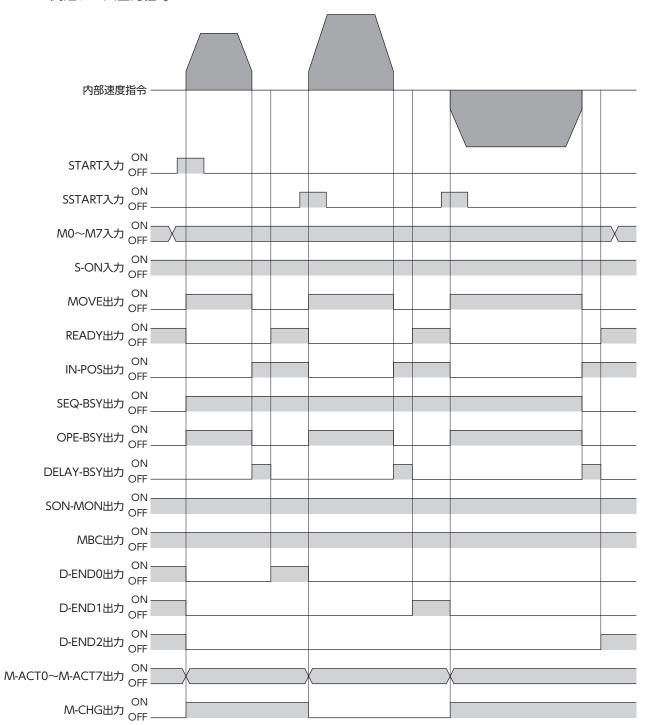

- 手動順送が設定されている運転データNo.の運転が完了しても、SEQ-BSY出力はOFFになりません(手動順送待機状態)。SEQ-BSY出力がONの状態でSSTART入力をONにすると、結合先に設定されている運転データNo.が実行されます。
- SEQ-BSY出力がOFFの状態でSSTART入力をONにすると、現在選択されている運転データNo.が実行されます。

● 使用例

任意のタイミングで、複数の座標に位置決め運転を行なう場合


運転データの設定

	方式	位置[step]	速度[Hz]	起動・変速レート [kHz/s]	停止レート [kHz/s]	結合	結合先
No.0	絶対位置決め	1,000	1,500	15.000	15.000	手動順送	↓ (+1)
No.1	絶対位置決め	2,000	2,000	20.000	20.000	手動順送	↓ (+1)
No.2	絶対位置決め	300	1,500	10.000	10.000	結合無	Stop

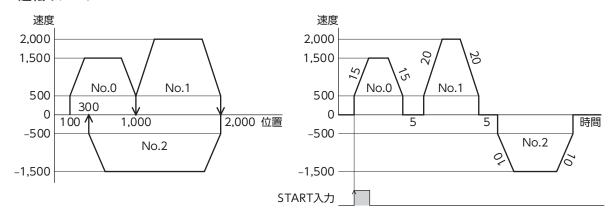


タイミングチャート

- 1. S-ON入力をONにします。
- 2. READY出力がONであることを確認します。
- 3. MO~M7入力で運転データNo.を選択します。
- 4. START入力をONにします。
 READY出力がOFF、SEQ-BSY出力がONになり、モーターが運転を開始します。
- 5. READY出力がOFFになったことを確認し、START入力をOFFにします。
- 6. 運転が終わると、READY出力がONになります。
- 7. READY出力がONになっていることを確認し、SSTART入力をONにします。 手動順送で結合された運転データNo.の運転が開始します。
- 8. READY出力がOFFになったことを確認し、SSTART入力をOFFにします。
- 9. 結合されたすべての運転が終わると、SEQ-BSY出力がOFF、READY出力がONになります。

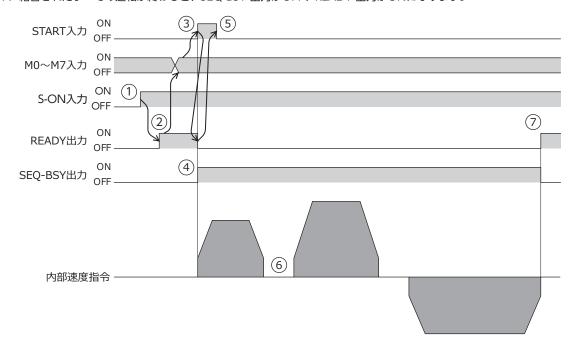
関連する入出力信号

■ 自動順送運転

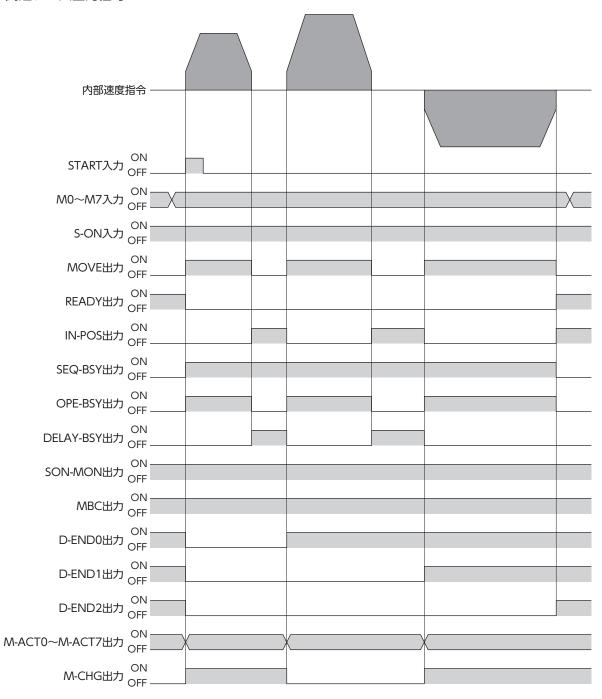

2つ以上の運転を自動で順番に実行します。1つの運転が終了した後、「運転終了遅延」に設定した時間だけ停止してから、「結合先」で設定した運転データの運転を開始します。途中で「0:結合無」を設定した運転データがあると、その運転データまでストアードデータ運転を行ない、モーターを停止させます。

● 使用例

自動で複数の座標に位置決め運転を行なう場合


運転データの設定

	方式	位置 [step]	速度 [Hz]	起動・変速レート [kHz/s]	停止レート [kHz/s]	運転終了遅延 [s]	結合	結合先
No.0	絶対位置決め	1,000	1,500	15.000	15.000	5.000	自動順送	↓ (+1)
No.1	絶対位置決め	2,000	2,000	20.000	20.000	5.000	自動順送	↓ (+1)
No.2	絶対位置決め	300	1,500	10.000	10.000	0.000	結合無	Stop



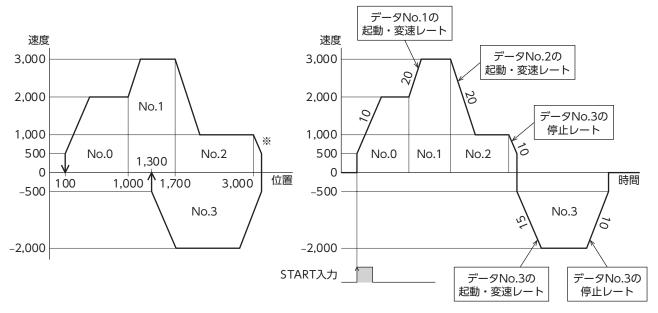
タイミングチャート

- 1. S-ON入力をONにします。
- 2. READY出力がONであることを確認します。
- 3. M0~M7入力で運転データNo. を選択します
- 4. START入力をONにします。
 READY出力がOFF、SEQ-BSY出力がONになり、モーターが運転を開始します。
- 5. READY出力がOFFになっていることを確認し、START入力をOFFにします。
- 6. 最初の運転が終了すると、運転終了遅延で設定した時間だけ停止してから、自動順送で結合された運転が始まります。
- 7. 結合されたすべての運転が終わると、SEQ-BSY 出力がOFF、READY 出力がONになります。

関連する入出力信号

■ 形状接続運転

「結合先」で設定した運転データNo.の運転を、モーターを止めずに続けて実行します。途中で「0:結合無」を設定した運転 データがあると、その運転データまでストアードデータ運転を行ない、モーターを停止させます。

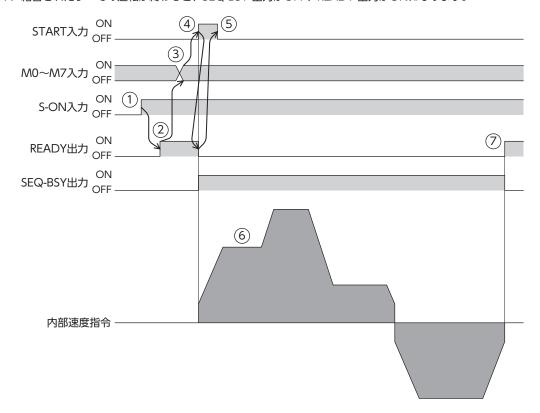

● 使用例

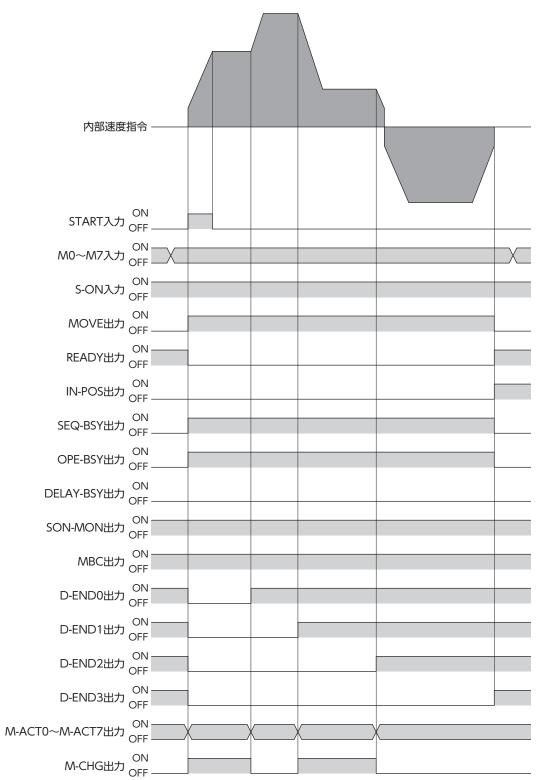
決められた位置で速度を変化させる場合

運転データの設定

	方式	位置 [step]	速度 [Hz]	起動・変速レート [kHz/s]	停止レート [kHz/s]	結合	結合先
No.0	絶対位置決め	1,000	2,000	10.000	15.000	形状接続	↓ (+1)
No.1	絶対位置決め	1,700	3,000	20.000	20.000	形状接続	↓ (+1)
No.2	絶対位置決め	3,000	1,000	20.000	20.000	形状接続	↓ (+1)
No.3	絶対位置決め	1,300	2,000	15.000	10.000	結合無	Stop

運転イメージ


※ 運転の途中で逆方向の運転に切り替えると、目標位置を超えてしまいます。


- (memo) 次の運転データNo.に結合する際は、結合先の起動・変速レートで加速します。
 - 結合先の運転が逆方向へ回転する場合は、結合先の停止レートで減速します。
 - 停止するときは、最後に結合した運転データNo.の停止レートで減速します。

タイミングチャート

- 1. S-ON入力をONにします。
- 2. READY出力がONであることを確認します。
- 3. M0~M7入力で運転データNo.を選択します
- 4. START入力をONにします。
 READY出力がOFF、SEQ-BSY出力がONになり、モーターが運転を開始します。
- 5. READY出力がOFFになっていることを確認し、START入力をOFFにします。
- 6. 運転中のモーターが目標位置に到達すると、結合した次の運転に遷移し、現在速度から目標速度への加減速が始まります。
- 7. 結合されたすべての運転が終わると、SEQ-BSY 出力がOFF、READY 出力がONになります。

関連する入出力信号

2-6 シーケンス機能(繰り返し運転)

2つ以上の運転データNo.を結合して繰り返し運転を行なうには、次の3つの方法があります。繰り返す回数によって、運転 データの設定方法が異なります。

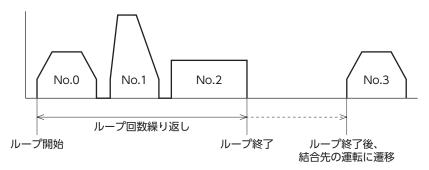
● ループ機能を使用する(□)次項)

2~255回の範囲で運転を繰り返したいときは、ループ機能を使用します。

「位置オフセット(Loop)」を設定すると、運転を繰り返しながら位置決めの目標位置をオフセット分だけずらすことができます。パレタイジング運転などにお使いいただけます。

拡張ループ機能を使用する(□>61ページ)

2~100,000,000回の範囲で運転を繰り返したいときは、拡張ループ機能を使用します。 ループ機能では設定できない回数の繰り返し運転を実行できます。


● 結合機能を使用する(□>57ページ)

運転を無限に繰り返したいときは、結合機能を使用します。位置のオフセットはできません。

■ ループ機能

ループ機能とは、結合した運転データNo.の運転を、設定した回数だけ繰り返す機能です。

「カウント(Loop)」を設定した運転データNo.から、「終了(Loop)」を設定した運転データNo.まで、「カウント(Loop)」で設定した回数だけ運転を繰り返します。設定した回数の運転が終わると、「結合先」に設定した運転データNo.へ遷移します。

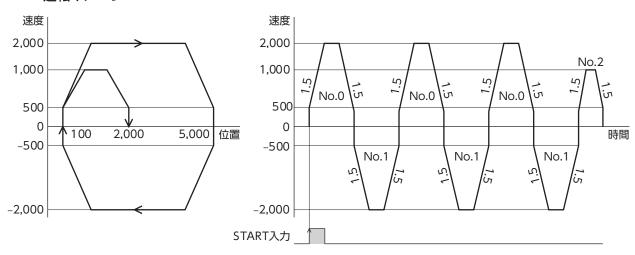
ループさせる運転データNo.の「結合」に「0:結合無」が含まれていると、「0:結合無」を設定した運転データNo.で運転が止まってしまいます。必ず、すべての運転を「1:手動順送」、「2:自動順送」、または「3:形状接続」で結合してください。

関連する運転データ

MEXE02分類	名称	内容	設定範囲※	初期値
	結合	結合方法を設定します。	0:結合無 1:手動順送 2:自動順送 3:形状接続	0
р1	結合先	結合先を設定します。	-256:結合しない[Stop] -2:2つ先の運転データNo.[↓↓(+2)] -1:次の運転データNo.[↓(+1)] 0~255:運転データNo.	-1
·	カウント(Loop)	ループ回数を設定します。	0:ループしない[-] 2〜255:ループ回数 [loop 2{〜loop 255{]	0
	位置オフセット (Loop)	ループをするたびに位置(移動量) をオフセットします。	-4,194,304~4,194,303 step	0
	終了(Loop)	ループを終了する運転データ No.に設定します。	0:ループ終了点ではない[-] 1:ループ終了点[}L-End]	0

※ []内はMEXE02の画面表記です。

● 使用例


運転データNo.0→No.1の動作を3回繰り返した後、運転データNo.2に遷移する場合 運転データの設定

	方式	位置[step]	速度[Hz]	起動・変速レート[kHz/s]	停止レート[kHz/s]
No.0	絶対位置決め	5,000	2,000	1.500	1.500
No.1	絶対位置決め	100	2,000	1.500	1.500
No.2	絶対位置決め	2,000	1,000	1.500	1.500

	結合	結合先	カウント(Loop)	終了(Loop)
No.0	自動順送	↓ (+1)	loop 3{	-
No.1	自動順送	↓ (+1)	_	}L-End
No.2	結合無	Stop	-	-

ループさせる運転データNo.の「結合」には、「1:手動順送」、「2:自動順送」、または「3:形状接続」を設定し てください。[0:結合無]を設定すると、運転が止まってしまいます。

(memo) 運転データNo.0 \rightarrow No.1の動作を繰り返した後、運転データNo.2に遷移させない場合は、運転データNo.1 の結合先を[-256:結合しない[Stop]]にしてください。

● ループのオフセット

オフセットを設定すると、ループを繰り返しながら、位置決めの目標位置を「位置オフセット(Loop)」に設定した分だけずらすことができます。パレタイジング運転などにお使いください。

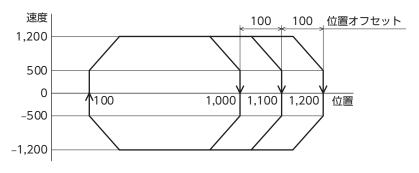
使用例

運転データNo.0→No.1の動作を3回繰り返す場合 (ループするたびに目標位置を100 stepずつ増やすとき)

運転データの設定(絶対位置決めの場合)

目標位置の座標をオフセットします。

	方式	位置[step]	速度[Hz]	起動・変速レート[kHz/s]	停止レート[kHz/s]
No.0	絶対位置決め	1,000	1,200	1.500	1.500
No.1	絶対位置決め	100	1,200	1.500	1.500


	結合	結合先	カウント(Loop)	位置オフセット(Loop)	終了(Loop)
No.0	自動順送	↓ (+1)	loop 3{	100	_
No.1	自動順送	Stop	_	0	}L-End

運転データの設定(相対位置決めの場合)

目標位置までの移動量をオフセットします。

	方式	位置[step]	速度[Hz]	起動・変速レート[kHz/s]	停止レート[kHz/s]
No.0	相対位置決め(指令位置基準)	900	1,200	1.500	1.500
No.1	相対位置決め(指令位置基準)	-900	1,200	1.500	1.500

	結合	結合先	カウント(Loop)	位置オフセット(Loop)	終了(Loop)
No.0	自動順送	↓ (+1)	loop 3{	100	_
No.1	自動順送	Stop	_	-100	}L-End

■ 結合機能

繰り返し運転を開始する運転データNo.から終了する運転データNo.までを結合し、終了する運転データNo.の結合先を開始する運転データNo.に設定することで、無限に繰り返し運転を行ないます。

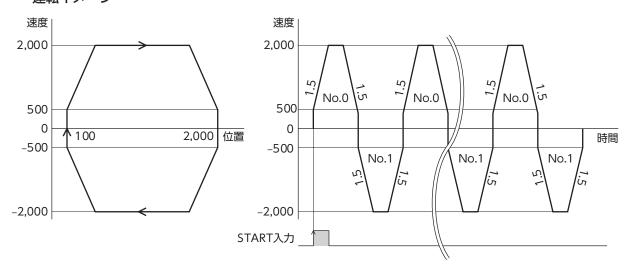
- 結合させる運転データNo.の「結合」に「0:結合無」が含まれていると、「0:結合無」を設定した運転データ No.で運転が止まってしまいます。必ず、すべての運転を「1:手動順送」、「2:自動順送」、または「3:形状 接続」で結合してください。
- ループ機能ではないため、「位置オフセット(Loop)」による位置のオフセットはできません。
- 繰り返し運転を中断するときは、STOP入力またはイベントジャンプ機能を使用して運転を停止してください。

関連する運転データ

MEXE02分類	名称	内容	設定範囲※	初期値
n1	結合	結合方法を設定します。	0:結合無 1:手動順送 2:自動順送 3:形状接続	0
p1	結合先	結合先を設定します。	-256:結合しない[Stop] -2:2つ先の運転データNo.[↓↓(+2)] -1:次の運転データNo.[↓(+1)] 0~255:運転データNo.	-1

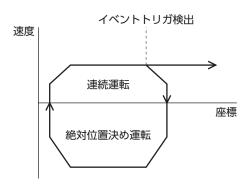
^{※ []}内はMEXE02の画面表記です。

● 使用例


運転データNo.0と運転データNo.1の動作を無限に繰り返す場合

運転データの設定

	方式	位置 [step]	速度 [Hz]	起動・変速レート [kHz/s]	停止レート [kHz/s]	結合	結合先
No.0	絶対位置決め	2,000	2,000	1.500	1.500	自動順送	↓ (+1)
No.1	絶対位置決め	100	2,000	1.500	1.500	自動順送	0


結合させる運転データNo.の「結合」には、「1:手動順送」、「2:自動順送」、または「3:形状接続」を設定してください。「0:結合無」を設定すると、運転が止まってしまいます。

2-7 シーケンス機能(運転の分岐)

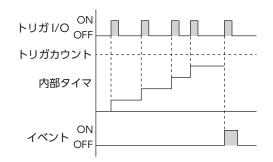
■ イベントジャンプ機能

イベントジャンプ機能とは、運転I/Oイベントの「イベントトリガ I/O」に設定した信号のON/OFFによって、運転を分岐させる機能です。結合運転中やループ運転中にイベントトリガI/Oが検出されたときは、強制的に「結合先」へ運転を遷移します。1つの運転データに対して、「弱イベント」と「強イベント」の2種類を設定できます。「弱イベント」と「強イベント」のイベントトリガが同時に検出された場合は、「強イベント」が優先されます。

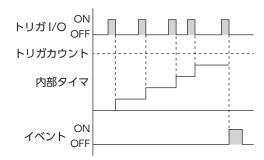
関連する運転データ

	MEXE02分類	名称	内容	設定範囲※	初期値
	p 1	弱イベント	運転I/OイベントNo.を選択します。	-1:無効[-]	1
		強イベント	建粒I/OイベンドNO.を選択しより。 	0~31:運転I/Oイベント番号	-1

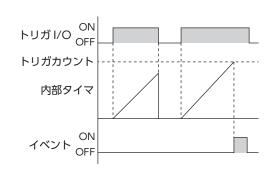
^{※ []}内はMEXEO2の画面表記です。

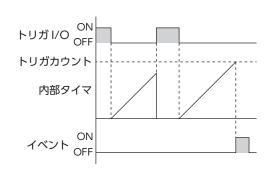

関連するI/Oイベント

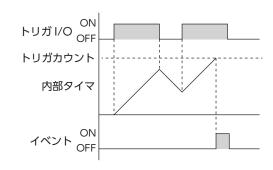
MEXE02分類	名称	内容	設定範囲※	初期値
	結合	イベントトリガ検出後の、結合 方法を設定します。	0:結合無 1:手動順送 2:自動順送 3:形状接続	0
	結合先	結合先を設定します。	-256:結合しない[Stop] -2:2つ先の運転データNo.[↓↓(+2)] -1:次の運転データNo.[↓(+1)] 0~255:運転データNo.	-256
	Dwell	イベントトリガ検出後に発生す る待ち時間を設定します。	0~65,535(1=0.001 s)	0
p2	イベントトリガ I/O	イベントトリガとして使用する I/Oを設定します。	出力信号一覧 → 233ページ	0:未使用
ρź	イベントトリガ タイプ	イベントトリガを検出するタイ ミングを設定します。	0:設定なし[non] 1:ON(加減算累積msec) 2:ON(msec) 3:OFF (加減算累積msec) 4:OFF (msec) 5:ONエッジ 6:OFFエッジ 7:ON(単純累積msec) 8:OFF (単純累積msec)	0
	イベントトリガ カウント	イベントトリガを検出するため の判定時間、または検出回数を 設定します。	0~65,535(1=1 msまたは1=1回)	0

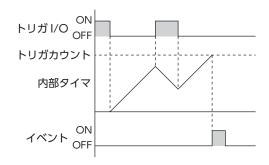

^{※ []}内はMEXE02の画面表記です。

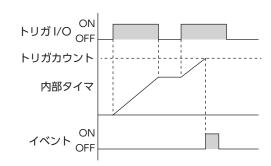
● イベントトリガタイプの種類

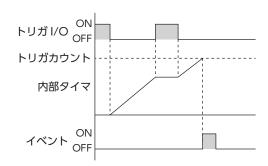

■ ON エッジ


■ OFF エッジ


■ ON (msec)


■ OFF (msec)


■ ON (加減算累積 msec)

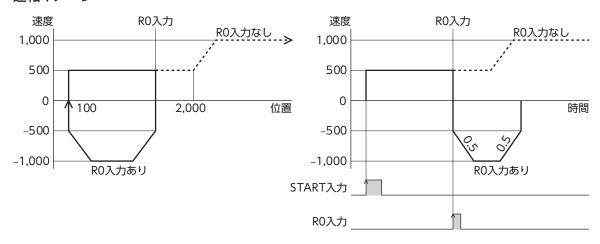

■ OFF (加減算累積 msec)

■ ON (単純累積 msec)

■ OFF (単純累積 msec)

● 使用例

運転データNo.0の絶対位置決め運転を実行する場合


- RO入力なしの場合:運転データNo.0の運転終了後、運転データNo.1の運転を開始します。(イベント発生なし)
- RO入力ありの場合:RO_R出力のONエッジを検出後、運転データNo.2の運転を開始します。(弱イベント発生)

運転データの設定

	方式	位置 [step]	速度 [Hz]	起動・変速レート [kHz/s]	停止レート [kHz/s]	結合	弱イベント
No.0	絶対位置決め	2,000	500	1,000.000	1,000.000	形状接続	0
No.1	連続運転(位置制御)	0	1,000	0.500	0.500	結合無	_
No.2	絶対位置決め	100	1,000	0.500	0.500	結合無	-

運転I/Oイベントの設定

	結合	結合先	イベントトリガI/O	イベントトリガタイプ	イベントトリガカウント
No.0	自動順送	2	RO_R	ONエッジ	1

2-8 運転データ拡張用設定

運転データの仕様を拡張できます。

■ 拡張ループ機能

拡張ループ機能とは、運転データでは設定できない回数 (256回以上) のループ運転を実行する機能です。 耐久試験のように 単純な運転を繰り返すときにお使いいただけます。

「繰り返し開始運転番号」に設定した運転データNo.から、「繰り返し終了運転番号」に設定した運転データNo.まで、「繰り返し回数」で設定した回数だけ運転を繰り返します。設定した回数の運転が終わると、「結合先」に設定した運転データNo.へ遷移します。

拡張ループ機能を使用する場合、「繰り返し開始運転番号」から「繰り返し終了運転番号」の運転データは次の値で固定されます。

MEXE02分類	名称	固定値※
	結合先	-1:次の運転データNo.[↓(+1)]
	オフセット(エリア)	0
	幅(エリア)	-1
	++:/\ (loop)	● 「繰り返し開始運転番号」に設定した運転データNo.のとき 2~255:ループ回数[loop 2{~loop 255{]
	カウント(Loop) 	◆その他の運転データNo.のとき○:ループしない[-]
р1	位置オフセット (Loop)	0
	終了(Loop)	● 「繰り返し終了運転番号」に設定した運転データNo.のとき 1:ループ終了点[}L-End]
	N	◆その他の運転データNo.のとき0:ループ終了点ではない[-]
	弱イベント	_1:無効[-]
	強イベント	_1:無効[-]

※ []内はMEXE02の画面表記です。

要 ループさせる運転データNo.の「結合」に「0:結合無」が含まれていると、「0:結合無」を設定した運転データ No.で運転が止まってしまいます。必ず、すべての運転を「1:手動順送」、「2:自動順送」、または「3:形状接続」で結合してください。

関連する運転データ

MEXE02分類	名称	内容	設定範囲※	初期値
p1	結合	結合方法を設定します。	0:結合無 1:手動順送 2:自動順送 3:形状接続	0
ρı	結合先	結合先を設定します。	-256:結合しない[Stop] -2:2つ先の運転データNo.[↓↓(+2)] -1:次の運転データNo.[↓(+1)] 0~255:運転データNo.	-1

^{※ []}内はMEXE02の画面表記です。

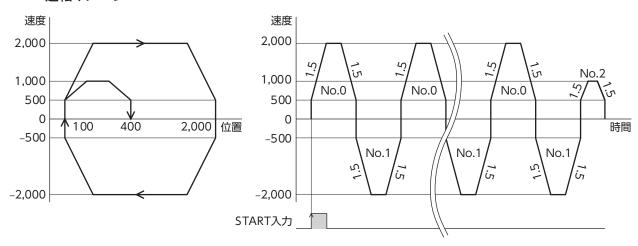
関連する運転データ拡張用設定

MEXE02分類	名称	内容	設定範囲	初期値
р3	繰り返し開始 運転番号	拡張ループ運転を開始する運転データ No.を設定します。	_1:無効	-1
	繰り返し終了 運転番号	拡張ループ運転を終了する運転データ No.を設定します。	0~255:運転データNo.	-1
	繰り返し回数	拡張ループ運転の繰り返し回数を設定 します。	-1:無効 0~100,000,000回	-1

● 使用例

運転データNo.0と運転データNo.1を500回繰り返した後、運転データNo.2に遷移する場合 運転データの設定

	方式	位置 [step]	速度 [Hz]	起動・変速レート [kHz/s]	停止レート [kHz/s]	結合	結合先
No.0	絶対位置決め	2,000	2,000	1.500	1.500	自動順送	↓ (+1)
No.1	絶対位置決め	100	2,000	1.500	1.500	自動順送	↓ (+1)
No.2	絶対位置決め	400	1,000	1.500	1.500	結合無	Stop



重 要) ループさせる運転データNo.の「結合」には、「1:手動順送」、「2:自動順送」、または「3:形状接続」を設定し てください。[0:結合無]を設定すると、運転が止まってしまいます。

運転データ拡張用設定の設定

名称	設定値
繰り返し開始運転番号	0
繰り返し終了運転番号	1
繰り返し回数	500

運転イメージ

▮ 加減速の共通設定と独立設定

「使用レート選択」パラメータで、ストアードデータ運転と連続マクロ運転における加減速を次のように設定できます。

- 共通設定:「共通起動・変速レート」パラメータと「共通停止レート」パラメータの設定値に従います。
- 独立設定:運転データNo.に設定された「起動・変速レート」と「停止レート」に従います。

関連する運転データ拡張用設定

MEXE02分類	名称	内容	設定範囲	初期値
	共通起動・変速 レート	共通設定における起動・変速レート、 または起動・変速時間を設定します。	1~1,000,000,000	1,000,000
n3	共通停止レート	共通設定における停止レート、また は停止時間を設定します。	(1=0.001) **	1,000,000
р3	使用レート選択	共通加減速または運転データの加減 速のどちらを使用するか設定します。	0:共通レートを使用 (共通設定) 1:各運転データのレートを 使用(独立設定)	1

※ 設定単位は「加減速単位」パラメータに従います。

2-9 停止動作

■ 運転停止入力

モーターの動作中に運転停止信号を入力すると、モーターが停止します。

関連するパラメータ

MEXE02分類	名称	内容	設定範囲	初期値
р7	STOP・STOP-SOFF 入力停止方法	STOP入力またはSTOP-SOFF入 力がONになったときの、モー ターの停止方法を設定します。	0:STOP入力、STOP-SOFF入力 ともに即停止 1:STOP入力は減速停止、 STOP-SOFF入力は即停止 2:STOP入力は即停止、 STOP-SOFF入力は減速停止 3:STOP入力、STOP-SOFF入力 ともに減速停止	3
	FW-BLK·RV-BLK入 力停止方法	FW-BLK入力またはRV-BLK入力 がONになったときの、モーター の停止方法を設定します。	0:即停止 1:減速停止	1

■ ハードウェアオーバートラベル

ハードウェアオーバートラベルは、リミットセンサ (FW-LS、RV-LS) を移動範囲の上限と下限に設置して、移動範囲を限定する機能です。[FW-LS・RV-LS入力動作]パラメータを設定すると、リミットセンサの検出時にモーターを停止させることができます。

関連するパラメータ

MEXE02分類	名称	内容	設定範囲	初期値
р7	FW-LS・RV-LS入 力動作	FW-LS入力またはRV-LS入力がONに なったときの、モーターの停止方法 を設定します。	-1:原点復帰センサとして使う 0:即停止 1:減速停止 2:即停止(アラーム発生) 3:減速停止(アラーム発生)	2

■ ソフトウェアオーバートラベル

ソフトウェアオーバートラベルは、パラメータで移動範囲の上限と下限を設定して、移動範囲を限定する機能です。 ソフトウェアオーバートラベルは、座標が確定しているときに動作します。座標の確定については92ページをご覧くだ さい。

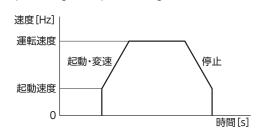
「ソフトウェアオーバートラベル」パラメータを「0:即停止」または「1:減速停止」に設定すると、ソフトウェアリミットに到達したときに、パラメータの設定にしたがってモーターを停止させることができます。また、「2:即停止(アラーム発生)」、「3:減速停止(アラーム発生)」に設定すると、アラームが発生し、モーターが停止します。

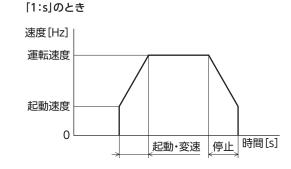
関連するパラメータ

MEXE02分類	名称	内容	設定範囲	初期値
р4	ソフトウェアオー バートラベル	ソフトウェアオーバートラベ ル検出時の動作を設定しま す。	-1:無効 0:即停止 1:減速停止 2:即停止(アラーム発生) 3:減速停止(アラーム発生)	3
	+ソフトウェアリ ミット	FWD方向のソフトウェアリ ミットを設定します。	-2,147,483,648~	2,147,483,647
	ーソフトウェアリ ミット	RVS方向のソフトウェアリ ミットを設定します。	2,147,483,647 step	-2,147,483,648

(memo) [1:減速停止]または[3:減速停止(アラーム発生)]を選択したときは、減速を開始してから停止するまでの 距離を考慮してください。減速中に負荷と機構が接触するおそれがあるときは、停止方法を[0:即停止]ま たは[2:即停止(アラーム発生)]したり、運転データの停止レートを短くするなど、設定を変更してくださ

■ リミットからの脱出


FWD方向のリミットが検出されたときはRVS方向、RVS方向のリミットが検出されたときはFWD方向へ脱出できます。


2-10 加減速単位

「加減速単位」パラメータで、加減速の単位を設定できます。

設定できる単位は加減速レート(kHz/s、ms/kHz)と加減速時間(s)です。

[0:kHz/s]または[2:ms/kHz]のとき

関連するパラメータ

MEXE02分類	名称	内容	設定範囲	初期値
p4	加減速単位	加減速の単位を設定します。	0:kHz/s 1:s 2:ms/kHz	0

最大加減速値は1 GHz/s、最小加減速値は1 Hz/sに固定されています。「加減速単位」パラメータを「1:s」 に設定したときは、加減速レートがこの範囲に収まるように加減速時間を設定してください。

2-11 起動速度

運転開始時のモーターの運転速度を設定します。運転速度が起動速度よりも小さいときは、運転速度で運転します。

関連するパラメータ

MEXE02分類	名称	内容	設定範囲	初期値
p4	起動速度	ストアードデータ運転または連続マ クロ運転の起動速度を設定します。	0~4,000,000 Hz	500
р5	(JOG)起動速度	JOGマクロ運転の起動速度を設定します。	0. 4.000.000 Uz	500
	(ZHOME)起動速度	高速原点復帰運転の起動速度を設定 します。	0∼4,000,000 Hz	500
	(HOME)原点復帰起動速度	原点復帰運転の起動速度を設定します。	1~4,000,000 Hz	500

3 ダイレクトデータ運転

3-1 ダイレクトデータ運転の<u>概要</u>

ダイレクトデータ運転とは、データの書き換えと運転の開始を同時に行なうことができる機能です。負荷に応じて速度や移動量を変えるなど、頻繁に運転データの設定を変える用途に適しています。

ダイレクトデータ運転の設定はEtherNet/IPで行ないます。Implicitメッセージについては179ページ、運転の実行例については193ページをご覧ください。

ダイレクトデータ運転は固定I/O(IN)のTRIGで実行します。

ダイレクトデータ運転を実行する条件は、固定I/O(IN)のTRIG-MODEで次の2種類から選択できます。

- TRIGのONエッジで起動: TRIGをONにしたときに設定されている運転データで、モーターが起動します。
- TRIGのONレベルで起動: 「ダイレクトデータ運転 トリガ設定」パラメータに設定した反映トリガのデータを変更すると、同時にモーターが起動します。

■ ダイレクトデータ運転の種類

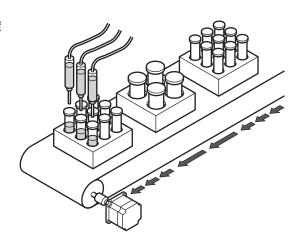
運転の種類	運転方式	運転イメージ
位置決めダイレクトデータ運転	 絶対位置決め 相対位置決め(指令位置基準) 相対位置決め(検出位置基準) ラウンド絶対位置決め ラウンド近回り位置決め ラウンドFWD方向絶対位置決め ラウンドRVS方向絶対位置決め 	速度 0 START 入力
連続ダイレクトデータ運転	連続運転 (位置制御)	速度 0 時間 START 入力

■ ダイレクトデータ運転の用途例1

ロットごとに送り量が違うため、ロットが変わるたびに位置 (移動量)や速度を調整したい。

● 設定例

- 位置(移動量):任意に変更
- 速度:任意に変更
- TRIG-MODE:TRIGのONエッジで起動


運転処理のながれ

スキャナを主語にして説明しています。

- 1. 位置と速度のデータを書き込みます。
- 2. TRIGをONにします。

● 結果

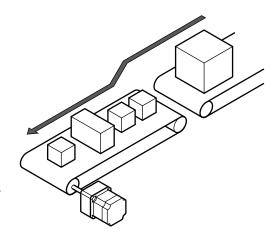
TRIGをONにすると、すぐに変更した値が反映され、新しい位置と速度で運転が行なわれます。

■ ダイレクトデータ運転の用途例2

大きいワークは速度を落として検査するので、タッチパネルです ぐに速度を変更したい。

● 設定例

- 速度:任意に変更
- 反映トリガ:速度(トリガの設定値:-4)
- TRIG-MODE:TRIGのONレベルで起動


● 運転処理のながれ

スキャナを主語にして説明しています

- 1. 「ダイレクトデータ運転 トリガ設定」パラメータに[-4]を書き 込みます。
- 2. 速度のデータを書き込みます。
- 3. TRIGをONにします。
- 4. 速度を変更します。

● 結果

TRIGをONにすると運転が始まります。速度を変更すると、すぐに変更した値が反映され、新しい速度で運転が行なわれます。

3-2 ダイレクトデータ運転に必要なOutputデータとパラメータ

● 関連するOutputデータ

バイト	名称	内容	設定範囲	初期値
6.7	ダイレクトデータ運転 運転方式	ダイレクトデータ運転の運転方 式を設定します。	0:設定なし 1:絶対位置決め 2:相対位置決め(指令位置基準) 3:相対位置決め(検出位置基準) 7:連続運転(位置制御) 8:ラウンド絶対位置決め 9:ラウンド近回り位置決め 10:ラウンドFWD方向絶対位置決め 11:ラウンドRVS方向絶対位置 決め	2
8~11	ダイレクトデータ運転 位置	ダイレクトデータ運転の目標位 置を設定します。	-2,147,483,648~ 2,147,483,647 step	0
12~15	ダイレクトデータ運転 速度	ダイレクトデータ運転の運転速 度を設定します。	-4,000,000~4,000,000 Hz	1,000
16~19	ダイレクトデータ運転 起動・変速レート	ダイレクトデータ運転の加減速 レートまたは加減速時間を設定 します。	1~1,000,000,000	1,000,000
20~23	ダイレクトデータ運転 停止レート	ダイレクトデータ運転の停止 レートまたは停止時間を設定し ます。	(1=0.001) %	1,000,000
24,25	ダイレクトデータ運転 トルク制限値	ダイレクトデータ運転のトルク 制限値を設定します。	0~10,000 (1=0.1 %)	1,000
26,27	ダイレクトデータ運転 転送先	ダイレクトデータの運転中、次の ダイレクトデータが転送された ときの格納場所を選択します。	0:実行メモリ 1:バッファメモリ	0

※ 設定単位は「加減速単位」パラメータに従います。

● 関連するパラメータ

パラメ	ータID	名称	内容	設定範囲	初期値
Dec	Hex	1010	N a		
24852	6114h	ダイレクトデータ運転 トリガ設定	ダイレクトデータ運転を実行する トリガを設定します。 トリガ設定は、TRIG-MODEを[1: ONレベルで起動]に設定したとき だけ有効です。	-6:方式 -5:位置 -4:速度 -3:起動・変速レート -2:停止レート -1:トルク制限値 0:無効 1:全データ反映	1

■ トリガ設定

ダイレクトデータ運転で、データの書き換えと同時に運転を開始するトリガ(反映トリガ)です。 トリガ設定はTRIG-MODEを[1:ONレベルで起動]に設定したときだけ有効です。

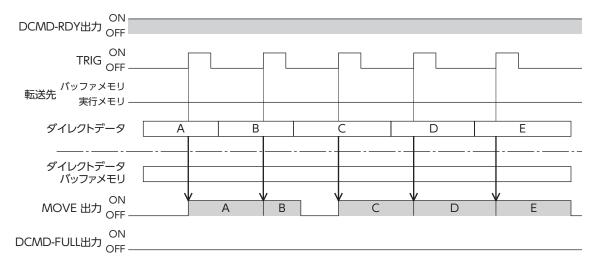
● トリガ設定が[0]のとき

ダイレクトデータ運転は無効になります。

● トリガ設定が[1]のとき

TRIGをOFFからONにすると、ダイレクトデータ運転が始まります。その後はデータのどれかを変更すると、モーターが起動します。データに変更がないと、モーターは起動しません。

トリガ設定が「-1~-6」のとき


TRIGをOFFからONにすると、ダイレクトデータ運転が始まります。その後は、反映トリガに対応するデータを変更したときだけ、モーターが起動します。反映トリガ以外のデータを変更してもモーターは起動しません。

■ 転送先

ダイレクトデータ運転中、次のダイレクトデータが転送されたときの格納場所を選択します。

● 転送先を「0:実行メモリ」に設定した場合

TRIGをOFFからONにする、または反映トリガに対応するデータを変更すると、運転中のデータは次のダイレクトデータに書き換えられます。

重要

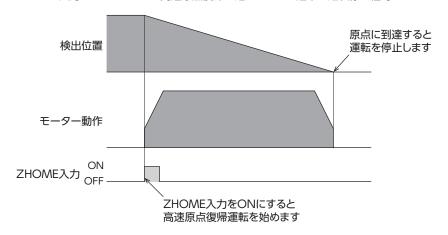

DCMD-FULL出力がONの状態で反映トリガを書き込んだ場合、ダイレクトデータは反映されません。

● 転送先を「1:バッファメモリ」に設定した場合

TRIGをOFFからONにする、または反映トリガに対応するデータを変更すると、次のダイレクトデータはバッファメモリに保存されます。運転中のデータが終了すると、自動的にバッファメモリの運転が始まります。バッファメモリに保存できるダイレクトデータは1つです。

次のダイレクトデータがバッファメモリに書き込まれると、DCMD-FULL出力がONになります。

停止中および連続運転中は、「バッファメモリ」を指定してもバッファメモリには保存されず、すぐに次のダイレクトデータ に書き換えられます。



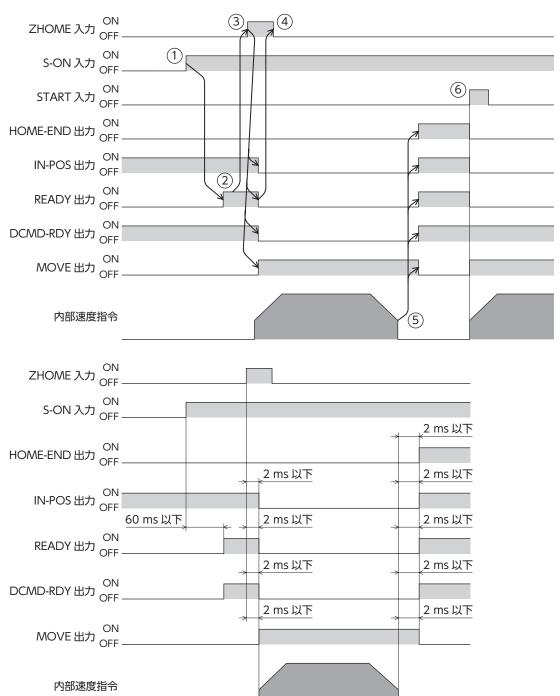
4 原点復帰運転

4-1 高速原点復帰運転

高速原点復帰運転とは、あらかじめ確定した絶対座標上の機械原点に戻る運転です。原点はABZOセンサで認識しているため、外部センサを使わずに通常の位置決め運転と同じ速度で原点復帰ができます。

ZHOME入力をONにすると、高速原点復帰が始まります。途中で運転停止信号をONにすると、モーターが停止します。

- 工場出荷時や分解能を変更した直後などは、原点が確定していません。このような状態で高速原点復帰 運転を開始すると、ZHOME起動失敗のインフォメーションが発生して、運転が行なわれません。必ず 原点を確定してから、高速原点復帰運転を開始してください。
- 電気原点座標が有効 (EL-PRST入力がON) のときは、高速原点復帰運転を実行できません。


関連するパラメータ

MEXE02分類	名称	内容	設定範囲	初期値
р5	(ZHOME)運転速度	高速原点復帰運転の運転速度を 設定します。	1~4,000,000 Hz	5,000
	(ZHOME)加減速	高速原点復帰運転の加減速レートまたは加減速時間を設定します。	1~1,000,000,000 (1=0.001) %	1,000,000
	(ZHOME)起動速度	高速原点復帰運転の起動速度を 設定します。	0~4,000,000 Hz	500
	JOG/HOME/ZHOME運転 指令フィルタ時定数	指令フィルタの時定数を設定し ます。	1~200 ms	1
	JOG/HOME/ZHOME運転 トルク制限値	トルク制限値を設定します。	0~10,000 (1=0.1 %)	1,000

※ 設定単位は「加減速単位」パラメータに従います。

■ タイミングチャート

- 1. S-ON入力をONにします。
- 2. READY出力がONであることを確認します。
- 3. ZHOME入力をONします。 IN-POS出力、READY出力、およびDCMD-RDY出力がOFF、MOVE出力がONになりモーターが運転を開始します。
- 4. READY出力がOFFになっていることを確認し、ZHOME入力をOFFにします。
- 5. 機械原点に到達すると、HOME-END出力、IN-POS出力、READY出力、およびDCMD-RDY出力がON、MOVEがOFFになります。
- 6. START入力をONにします。 HOME-END出力、IN-POS出力、およびREADY出力がOFF、MOVE出力がONになりモーターが運転を開始します。

原点復帰運転 4-2

原点復帰運転とは、外部センサを使用して原点を検出する運転です。

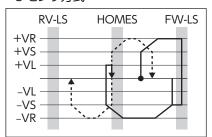
主電源と制御電源を投入したときや、位置決め運転の終了時に、現在位置から原点へ復帰させるために実行します。 原点復帰運転には次の3種類があります。

項目	内容	特徴
2センサ方式	リミットセンサを検出すると、モーターは反転してリミットセンサから脱出します。脱出後、「(HOME) 2センサ原点復帰戻り量」パラメータに設定したステップ数だけ移動して停止します。停止した位置を原点とします。	外部にセンサが2つ必要運転速度が低速(原点復帰起動速度)
3センサ方式	リミットセンサを検出すると、モーターは反転してリミットセンサから脱出します。その後、HOMEセンサのONエッジを検出すると停止します。停止した位置を原点とします。	外部にセンサが3つ必要※運転速度が高速(原点復帰運転速度)
1方向回転方式	HOMEセンサのONエッジを検出すると停止します。その後 HOMEセンサのOFFエッジを検出するまで、「(HOME)原点 復帰原点検出速度」パラメータに設定した速度で移動して脱 出します。脱出後、「(HOME) 1方向回転原点復帰動作量」パ ラメータに設定したステップ数だけ移動して停止します。停 止した位置を原点とします。	外部にセンサが1つ必要運転速度が高速(原点復帰運転速度)反転しない

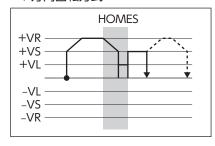
※ 外部センサが1つでも原点を検出できます。その場合は、HOMEセンサだけを接続してください。



(memo) 初期設定では、原点復帰運転に必要な外部センサ用の入力信号が入力端子に割り付けられていません。 「DIN入力機能」パラメータで外部センサ用の入力信号を入力端子に割り付けてから、原点復帰運転を実行 してください。信号の割り付けについては、123ページをご覧ください。


記号の説明

- VR:原点復帰運転速度
- VS:原点復帰起動速度
- VL:原点検出速度
- ---:原点オフセットを設定した場合の軌跡


• 2 センサ方式

• 3 センサ方式

• 1 方向回転方式

関連するパラメータ

MEXE02分類	名称	内容	設定範囲	初期値
p4	プリセット位置	プリセット位置を設定します。	-2,147,483,648~ 2,147,483,647 step	0
	JOG/HOME/ZHOME運転 指令フィルタ時定数	指令フィルタの時定数を設定し ます。	1~200 ms	1
	JOG/HOME/ZHOME運転 トルク制限値	トルク制限値を設定します。	0~10,000 (1=0.1 %)	1,000
	(HOME)原点復帰方法	原点復帰方法を設定します。	0:2センサ 1:3センサ 2:1方向回転	1
	(HOME)原点復帰開始方向	原点検出の開始方向を設定します。	0:一側 1:+側	1
p5	(HOME)原点復帰加減速	原点復帰運転の加減速レートま たは加減速時間を設定します。	1~1,000,000,000 (1=0.001) **	1,000,000
	(HOME)原点復帰起動速度	原点復帰運転の起動速度を設定 します。	1∼4.000.000 Hz	500
	(HOME)原点復帰運転速度	原点復帰運転の運転速度を設定 します。	1,04,000,000 Hz	1,000
	(HOME)原点復帰原点検出 速度	最終的に原点と位置合わせをす るときの運転速度を設定します。	1~10,000 Hz	500
	(HOME) 2センサ原点復帰 戻り量	2センサ原点復帰運転後の戻り量 を設定します。	0∼8,388,607 step	500
	(HOME) 1方向回転原点復 帰動作量	1方向回転方式の原点復帰運転後 の動作量を設定します。	0 -0,500,007 step	500

※ 設定単位は「加減速単位」パラメータに従います。

- 原点復帰運転中は座標が確定されていないため、ABSPEN出力がOFFになります。
- 原点復帰運転では、原点復帰運転後にプリセット(P-PRESET)が実行されて、座標を確定します。そのた め、原点位置の機械座標は「プリセット位置」パラメータに依存します。

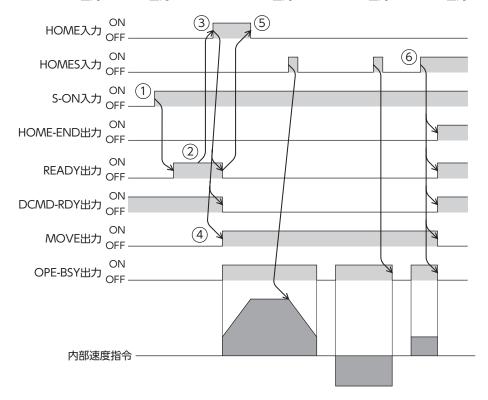
■付加機能

原点オフセット

原点復帰運転後に、「(HOME)原点復帰オフセット」パラメータで設定した量だけ位置決め運転を行ない、停止した位置を 原点とする機能です。

● 外部センサ(信号)の検出

原点復帰運転にSLIT入力やZSG出力を併用すると、より正確な原点を検出できます。

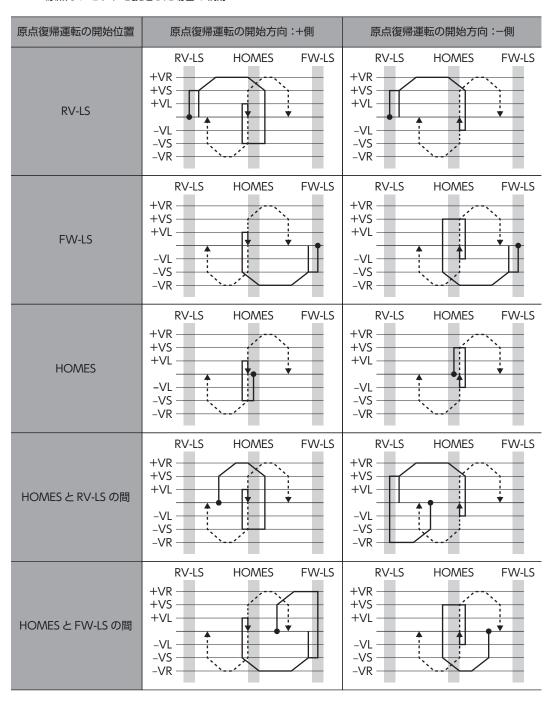

(memo) 「JOG/HOME/ZHOME運転 運転情報設定」パラメータが「0:ABZO設定を優先」になっているときは、機 構に合わせたパラメータが自動的に適用されます。お客様側で任意に運転情報を設定する場合は、「JOG/ HOME/ZHOME運転 運転情報設定」パラメータを「1:マニュアル設定」にしてください。

関連するパラメータ

MEXE02分類	名称	内容	設定範囲	初期値
р5	(HOME)原点復帰 SLITセンサ検出	原点復帰時にSLIT入力を併用するかを設 定します。	0:無効 1:有効	0
	(HOME)原点復帰 ZSG信号検出	原点復帰時にZSG出力を併用するかを設 定します。	0:無効 2:ZSG出力	0
	(HOME) 原点復帰オ フセット	原点からのオフセット量を設定します。	-2,147,483,648~ 2,147,483,647 step	0

■ タイミングチャート(3センサ方式の場合)

- 1. S-ON入力をONにします。
- 2. READY出力がONであることを確認します。
- 3. HOME入力をONにします。
- 4. READY出力とDCMD-RDY出力がOFF、MOVE出力がONになり、原点復帰運転が開始します。
- 5. READY出力がOFFになっていることを確認し、HOME入力をOFFにします。
- 6. HOMES入力がONになり、原点復帰運転が終わります。 HOME-END出力、READY出力、およびDCMD-RDY出力がON、MOVE出力とOPE-BSY出力がOFFになります。


■ 動作シーケンス

● 3センサ方式

運転中にリミットセンサを検出すると、モーターが反転してリミットセンサから脱出します。原点復帰運転速度で運転を行ない、HOMEセンサのONエッジを検出すると運転が停止します。停止した位置を原点とします。

記号の説明

- VR:原点復帰運転速度
- VS:原点復帰起動速度
- VL:原点検出速度
- - -: 原点オフセットを設定した場合の軌跡

HOMEセンサだけを使用する場合(回転機構など)

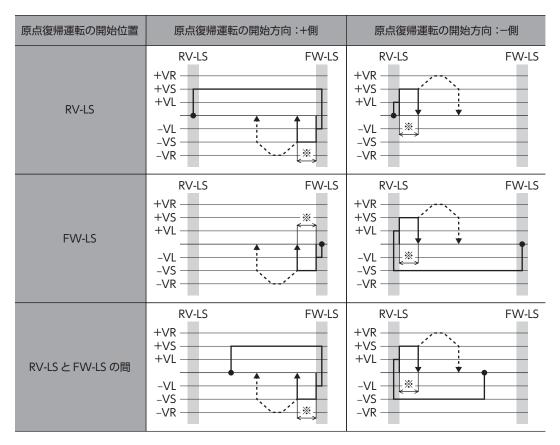
回転機構など、リミットセンサを使用しない場合は、次のシーケンスになります。

原点復帰運転の開始位置	原点復帰運転の開始方向:+側	原点復帰運転の開始方向:-側	
HOMES	+VR	HOMES +VR +VS +VL -VL -VL -VS -VR	
HOMES 以外	+VR +VS +VL -VL -VS -VR	HOMES +VR +VS +VL -VL -VL -VS -VR	

重要)「(HOME)原点復帰加減速」パラメータの設定値によっては、HOMEセンサを検出した後も、HOMEセン サを越えて減速停止することがあります。メカ端とHOMEセンサの距離が近いと接触するおそれがある ため、十分に距離をとってください。

SLIT入力やZSG出力を併用する場合

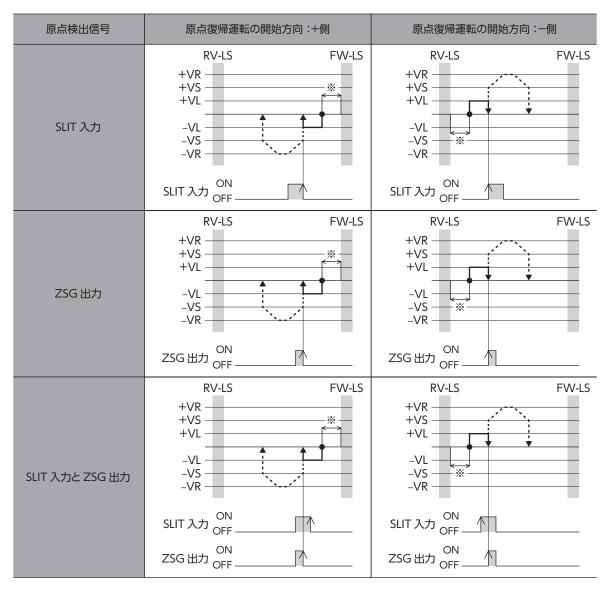
原点復帰運転が終わった後も、外部信号が検出されるまで運転を続けます。HOMEセンサがONの間に外部信号が検出されると、原点復帰運転が完了します。


原点検出信号	原点復帰運転の開始方向:+側	原点復帰運転の開始方向:-側
SLIT 入力	RV-LS HOMES FW-LS +VR +VS +VL -VL -VL -VS -VR	RV-LS HOMES FW-LS +VR +VS +VL -VL -VS -VR SLIT 入力 ON OFF
ZSG 出力	RV-LS HOMES FW-LS +VR +VS +VL -VL -VL -VS -VR	RV-LS HOMES FW-LS +VR +VS +VL -VL -VS -VR -VR -VS -VR
SLIT 入力と ZSG 出力	RV-LS HOMES FW-LS +VR +VS +VL -VL -VL -VS -VR SLIT 入力 ON OFF ON OFF	RV-LS HOMES FW-LS +VR +VS +VL -VL -VL -VS -VR SLIT 入力 ON OFF ZSG 出力 ON

● 2センサ方式

起動速度で、原点復帰開始方向へ運転します。リミットセンサを検出するとモーターは反転し、原点検出速度でリミットセンサから脱出します。脱出後、原点復帰戻り量を起動速度で運転して停止します。停止した位置を原点とします。

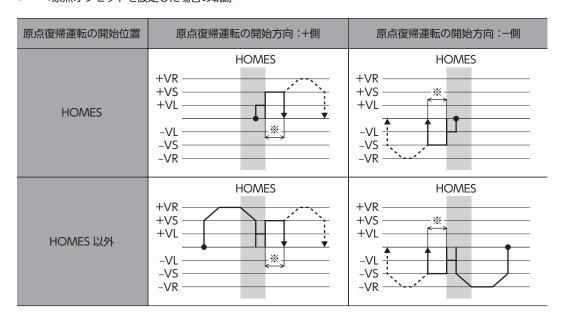
記号の説明


- VR:原点復帰運転速度
- VS:原点復帰起動速度
- VL:原点検出速度
- - -:原点オフセットを設定した場合の軌跡

※ リミットセンサから脱出して、「(HOME) 2センサ原点復帰戻り量」だけ移動します。

SLIT入力やZSG出力を併用する場合

原点復帰運転が終わった後も、外部信号が検出されるまで運転を続けます。外部信号が検出されると、原点復帰運転が完了 します。


※ リミットセンサから脱出して、「(HOME)2センサ原点復帰戻り量」だけ移動します。

● 1方向回転方式

運転速度で原点復帰開始方向へ運転して、HOMEセンサを検出すると減速停止します。その後、原点検出速度でHOMEセンサの範囲から脱出し、脱出後に原点復帰動作量を起動速度で運転して停止します。停止した位置を原点とします。

記号の説明

- VR:原点復帰運転速度
- VS:原点復帰起動速度
- VL:原点検出速度
- - -:原点オフセットを設定した場合の軌跡

※ HOMEセンサから脱出して、「(HOME)1方向回転原点復帰動作量」だけ移動します。

HOMEセンサ以外の位置から運転を開始した場合、HOMEセンサ検出後の減速停止中にHOMEセンサを脱出すると、原点復帰運転異常のアラームが発生します。HOMEセンサの範囲内で停止できるように、「(HOME)原点復帰加減速」パラメータを設定してください。

SLIT入力やZSG出力を併用する場合

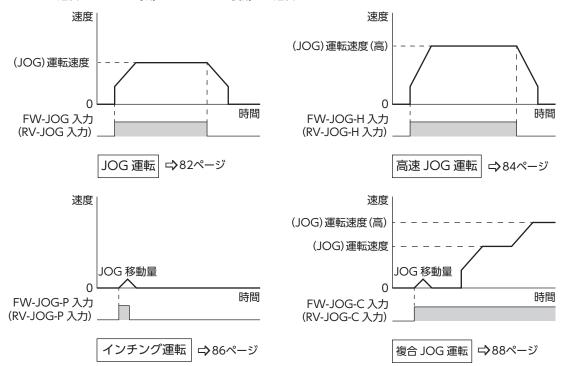
原点復帰運転が終わった後も、外部信号が検出されるまで運転を続けます。外部信号が検出されると、原点復帰運転が完了 します。

原点検出信号	原点復帰運転の開始方向:+側	原点復帰運転の開始方向:-側
SLIT 入力	HOMES +VR +VS +VL -VL -VL -VS -VR SLIT 入力 ON OFF	HOMES +VR +VS +VL -VL -VL -VS -VR SLIT 入力 ON OFF
ZSG 出力	HOMES +VR +VS +VL -VL -VL -VS -VR ZSG 出力 ON OFF	HOMES +VR +VS +VL -VL -VL -VS -VR ZSG 出力 ON
SLIT 入力と ZSG 出力	HOMES +VR +VS +VL -VL -VL -VS -VR SLIT 入力 ON OFF	HOMES +VR +VS +VL -VL -VL -VS -VR SLIT 入力 ON OFF ZSG 出力 OFF

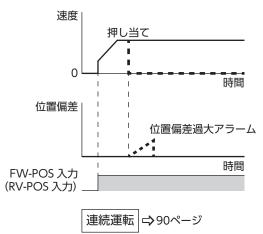
[※] HOMEセンサから脱出して、「(HOME)1方向回転原点復帰動作量」だけ移動します。

5 マクロ運転

マクロ運転とは、特定の入力信号をONにすることで、信号に対応した運転を自動的に行なう運転方式です。マクロ運転には、 JOG運転、インチング運転、連続運転などがあります。それぞれの運転における移動量、運転速度、加減速・停止レートなどは、パラメータで設定します。

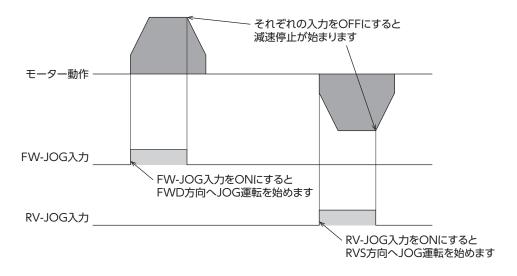

5-1 マクロ運転の種類

マクロ運転では、運転データの結合、ループ機能、イベントジャンプ機能は使用できません。運転データを結合する場合は、ストアードデータ運転をご使用ください。


■ JOGマクロ運転

JOGマクロ運転とは、JOG専用のパラメータを使用する運転です。

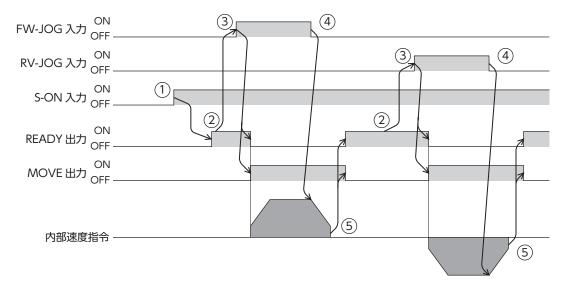
■ 連続マクロ運転

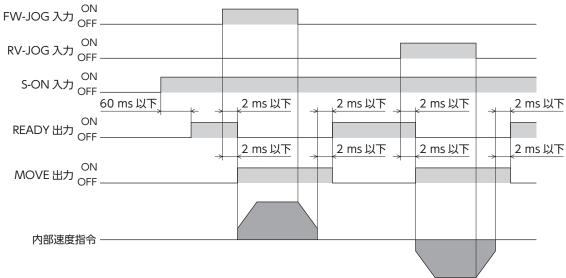

連続マクロ運転とは、運転データの「速度」、「起動・変速レート」、「停止レート」、および「トルク制限値」を使用する運転です。

5-2 JOG運転

JOG運転は、FW-JOG入力またはRV-JOG入力がONになっている間、モーターが一方向へ連続運転を行ないます。 入力した信号をOFFにすると減速停止します。運転停止信号を入力しても運転を停止できます。

■ 運転イメージ

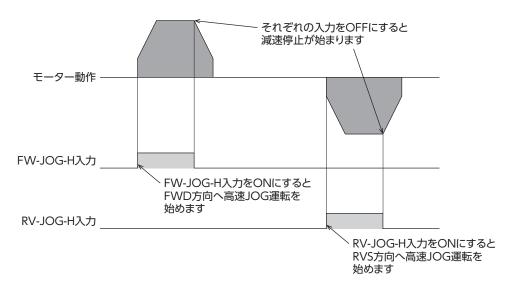

関連するパラメータ


MEXE02分類	名称	内容	設定範囲	初期値
p5	JOG/HOME/ZHOME運転 指令フィルタ時定数	指令フィルタの時定数を設定し ます。	1~200 ms	1
	JOG/HOME/ZHOME運転 トルク制限値	トルク制限値を設定します。	0~10,000 (1=0.1 %)	1,000
	(JOG)運転速度	JOG運転、インチング運転の運 転速度を設定します。	1~4,000,000 Hz	1,000
	(JOG)加減速	JOGマクロ運転の加減速レート または加減速時間を設定します。	1~1,000,000,000 (1=0.001) **	1,000,000
	(JOG)起動速度	JOGマクロ運転の起動速度を設定します。	0~4,000,000 Hz	500

[※] 設定単位は「加減速単位」パラメータに従います。

■ タイミングチャート

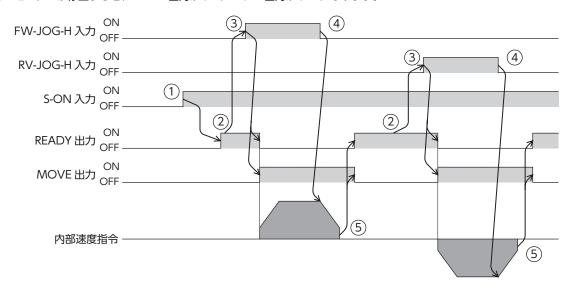
- 1. S-ON入力をONにします。
- 2. READY出力がONであることを確認します。
- FW-JOG入力(またはRV-JOG入力)をONにします。
 READY出力がOFF、MOVE出力がONになり、モーターが運転を開始します。
- 4. FW-JOG入力(またはRV-JOG入力)をOFFにします。 モーターが減速停止を開始します。
- 5. モーターが停止すると、READY出力がON、MOVE出力がOFFになります。

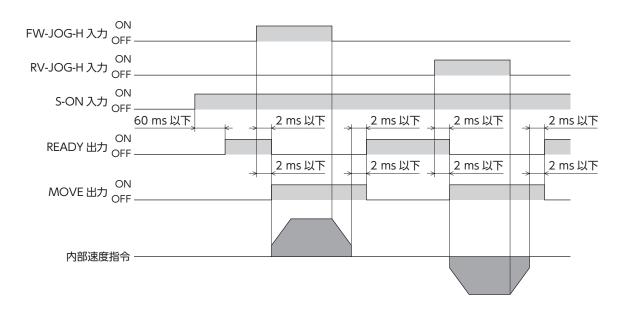


5-3 高速JOG運転

高速JOG運転は、FW-JOG-H入力またはRV-JOG-H入力がONになっている間、モーターが高速で一方向へ連続運転を行ないます。入力した信号をOFFにすると減速停止します。運転停止信号を入力しても運転を停止できます。

■ 運転イメージ

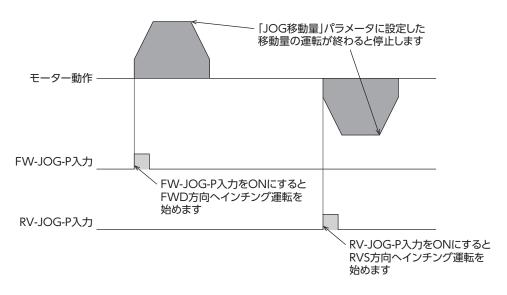

関連するパラメータ


MEXE02分類	名称	内容	設定範囲	初期値
p5	JOG/HOME/ZHOME運転 指令フィルタ時定数	指令フィルタの時定数を設定し ます。	1~200 ms	1
	JOG/HOME/ZHOME運転 トルク制限値	トルク制限値を設定します。	0~10,000 (1=0.1 %)	1,000
	(JOG)加減速	JOGマクロ運転の加減速レート または加減速時間を設定します。	1~1,000,000,000 (1=0.001) %	1,000,000
	(JOG)起動速度	JOGマクロ運転の起動速度を設 定します。	0~4,000,000 Hz	500
	(JOG)運転速度(高)	高速JOG運転の運転速度を設定 します。	1~4,000,000 Hz	5,000

[※] 設定単位は「加減速単位」パラメータに従います。

■ タイミングチャート

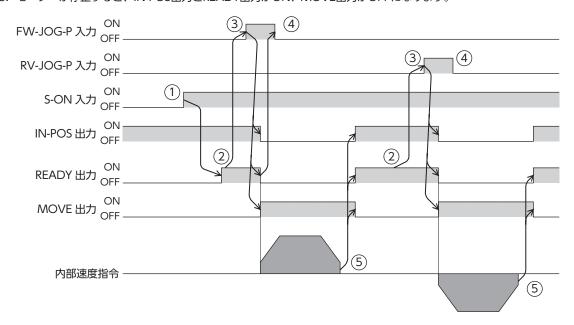
- 1. S-ON入力をONにします。
- 2. READY出力がONであることを確認します。
- 3. FW-JOG-H入力(またはRV-JOG-H入力)をONにします。 READY出力がOFF、MOVE出力がONになり、モーターが運転を開始します。
- 4. FW-JOG-H入力(またはRV-JOG-H入力)をOFFにします。 モーターが減速停止を開始します。
- 5. モーターが停止すると、READY出力がON、MOVE出力がOFFになります。

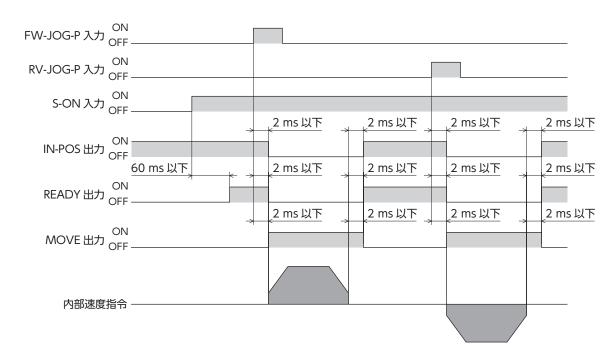


5-4 インチング運転

インチング運転は、FW-JOG-P入力またはRV-JOG-P入力をOFFからONにすると、位置決め運転を行ないます。 「(JOG)移動量」パラメータで設定したステップ数だけモーターが回転すると停止します。

■ 運転イメージ

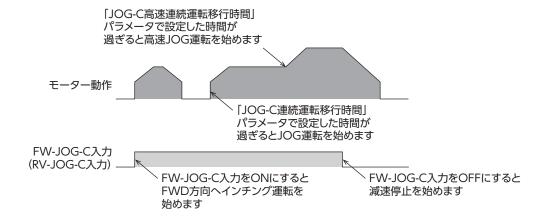

関連するパラメータ


MEXE02分類	名称	内容	設定範囲	初期値
	JOG/HOME/ZHOME運転 指令フィルタ時定数	指令フィルタの時定数を設定し ます。	1~200 ms	1
	JOG/HOME/ZHOME運転 トルク制限値	トルク制限値を設定します。	0~10,000 (1=0.1 %)	1,000
25	(JOG)移動量	インチング運転の移動量を設定 します。	1~8,388,607 step	1
p5	(JOG)運転速度	JOG運転、インチング運転の運 転速度を設定します。	1~4,000,000 Hz	1,000
	(JOG)加減速	JOGマクロ運転の加減速レート または加減速時間を設定します。	1~1,000,000,000 (1=0.001) %	1,000,000
	(JOG)起動速度	JOGマクロ運転の起動速度を設定します。	0~4,000,000 Hz	500

[※] 設定単位は「加減速単位」パラメータに従います。

■ タイミングチャート

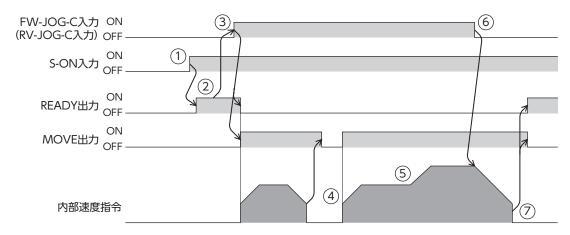
- 1. S-ON入力をONにします。
- 2. READY出力がONであることを確認します。
- 3. FW-JOG-P入力(またはRV-JOG-P入力)をONにします。
 IN-POS出力とREADY出力がOFF、MOVE出力がONになり、モーターが運転を開始します。
- 4. READY出力がOFFになったことを確認し、FW-JOG-P入力(またはRV-JOG-P入力)をOFFにします。
- 5. モーターが停止すると、IN-POS出力とREADY出力がON、MOVE出力がOFFになります。

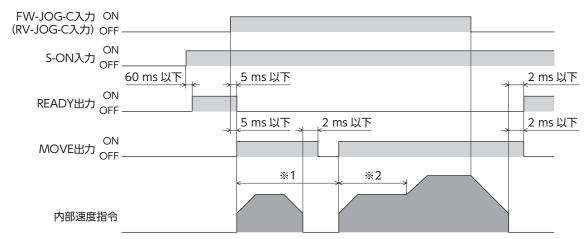


5-5 複合JOG運転

複合JOG運転では、FW-JOG-C入力またはRV-JOG-C入力をONにしている間、インチング運転→JOG運転→高速JOG運転の順に運転が遷移します。FW-JOG-C入力またはRV-JOG-C入力がOFFからONになると運転を開始し、OFFになると減速停止します。

■ 運転イメージ


関連するパラメータ

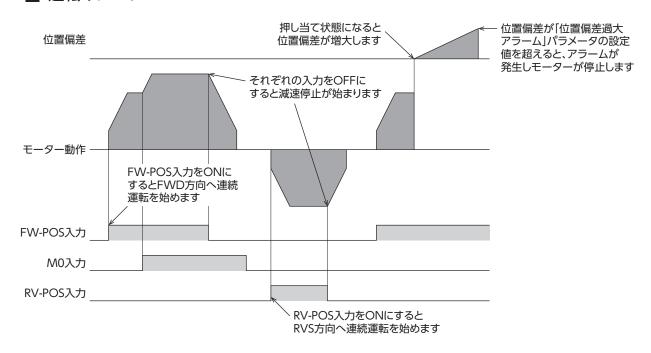

MEXE02分類	名称	内容	設定範囲	初期値
	JOG/HOME/ZHOME運転 指令フィルタ時定数	指令フィルタの時定数を設定し ます。	1~200 ms	1
	JOG/HOME/ZHOME運転 トルク制限値	トルク制限値を設定します。	0~10,000 (1=0.1 %)	1,000
	(JOG)移動量	インチング運転の移動量を設定 します。	1~8,388,607 step	1
р5	(JOG)運転速度	JOG運転、インチング運転の運 転速度を設定します。	1~4,000,000 Hz	1,000
	(JOG)加減速	JOGマクロ運転の加減速レート または加減速時間を設定します。	1~1,000,000,000 (1=0.001) %	1,000,000
	(JOG)起動速度	JOGマクロ運転の起動速度を設 定します。	0~4,000,000 Hz	500
	(JOG)運転速度(高)	高速JOG運転の運転速度を設定 します。	1~4,000,000 Hz	5,000
р7	JOG-C連続運転移行時間	複合JOG運転で、インチング運 転からJOG運転に遷移するタイ ミングを設定します。	1~5,000	500
	JOG-C高速連続運転移行時間	複合JOG運転で、JOG運転から 高速JOG運転に遷移するタイミ ングを設定します。	(1=0.001 s)	1,000

[※] 設定単位は「加減速単位」パラメータに従います。

■ タイミングチャート

- 1. S-ON入力をONにします。
- 2. READY出力がONであることを確認します。
- FW-JOG-C入力(またはRV-JOG-C入力)をONにします。
 READY出力がOFF、MOVE出力がONになり、モーターがインチング運転を開始します。
- 4. 「JOG-C連続運転移行時間」パラメータで設定した時間が経過すると、JOG運転が開始します。
- 5. [JOG-C高速連続運転移行時間]パラメータで設定した時間が経過すると、高速JOG運転が開始します。
- 6. FW-JOG-C入力(またはRV-JOG-C入力)をOFFにします。 モーターが減速停止を開始します。
- 7. モーターが停止すると、READY出力がON、MOVE出力がOFFになります。

- ※1 「JOG-C連続運転移行時間」パラメータで設定します。
- ※2 「JOG-C高速連続運転移行時間」パラメータで設定します。


5-6 連続運転

FW-POS入力またはRV-POS入力がONになっている間、モーターは選択されている運転データNo.の運転速度で連続運転します。連続運転中に運転データNo.を変更すると変速します。

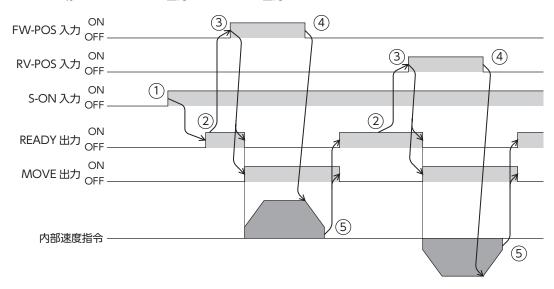
FW-POS入力またはRV-POS入力をOFFにすると、モーターは減速停止します。減速中に同じ回転方向の信号をONにすると、モーターは再び加速して運転を続けます。

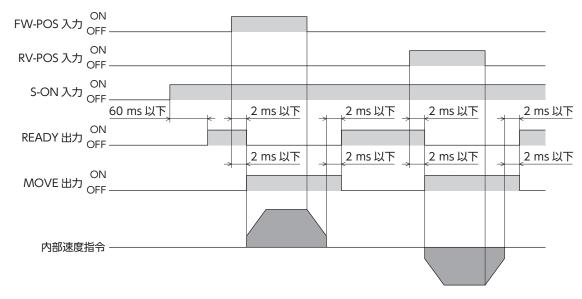
FW-POS入力とRV-POS入力が両方ともONになると、モーターは減速停止します。

■ 運転イメージ

関連する運転データ

MEXE02分類	名称	内容	設定範囲	初期値
n1	速度	運転速度を設定します。 位置決め運転は、絶対値の運転速度で運転します。連続運転は、正の値を設定するとFWD 方向、負の値を設定するとRVS方向へ回転します。	-4,000,000~ 4,000,000 Hz	1,000
	起動・変速レート	起動・変速時の加減速レートまたは加減速時 間を設定します。	1~1,000,000,000	1,000,000
	停止レート ''	停止時の減速レートまたは減速時間を設定し ます。	(1=0.001) %	1,000,000
	トルク制限値	トルク制限値を設定します。	0~10,000 (1=0.1 %)	1,000


[※] 設定単位は「加減速単位」パラメータに従います。


関連するパラメータ

MEXE02分類	名称	内容	設定範囲	初期値
p4	起動速度	ストアードデータ運転または連続マクロ運転の 起動速度を設定します。	0~4,000,000 Hz	500

■ タイミングチャート

- 1. S-ON入力をONにします。
- 2. READY出力がONであることを確認します。
- 3. FW-POS入力(またはRV-POS入力)をONにします。
 READY出力がOFF、MOVE出力がONになり、モーターが運転を開始します。
- 4. FW-POS入力(またはRV-POS入力)をOFFにします。 モーターが減速停止を開始します。
- 5. モーターが停止すると、READY出力がON、MOVE出力がOFFになります。

座標管理 6

6-1 座標管理の概要

AZXシリーズは、モーターの位置座標をABZOセンサ(機械式多回転アブソリュートセンサ)で管理しています。ABZOセ ンサ内部では現在座標を機械的に記録しています。そのため、制御電源がOFFのときに外力で出力軸が回転してしまった場 合でも、原点に対する絶対座標を保持し続けることができます。

座標設定は、次のながれで行ないます。

モーターとドライバを接続し、制御電源を投入する

初期座標が自動で生成されます。

機械原点を設定する

ファクトリー原点またはユーザー原点

必要に応じて電気原点を設定する

初期座標の生成範囲やラウンド範囲を設定する

制御電源を再投入する

変更したパラメータが有効になります。

■ ABZOセンサとは

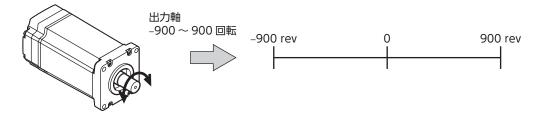
ABZOセンサは、バッテリが不要な機械式多回転アブソリュートセンサです。

出力軸の回転数が1,800回転を超えるまでは、現在位置を絶対位置として記憶しています。制御電源を切っても現在位置は 保持されています。

1,800回転を超えると、カウント数は0にリセットされ、新たに1回転、2回転、3回転…と数え始めます。

■ 初期座標生成とは

ABZOセンサが管理できる1,800回転までの回転範囲を、どのように使用するか決めることを「初期座標生成」といいます。 初期座標生成に必要なパラメータは、次の4つです。これらのパラメータは、制御電源を投入したときに読み込まれます。


- 初期座標生成・ラウンド座標設定
- 初期座標生成・ラウンド設定範囲
- 初期座標生成・ラウンドオフセット比率設定
- 初期座標生成・ラウンドオフセット値設定

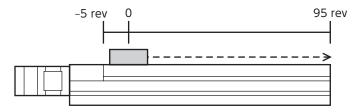
(memo) ラウンド機能の有効/無効に関わらず、制御電源を投入すると必ず初期座標が生成されます。

● モーターの出荷時設定例

FWD方向/RVS方向のどちらの座標も使用できるように、1,800回転分を+と-に50%ずつ振り分けています。

● 直動アクチュエータの設定例

直動アクチュエータの原点位置を、モーター側から30 mmの位置に設定する例を紹介します。


- 直動アクチュエータのストローク:600 mm
- 直動アクチュエータのピッチ:6 mm/rev

初期座標の考え方

初期座標生成範囲 =
$$\frac{\text{ストローク}}{\text{ピッチ}} = \frac{600}{6} = 100 \text{ rev}$$

ラウンドオフセット比率 =
$$\frac{原点位置}{ストローク} \times 100 = \frac{30}{600} \times 100 = 5(%)$$

以上から、実際の座標は-5~95回転の範囲となります。

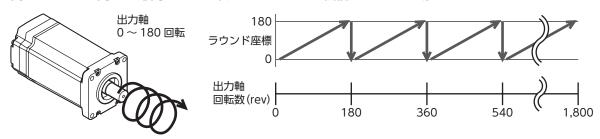
パラメータの設定例

MEXE02分類	名称	設定値
p5	初期座標生成・ラウンド座標設定	マニュアル設定
	初期座標生成・ラウンド設定範囲	100.0 rev
	初期座標生成・ラウンドオフセット比率設定	5.00 %
	初期座標生成・ラウンドオフセット値設定	0 step

■ ラウンド機能

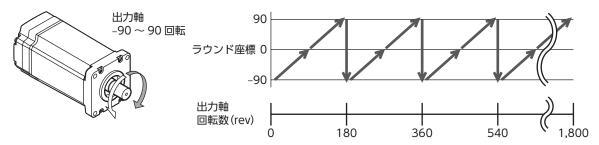
ラウンド機能とは、出力軸の回転数が設定した範囲を超えると、現在位置の位置情報が自動的にプリセットされる機能です。 ラウンドオフセットを設定すると、装置の動作領域を制限したり、インデックステーブルをプラス側とマイナス側の座標で 制御することも可能です。

具体的な設定方法については、99ページをご覧ください。


出荷時は、ラウンド機能が有効になっています。ラウンド機能を使用しないときは、ラウンド機能を無効 にしてください。パラメータの設定は次のとおりです。

- 「初期座標生成・ラウンド座標設定」パラメータ:1(マニュアル設定)
- 「ラウンド (RND) 設定」パラメータ: 0 (無効)

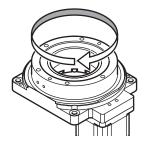
● ラウンド設定の考え方


ラウンド設定では、ABZOセンサが管理する1,800回転を等分割し、等分割した回転数内で座標を生成しています。 したがって、1,800を割り切れる値を設定します。

例:モーターが同一の方向へ180回転したらラウンド機能がはたらく場合

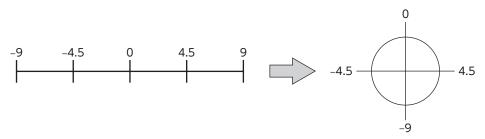
モーターの現在位置は180回転ごとにプリセットされますが、ドライバ内部の32 bitカウンタはプリセットされません。

例:モーターの使用範囲を-90回転~90回転にオフセットした場合



ラウンドの範囲を超えると、符号が逆になります。

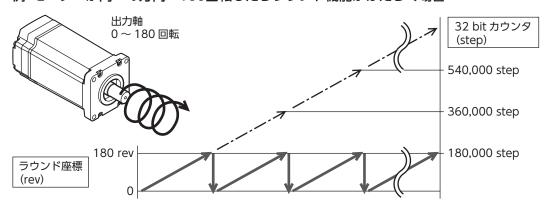
● インデックステーブルの設定例


出力軸が18回転したときに、インデックステーブルを 1回転させる例を紹介します。

モーターのギヤ比:18

初期座標の考え方

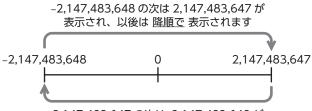
インデックステーブルがどちらの方向にも回転できるよう、18回転分を+と-に50%ずつ振り分けます。


パラメータの設定例

MEXE02分類	名称	設定値
p5	初期座標生成・ラウンド座標設定	マニュアル設定
	初期座標生成・ラウンド設定範囲	18.0 rev
	初期座標生成・ラウンドオフセット比率設定	50.00 %
	初期座標生成・ラウンドオフセット値設定	0 step
	ラウンド (RND) 設定	有効

● ラウンド機能とドライバ内部の32 bitカウンタの関係

ドライバ内部の32 bitカウンタは、ラウンド機能の有無に関わらず、モーターの位置情報をstep数で出力しています。 ラウンド機能が有効のとき、ラウンド座標と32 bitカウンタの関係は次のようになります。


例:モーターが同一の方向へ180回転したらラウンド機能がはたらく場合

モーターの現在位置は180回転ごとにプリセットされますが、32 bitカウンタはプリセットされません。 32 bitカウンタの値は、次の方法で確認できます。

- MEXEO2のステータスモニタ画面
- EtherNet/IPのモニタコマンド

32 bitカウンタは、-2,147,483,648~2,147,483,647の間で周回します。

2,147,483,647 の次は-2,147,483,648 が 表示され、以後は <u>昇順で</u> 表示されます

6-2 座標原点

AZXシリーズの原点には、機械原点と電気原点の2種類があります。座標を確定すると、ABSPEN出力がONになります。

座標を確定しないと、次の運転は実行できません。

- 高速原点復帰運転
- ・絶対位置決め運転(「座標未確定時絶対位置決め運転許可」パラメータが「0:不許可」のとき)

関連するパラメータ

MEXE02分類	名称	内容	設定範囲	初期値
p4	座標未確定時絶対位置決め 運転許可	座標が確定していない状態での絶対位置決め運転 を許可します。	0:不許可 1:許可	0

■ 機械原点

機械原点とは、ABZOセンサが記憶している原点位置です。機械原点には、工場出荷時にABZOセンサに書き込まれている「ファクトリー原点」と、原点復帰運転または位置プリセットによって設定する「ユーザー原点」があります。

● ファクトリー原点

直動アクチュエータなど、機構がモーターに組み付けられている製品で設定されています。変更はできません。 ファクトリー原点が設定されている場合は、ORGN-STLD出力がONになります。

● ユーザー原点

原点復帰運転または位置プリセットによってユーザー原点が設定されると、PRST-STLD出力がONになります。 ユーザー原点を未確定の状態にするときは、MEXE02の[通信]メニューの[位置プリセットクリア]を実行してください。 EtherNet/IPではユーザー原点を未確定にできません。

ユーザー原点を設定すると、原点情報がNVメモリに書き込まれます。NVメモリの書き換え可能回数は、約10万回です。

■ 機械原点の確定

機械原点座標を確定するには、位置プリセットまたは原点復帰運転を行ないます。機械原点座標を確定すると、機械原点を中心とした座標上で運転が行なわれます。

● 位置プリセット

位置プリセットを実行すると、指令位置と検出位置が「プリセット位置」パラメータで設定した値になり、原点が確定します。

関連するパラメータ

MEXE02分類	名称	内容	設定範囲	初期値
4	プリセット位置	プリセット位置を設定します。	−2,147,483,648∼ 2,147,483,647 step	0
p4	座標未確定時絶対位置決め 運転許可	座標が確定していない状態での絶 対位置決め運転を許可します。	0:不許可 1:許可	0

● 原点復帰運転

原点復帰運転を行なうと、機械原点を確定できます。

■ 電気原点

ドライバに設定された原点位置です。EL-PRST入力をONにすると電気原点が設定され、モーターは電気原点を原点とする座標系で運転します。EL-PRST入力をOFFにすると電気原点は解除されます。電気原点が設定されている間は、ELPRST-MON出力がONになります。

電気原点を設定しても、NVメモリには書き込まれません。

■ 電気原点の確定

EL-PRST入力をOFFからONにしたときの指令位置が電気原点になります。EL-PRST入力がONの間、電気原点を中心とした座標上で運転が行なわれます。

EL-PRST入力がONの状態で位置プリセットまたは原点復帰運転を行なうと、機械原点と電気原点が同時に「プリセット位置」パラメータで設定した値になります。

EL-PRST入力をONからOFFにすると、機械原点座標に戻ります。

要) 電気原点座標を使用している間は、高速原点復帰運転は実行できません。

■ 座標が未確定の状態

次のときに、座標が未確定になります。ABSPEN出力はOFFになります。

- 工場出荷状態
- 「プリセット位置」パラメータを「0」以外に設定した状態で位置プリセットを行ない、その後、分解能を変更したとき
- MEXE02の[通信]メニューの[位置プリセットクリア]を実行したとき
- 原点復帰運転中

6-3 ABZOセンサに関するパラメータ

AZXシリーズでは、ABZOセンサの性能や、組み付けられている機構に依存するパラメータが、あらかじめABZOセンサに書き込まれています。通常は、EtherNet/IPやMEXE02で設定したパラメータよりも、ABZOセンサの設定が優先されます。

関連するパラメータ

MEXE02分類	名称	内容	設定範囲	初期値
p5	機構諸元設定	機構諸元パラメータを変更するとき は、マニュアル設定を選択してくだ さい。	0:ABZO設定を優先 1:マニュアル設定	0
	初期座標生成・ラウンド 座標設定	初期座標生成・ラウンド座標パラメータを変更するときは、マニュアル設 定を選択してください。	0:ABZO設定を優先 1:マニュアル設定	0
	機構リミットパラメータ 設定	機構リミットパラメータのABZO設 定を無効にします。	0:ABZO設定に従う 1:無効化する	0
	機構保護パラメータ設定	機構保護パラメータのABZO設定を 無効にします。	0:ABZO設定に従う 1:無効化する	0
	JOG/HOME/ZHOME 運転 運転情報設定	JOG運転、原点復帰運転、および高速原点復帰運転のパラメータを変更するときは、マニュアル設定を選択してください。	0:ABZO設定を優先 1:マニュアル設定	0

■ ラウンド機能のパラメータを設定する場合

- 設定例:ラウンド範囲を-50~50回転に設定する場合
 - 1. 「初期座標生成・ラウンド座標設定」パラメータを「1:マニュアル設定」に変更します。
 - 2. 各パラメータを次のように設定します。

MEXE02分類	名称	設定値
	初期座標生成・ラウンド設定範囲	100.0 rev
р5	初期座標生成・ラウンドオフセット比率設定	50.00 %
	初期座標生成・ラウンドオフセット値設定	0 step
	ラウンド (RND) 設定	有効
	RND-ZERO出力用RND分割数	1

6-4 機構諸元パラメータ

ギヤードモーターや直動アクチュエータなど、機構と組み合わせて使用するときに必要なパラメータです。

関連するパラメータ

MEXE02分類	名称	内容	設定範囲	初期値
	機構諸元設定	機構諸元パラメータを変更する ときは、マニュアル設定を選択 してください。	0:ABZO設定を優先 1:マニュアル設定	0
	電子ギヤA	電子ギヤの分母を設定します。	1~65.535	1
	電子ギヤB	電子ギヤの分子を設定します。	1, 200,000	ļ ,
25	モーター回転方向	出力軸の回転方向を設定します。	0:+側=CCW 1:+側=CW 2:+側=CCW(ドライバパラ メータを採用)※ 3:+側=CW(ドライバパラ メータを採用)※	1
p5	機構形状	予約機能です。使用できません。	-	0
	機構リード	ボールねじのリードを設定しま す。	1~32,767	1
	機構リード小数点以下桁数	ボールねじのリードを小数点で 表わす場合の小数点桁数を設定 します。	0:×1 mm 1:×0.1 mm 2:×0.01 mm 3:×0.001 mm	0
	ギヤ比設定	ギヤードモーターのギヤ比を設定します。[0:ギヤ比設定無効]にすると、ギヤ比は[1]とみなされます。	0:ギヤ比設定無効 1〜32,767:減速比(1=0.01)	0

^{※ [2:+}側=CCW(ドライバパラメータを採用)]または[3:+側=CW(ドライバパラメータを採用)]を選択すると、「モーター回転方向]以外のパラメータはABZOセンサの固定値が優先されます。

初期座標生成・ラウンド座標パラメータ 6-5

座標系を生成する際に使用するパラメータです。

■ ラウンド機能

ラウンド機能については、94ページをご覧ください。

● 関連する運転方式

次のストアードデータ運転を行なうときにラウンド機能を設定してください。

- ラウンド絶対位置決め運転
- ラウンド近回り位置決め運転
- ラウンドFWD方向絶対位置決め運転
- ラウンドRVS方向絶対位置決め運転

● 関連するパラメータ

MEXE02分類	名称	内容	設定範囲	初期値
	初期座標生成・ラウンド 座標設定	初期座標生成・ラウンド座標パラメータ を変更するときは、マニュアル設定を選 択してください。	0:ABZO設定を優先 1:マニュアル設定	0
	初期座標生成・ラウンド 設定範囲	ラウンド範囲を設定します。ここで設定 した回数だけ出力軸が回転すると、指令 位置が0に戻ります。	次表をご覧ください。 (1=0.1 rev)	10
p5	初期座標生成・ラウンド オフセット比率設定	ラウンド範囲のオフセット比率を設定し ます。	0~10,000 (1=0.01 %)	5,000
	初期座標生成・ラウンド オフセット値設定	ラウンド範囲のオフセット量を設定しま す。	-536,870,912~ 536,870,911 step	0
	ラウンド (RND) 設定	ラウンド機能を設定します。	0:無効 1:有効	1

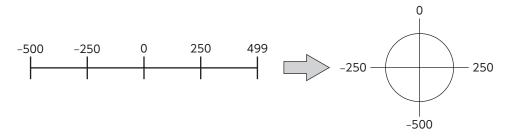
「初期座標生成・ラウンド設定範囲」パラメータに設定できる値

ABZOセンサの内部座標は1,800 revのため、「初期座標生成・ラウンド設定範囲」パラメータには、表から値を選択して設 定してください。

(memo) 表は、MEXE02で設定するときの数値です。EtherNet/IPで設定するときは、表の値を10倍してください。

		ラウ	フンド設定範囲[r	ev]		
0.5	1.8	4.8	12.0	25.0	72.0	200.0
0.6	2.0	5.0	12.5	30.0	75.0	225.0
0.8	2.4	6.0	14.4	36.0	90.0	300.0
0.9	2.5	7.2	15.0	37.5	100.0	360.0
1.0	3.0	7.5	18.0	40.0	112.5	450.0
1.2	3.6	8.0	20.0	45.0	120.0	600.0
1.5	4.0	9.0	22.5	50.0	150.0	900.0
1.6	4.5	10.0	24.0	60.0	180.0	1,800.0

● 設定例

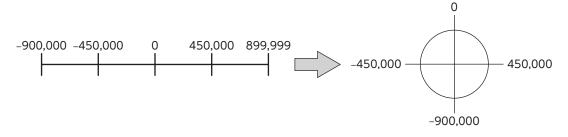

「初期座標生成・ラウンドオフセット比率設定」を「50 %」、「初期座標生成・ラウンドオフセット値設定」を「0 step」にした場合

例1:ラウンド設定範囲が1 rev、分解能が1,000 P/Rの場合の座標

MEXE02分類	名称	設定値
	電子ギヤA	1
	電子ギヤB	1
	初期座標生成・ラウンド座標設定	マニュアル設定
p5	初期座標生成・ラウンド設定範囲	1.0 rev
	初期座標生成・ラウンドオフセット比率設定	50.00 %
	初期座標生成・ラウンドオフセット値設定	0 step
	ラウンド (RND) 設定	有効

座標イメージ

表のようにパラメータを設定すると、図の座標でモーターを動かせるようになります。



例2: ラウンド設定範囲が1,800 rev、分解能が1,000 P/Rの場合の座標

MEXE02分類	名称	設定値
	電子ギヤA	1
	電子ギヤB	1
	初期座標生成・ラウンド座標設定	マニュアル設定
p5	初期座標生成・ラウンド設定範囲	1,800.0 rev
	初期座標生成・ラウンドオフセット比率設定	50.00 %
	初期座標生成・ラウンドオフセット値設定	0 step
	ラウンド (RND) 設定	有効

座標イメージ

表のようにパラメータを設定すると、図の座標でモーターを動かせるようになります。

重要

「ラウンド (RND) 設定」パラメータや「初期座標生成・ラウンド設定範囲」パラメータを変更すると、絶対位置がずれる場合があります。パラメータを変更したときは、プリセット (P-PRESET) または原点復帰運転を行なってください。

「初期座標生成・ラウンド設定範囲」パラメータの設定条件

ラウンドの範囲が次の条件を満たすと、原点位置を保持したまま同一方向への連続回転が可能になります。

重要) 「ラウンド(RND)設定」パラメータが「1:有効」に設定されていても、「初期座標生成・ラウンド設定範囲」パ ラメータの設定条件を満たさない場合は、ラウンド設定異常のインフォメーションが発生します。ラウン ド設定異常のインフォメーションが発生している状態で、制御電源を再投入またはConfigurationを実行 すると、ラウンド設定異常のアラームが発生します。

設定例1

- ラウンド設定範囲:100 rev
- 分解能:1,000 P/R(電子ギヤA=1、電子ギヤB=1)
- モーター:標準モーター(減速比1)

条件② ラウンド設定範囲 ×
$$\frac{ 電子ギャB}{ 電子ギャA}$$
 × 1,000 = 100 × $\frac{1}{1}$ × 1,000 = 100,000

条件①、②が両方とも整数なので、設定条件を満たしています。ラウンドが可能です。

設定例2

- ラウンド設定範囲:4.5 rev
- ◆ 分解能:1,000 P/R(電子ギヤA=1、電子ギヤB=1)
- 電動アクチュエータ:DG II シリーズ(減速比18)

条件①
$$\frac{1,800}{$$
 ラウンド設定範囲 $=\frac{1,800}{4.5}=400$

条件② ラウンド設定範囲 ×
$$\frac{ 電子ギャB}{ 電子ギャA}$$
 × 1,000 = 4.5 × $\frac{1}{1}$ × 1,000 = 4,500

条件①、②が両方とも整数なので、設定条件を満たしています。この設定の場合、DG II シリーズの出力テーブルが90°回転 するごとにラウンドします。

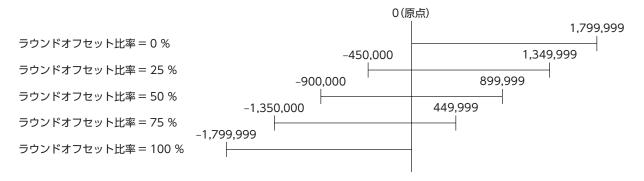
設定例3

- ラウンド設定範囲:1,000 rev
- ◆ 分解能:1,000 P/R(電子ギヤA=1、電子ギヤB=1)
- モーター: **PS**ギヤードモーター (減速比5)

条件①
$$\frac{1,800}{5$$
ウンド設定範囲 $=\frac{1,800}{1,000}=1.8$

条件② ラウンド設定範囲 ×
$$\frac{ 電子ギャB}{ 電子ギャA}$$
 × 1,000 = 1,000 × $\frac{1}{1}$ × 1,000 = 1,000,000

条件①が整数ではないため、設定条件を満たしません。ラウンド設定異常のインフォメーションが発生し、ラウンドできま せん。

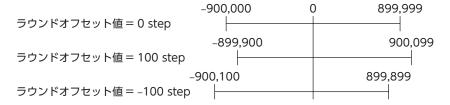

■ ラウンドオフセット機能

機械原点を基準にして、ラウンド範囲の境界点の位置をオフセットすることができます。ラウンドオフセットは、「初期座標生成・ラウンドオフセット比率設定」パラメータと「初期座標生成・ラウンドオフセット値設定」パラメータで設定します。

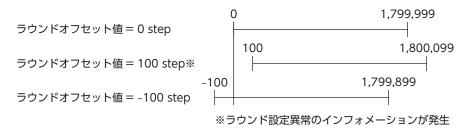
● ラウンドオフセット比率設定

「初期座標生成・ラウンドオフセット比率設定」パラメータを設定すると、ラウンド範囲を負方向へオフセットできます。

設定例: ラウンド範囲1.800 rev、分解能1.000 P/Rの場合


● ラウンドオフセット値設定

「初期座標生成・ラウンドオフセット比率設定」パラメータでオフセットした座標系に対して、step単位で座標をシフトできます。



「初期座標生成・ラウンドオフセット値設定」パラメータで座標を設定した場合、座標内に原点が含まれていないとラウンド設定異常のインフォメーションが発生します。ラウンド設定異常のインフォメーションが発生している状態で、制御電源を再投入またはConfigurationを実行すると、ラウンド設定異常のアラームが発生します。

設定例1:ラウンド範囲1,800 rev、分解能1,000 P/R、ラウンドオフセット比率設定50 %の場合

設定例2: ラウンド範囲1,800 rev、分解能1,000 P/R、ラウンドオフセット比率設定0 %の場合

■ RND-ZERO出力

RND-ZERO出力とは、原点を基準にしてラウンド範囲を等分割したときに、分割の境界点ごとに出力される信号です。 分割数は、「RND-ZERO出力用RND分割数」パラメータで設定できます。RND-ZERO出力は、「ラウンド(RND)設定」パラメータが「1:有効」のときに出力されます。

● 使用例1

出力軸1回転ごとにRND-ZERO信号を出力する場合 (ラウンド範囲1,800 rev、減速比5のギヤードモーターのとき)

この使用例では、モーターが原点位置にいることを確認できます。ギヤードモーターでは、1回転ごとに1パルス出力するZ相信号としてお使いいただけます。

● 使用例2

可動範囲を90°に等分割して、一定の移動量ごとにRND-ZERO信号を出力する場合(ラウンド範囲1,800 rev、減速比18の電動アクチュエータのとき)

可動範囲の分割数 =
$$\frac{360^{\circ}}{90^{\circ}}$$
 = 4

RND-ZERO出力用RND分割数 =
$$\frac{$$
 ラウンド範囲 $}{$ 減速比 $}$ × 可動範囲の分割数 = $\frac{1,800}{18}$ × 4 = 400

この使用例では、直動アクチュエータや中空ロータリーアクチュエータの運転中、定期的に信号を出力できます。多軸間を同期させたり、RND-ZERO信号を他のシステムに入力して操作するときにお使いいただけます。

関連するパラメータ

MEXE02分類	名称	内容	設定範囲	初期値
p5	RND-ZERO出力用 RND分割数	ラウンド範囲内で、RND-ZERO出力をONに する回数を設定します。	1~536,870,911 分割	1

6-6 機構リミット

電動アクチュエータによっては、出荷時に機構リミット(メカ端)がABZOセンサへ保存されているものがあります。(固定値)

原点設定済みの製品がABZOセンサに保存されている機構リミットに到達すると、メカオーバートラベルのアラームが発生します。

固定値の内容は、MEXE02のユニット情報モニタで確認できます。

通常はABZOセンサの固定値を使用しますが、値を無効にしたいときは「機構リミットパラメータ設定」パラメータを「1:無効化する」に変更してください。

関連するパラメータ

MEXE02分類	名称	内容	設定範囲	初期値
p5	機構リミットパラメータ設定	機構リミットパラメータのABZO設 定を無効にします。	0:ABZO設定に従う 1:無効化する	0

「機構リミットパラメータ設定」パラメータを「1:無効化する」に変更すると、ABZOセンサの固定値を利用したアラーム機能も無効になります。

6-7 機構保護

電動アクチュエータは出荷時に、製品に応じた起動速度と運転速度の最大値がABZOセンサに保存されています。(固定値) ABZOセンサの固定値を超えてモーターが運転されると、運転データ異常のアラームが発生します。

固定値の内容は、MEXEO2のユニット情報モニタで確認できます。

通常はABZOセンサの固定値を使用しますが、値を無効にしたいときは「機構保護パラメータ設定」パラメータを「1:無効化する」に変更してください。

関連するパラメータ

MEXE02分類	名称		設定範囲	初期値
p5	機構保護パラメータ設定	機構保護パラメータのABZO設定を 無効にします。	0:ABZO設定に従う 1:無効化する	0

「機構保護パラメータ設定」パラメータを「1:無効化する」に変更すると、ABZOセンサの固定値を利用したアラーム機能も無効になります。

6-8 座標情報モニタ機能

ABZOセンサが管理している座標系と、上位システムの座標系の同期をとるには、次の2つの方法があります。

- 高速原点復帰運転、位置プリセット、または原点復帰運転が完了した後に、上位システムのエンコーダカウンタを0にクリアする。
- 座標情報モニタ機能またはEtherNet/IPで、ABZOセンサの現在位置と上位システムのエンコーダカウンタの値を一致 させる。

座標情報モニタ機能には、I/O位置出力機能とパルスリクエスト機能が搭載されています。

■ I/O位置出力機能

I/O位置出力機能とは、モニタリクエスト入力(MON-REQ0、MON-REQ1)に応じて、位置情報またはアラーム情報をクロック同期式のシリアル通信(SPI通信)で上位システムに伝える機能です。MON-CLK入力にパルスを入力すると、パルスが立ち上がるタイミングでMON-OUTから出力される情報が切り替わります。通信は最下位bitから行なわれ(LSBファースト)、位置情報は32 bit(※)、アラーム情報は8 bit(※)のデータを送信して、最後にチェックサムが送信されます。チェックサムは、送信データを1 byteごとに分けて、それぞれの値を加算した結果の下位8 bitです。

※ データは2の補数で示されます。

関連するパラメータ

MEXE02分類	名称	内容	設定範囲	初期値
p7 -	MON-REQ0 対象設定	MON-REQ入力をONにしたと きに、I/O位置出力機能で出力さ	1:検出位置(32 bit) 2:検出位置32 bitカウンタ(32 bit) 3:指令位置(32 bit) 4:指令位置32 bitカウンタ(32 bit) 8:アラームコード(8 bit) 9:検出位置(32 bit) &アラームコード(8 bit)	1
	MON-REQ1 対象設定	れる情報を選択します。	10:検出位置32 bitカウンタ (32 bit) & アラームコード (8 bit) 11:指令位置 (32 bit) & アラームコード (8 bit) 12:指令位置32 bitカウンタ (32 bit) & アラームコード (8 bit)	8

I/O出力機能で出力できる情報は、次のとおりです。

● 現在座標

現在位置の座標を32 bitのデータで送信します。

出力する位置情報は、「MON-REQ0対象設定」パラメータと「MON-REQ1対象設定」パラメータで設定してください。

• 検出位置(32 bit)

ABZOセンサで検出された現在位置が出力されます。「ラウンド(RND)設定」パラメータが「1:有効」のときは、ラウンド範囲内の値が出力されます。

検出位置32 bitカウンタ(32 bit)

ABZOセンサで検出された現在位置が出力されます。「ラウンド(RND)設定」パラメータに関わらず、ラウンド設定を無効とした場合の値を表示します。

• 指令位置(32 bit)

ドライバの指令位置が出力されます。「ラウンド (RND) 設定」パラメータが「1:有効」のときは、ラウンド範囲内の値が出力されます。

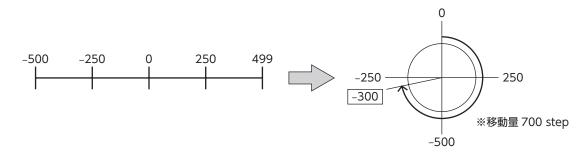
• 指令位置32 bitカウンタ (32 bit)

ドライバの指令位置が出力されます。「ラウンド(RND)設定」パラメータに関わらず、ラウンド設定を無効とした場合の値を表示します。

出力例

機械原点から700 step、FWD方向へ回転した場合(パラメータを表のように設定したとき)

MEXE02分類	名称	設定値	
	電子ギヤA	1	
	電子ギヤB	1	
p5	初期座標生成・ラウンド設定範囲	1.0 rev	
	初期座標生成・ラウンドオフセット比率設定	50.00 %	
	初期座標生成・ラウンドオフセット値設定	0 step	


ラウンド範囲が-500~499 stepのため、現在座標は次のように出力されます。

指令位置(32 bit): -300 step

2進数	1111 1111 1111 1111 1111 1110 1101 0100
送信データ(LSBファースト)	0010 1011 0111 1111 1111 1111 1111 1111

指令位置32 bitカウンタ:700 step

2進数	0000 0000 0000 0000 0000 0010 1011 1100
送信データ(LSBファースト)	0011 1101 0100 0000 0000 0000 0000 0000

● アラームコード

現在発生しているアラームのアラームコードを、8 bitのデータで送信します。 (♪239ページ「2-4 アラーム一覧」)

出力例:過負荷のアラーム(アラームコード30h)が発生しているとき

2進数	0011 0000
送信データ(LSBファースト)	0000 1100

● 現在位置+アラームコード

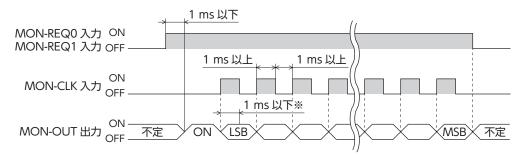
現在位置情報とアラームコードを連続して送信します。

出力例

検出位置300 step、ハードウェアオーバートラベルのアラーム(アラームコード:66h)発生中に、 検出位置とアラームコードを出力する場合

• チェックサム

検出位置 :300 step = 0000 0000 0000 0000 0001 0010 1100


アラームコード:66h = 0110 0110

チェックサム :0000 0000 + 0000 0000 + 0000 0001 + 0010 1100 + 0110 0110 = 1001 0011

ドライバから出力されるデータ

● タイミングチャート

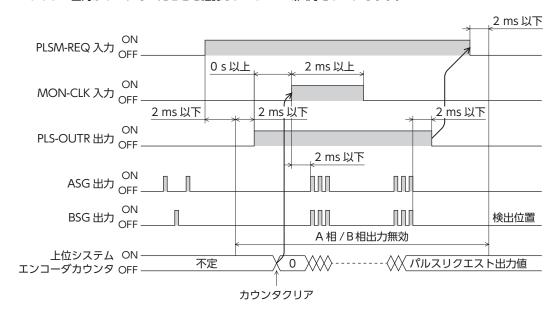
- 1. MON-REQ0入力またはMON-REQ1入力をONにすると、その瞬間の指令位置、検出位置、アラームコードが記録され、 MON-OUT出力がONになります。
- 2. MON-OUT出力がONになったことを確認し、クロック信号をMON-CLK入力に入力します。
- 3. クロック信号に同期して、MON-OUT出力から「MON-REQ0対象設定」パラメータと「MON-REQ1対象設定」パラメータで設定した情報が出力されます。
- 4. 必要な情報が取得できたら、MON-REQ入力をOFFにします。 データはLSBファーストで出力されます。チェックサムを確認する必要がない場合は、出力を中断しても構いません。

※ MON-CLK入力のONエッジを検出してから、実際にMON-OUT出力の状態が確定するまでの時間です。

memo

MON-CLK入力に入力するクロック信号の周波数は、最大500 Hzです。

■ パルスリクエスト機能


パルスリクエスト機能は、A相/B相出力を用いて現在位置(絶対位置)を上位システムに伝える機能です。上位システムのエンコーダカウンタとドライバのA相/B相出力を接続し、パルスリクエスト機能を実行すると、ドライバの現在位置をA相/B相パルスとして出力できます。あらかじめ上位システムのエンコーダカウンタを[0]に設定しておくことで、ABZOセンサと上位システムの座標系を簡単に同期できます。

関連するパラメータ

MEXE02分類	名称	内容	設定範囲	初期値
р7	PLSOUT対象設定	パルスリクエスト機能で出力 される情報を選択します。	0:指令位置(32 bit) 1:指令位置32 bitカウンタ(32 bit) 2:検出位置(32 bit) 3:検出位置32 bitカウンタ(32 bit)	0
	PLSOUT最大周波数	パルスリクエスト機能で使用 する出力パルスの周波数を設 定します。	1~10,000 (1=0.1 kHz)	100

● タイミングチャート

- 1. PLSM-REQ入力をONにすると、その瞬間のASG出力とBSG出力がラッチされ、現在の指令位置と検出位置が記録されます。PLSM-REQ入力がOFFになるまでは、モーター軸が回転しても、ASG出力とBSG出力から現在の検出位置が出力されることはありません。
- 2. PLS-OUTR出力がONになっていることを確認し、上位システムのエンコーダカウンタを「0」にクリアします。
- 3. MON-CLK入力をONにします。 ASG出力とBSG出力から、「PLSOUT対象設定」パラメータで設定した情報が出力されると、PLS-OUTR出力がOFFになります。
- 4. PLS-OUTR出力がOFFになったことを確認し、PLSM-REQ入力をOFFにします。

座標情報を出力しているときは、モーターを運転しないでください。モーターを運転すると、ABZOセンサと上位システムの間で現在位置の同期が取れなくなります。

フ トルク制限機能

モーターの最大出力トルクを制限できます。

負荷に合わせてモーターの出力トルクを制限するときに設定してください。

TRQ-LMT入力をONにすると、トルク制限が有効になります。

関連する運転データ

MEXE02分類	名称	内容	設定範囲	初期値
р1	トルク制限値	トルク制限値を設定します。	0~10,000 (1=0.1 %)	1,000

関連するパラメータ

MEXE02分類	名称	内容	設定範囲	初期値
p4	停止時運転トルク制限設定	停止時の運転トルクを制限する方法を選択します。[0:選択番号に従う]を選択すると、停止時に選択されている運転データのトルク制限値が適用されます。[1:直前の運転トルク制限を維持」を選択すると、停止する前に実行していた運転データのトルク制限値が適用されます。モーターが無励磁状態になると、選択されている運転データのトルク制限値になります。	0:選択番号に従う 1:直前の運転トルク制限 を維持(無励磁にて リセット)	1
p5	JOG/HOME/ZHOME 運転 トルク制限値	トルク制限値を設定します。	0~10,000 (1=0.1 %)	1,000
р7	STOP停止動作時トルク 制限	STOP入力がONになったときの、トルク制限値を設定します。「0:プロファイルトルク制限を継続使用」を設定すると、実行中の運転データのトルク制限値が適用されます。	0:プロファイルトルク 制限を継続使用 1~10,000 (1=0.1 %)	0

関連するOutputデータ

バイト	名称	内容	設定範囲	初期値
24,25	ダイレクトデータ運転 トルク制限値	ダイレクトデータ運転のトルク制限値を設定します。	0~10,000 (1=0.1 %)	1,000

4 入出力信号

入力信号と出力信号について説明しています。

◆もくじ

1 入出	台力信号の概要	110
1-1	入力信号の概要	110
1-2	出力信号の概要	111
1-3	入力信号と出力信号の設定内容	112
2 信号	3一覧	117
2-1	入力信号一覧	117
2-2	出力信号一覧	119
3 信号	号の種類	123
	ダイレクトI/O	
	ダイレクトI/O リモートI/O	
3-2		127
3-2	リモートI/O	127
3-2 4 入 力	リモートI/O J信号	127 1 29

5 t	出力信号	147
5-1	ドライバの管理	147
5-2	運転の管理	148
5-3	ラッチ情報表示	156
5-4	レスポンス出力	156
5 .	タイミングチャート	157

1 入出力信号の概要

1-1 入力信号の概要

■ ダイレクト入力

ダイレクト入力(DIN)とは、I/Oケーブルをコネクタに配線して、信号を直接入力する方法です。 コンポジット入力機能を使用すると、1つの入力で2つの信号を同時にONにできるため、省配線を実現します。

名称	説明
入力機能	DINに割り付ける入力信号を選択します。
接点設定(信号反転)	接点の変更が行なえます。
ON信号検出不感時間	設定した時間を超えると、入力信号がONになります。 ノイズ対策や機器間のタイミングの合わせ込みなどにお使いいただけます。
強制1shot	ONになった入力信号を、250 µs後に自動でOFFにします。
コンポジット入力機能	DINがONになったら、ここで選択した信号も同時にONになります。

設定例:FW-POS入力がONになったら、運転データNo.1で連続運転を行なう

表のようにパラメータを設定すると、FW-POS入力がONになったときに運転データNo.1の運転が実行されます。

MEXE02分類	名称	設定値
	入力機能	FW-POS
p8	接点設定(信号反転)	反転しない
	ON信号検出不感時間	0 ms
	強制1shot	1shot機能が無効
	コンポジット入力機能	MO

■ 仮想入力

仮想入力(VIR-IN)とは、仮想入力源に設定した信号の出力を使用して、仮想入力で設定した信号を入力する方法です。 内部のI/Oを使った入力方法のため、配線が不要でダイレクトI/Oと併用できます。仮想入力は4つまで設定できます。

名称	説明
仮想入力機能	VIR-INに割り付ける信号を選択します。仮想入力源の信号が出力されたら、 VIR-INもONになります。
仮想入力源選択	VIR-INのトリガにする出力信号を選択します。
仮想入力接点設定(信号反転)	接点の変更が行なえます。
仮想入力ON信号検出不感時間	設定した時間を超えると、入力信号がONになります。 ノイズ対策や機器間のタイミングの合わせ込みなどにお使いいただけます。
仮想入力強制1shot	ONになった入力信号を、250 µs後に自動でOFFにします。

設定例:TLC出力がONになったら、STOP入力をONにしてモーターを停止させる

表のようにパラメータを設定すると、出力トルクが上限値に到達したときにモーターが停止します。

MEXE02分類	名称	設定値
	仮想入力(VIR-INO)機能	STOP
	仮想入力(VIR-INO)源選択	TLC
p11	仮想入力(VIR-INO)接点設定(信号反転)	反転しない
	仮想入力(VIR-INO)ON信号検出不感時間	0 ms
	仮想入力(VIR-INO)強制1shot	1shot機能が無効

1-2 出力信号の概要

■ ダイレクト出力

ダイレクト出力(DOUT)とは、I/Oケーブルをコネクタに配線して、信号を直接出力する方法です。 コンポジット出力機能を使用すると、2つの出力信号の論理結合結果を、1つの信号で出力できます。

名称	説明
(通常)出力機能	DOUTに割り付ける出力信号を選択します。
接点設定(信号反転)	接点の変更が行なえます。
OFF出力遅延時間	設定した時間を超えると、出力信号がOFFになります。 ノイズ対策や機器間のタイミングの合わせ込みなどにお使いいただけます。
コンポジット論理結合	コンポジット出力機能の論理結合[AND(論理積)またはOR(論理和)]を設定します。
コンポジット出力機能	DOUTの信号と論理演算を行なう出力信号を選択します。2つの信号の論理結合が成立すると、DOUTがONになります。
コンポジット接点設定 (信号反転)	コンポジット出力機能で選択した信号の接点を変更します。

設定例: HOME-END出力とAREA0出力がONになったら、HOME-END (DOUT0) を出力する

表のようにパラメータを設定すると、原点復帰が完了したことと、指定位置に到達したことを、1つの出力信号(DOUTO)で確認できます。

MEXE02分類	名称	設定値	
	(通常)出力機能	HOME-END	
· ·	接点設定(信号反転)	反転しない	
p9	OFF出力遅延時間	0 ms	
	コンポジット論理結合	AND	
	コンポジット出力機能	AREA0	
	コンポジット接点設定(信号反転)	反転しない	

■ ユーザー出力

ユーザー出力(USR-OUT)とは、内部のI/Oを使用して信号を出力する方法です。

1つのユーザー出力に2種類の信号(AとB)を割り付けます。AとBの論理結合が成立したら、USR-OUTが出力されます。 配線が不要で、ダイレクトI/Oと併用できます。ユーザー出力は2つまで設定できます。

名称	説明
ユーザー出力源A-機能	出力機能Aを選択します。
ユーザー出力源A-接点設定(信号反転)	出力機能Aの接点を変更します。
ユーザー出力源B-機能	出力機能Bを選択します。
ユーザー出力源B-接点設定(信号反転)	出力機能Bの接点を変更します。
ユーザー出力論理結合選択	出力機能源AとBの論理結合[AND(論理積)またはOR(論理和)]を設定します。

設定例:IN-POS出力とREADY出力がONになったら、USR-OUTを出力する

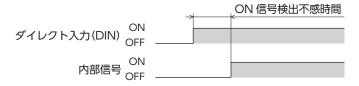
表のようにパラメータを設定すると、位置決め運転が完了したことと、運転の準備が完了したことを、1つの出力信号(USR-OUTO)で確認できます。

MEXE02分類	名称	設定値
	ユーザー出力(USR-OUT0)源A-機能	IN-POS
	ユーザー出力(USR-OUT0)源A-接点設定(信号反転)	反転しない
p11	ユーザー出力 (USR-OUT0) 源B-機能	READY
	ユーザー出力(USR-OUT0)源B-接点設定(信号反転)	反転しない
	ユーザー出力(USR-OUT0)論理結合選択	AND

1-3 入力信号と出力信号の設定内容

■ ダイレクト入力

● 入力機能


MEXE02分類	名称	内容	設定範囲	初期値
	DIN0入力機能) に割り付ける人力信号を選択します。		37:ZHOME
	DIN1入力機能			
nº	DIN2入力機能		入力信号一覧 → 117ページ	5:STOP
р8	DIN3入力機能			8:ALM-RST
	DIN4入力機能			48:FW-JOG
	DIN5入力機能			49:RV-JOG

● 入力信号の接点設定の切り替え

MEXE02分類	名称	内容	設定範囲	初期値
p8	DIN0接点設定(信号反転)			0
	DIN1接点設定(信号反転)		0:反転しない 1:反転する	0
	DIN2接点設定(信号反転)	 DINの接点設定を変更します。		0
	DIN3接点設定(信号反転)	日間の技術設定で多更しより。		0
	DIN4接点設定(信号反転)			0
	DIN5接点設定(信号反転)			0

● ON信号検出不感時間

MEXE02分類	名称	内容	設定範囲	初期値
~ O	DIN0 ON信号検出不感時間			0
	DIN1 ON信号検出不感時間	DINのON信号検出不感時間を設定します。 0~250 ms		0
	DIN2 ON信号検出不感時間		0~250 ms	0
p8	DIN3 ON信号検出不感時間			0
	DIN4 ON信号検出不感時間			0
	DIN5 ON信号検出不感時間			0

● 強制1shot

MEXE02分類	名称	内容	設定範囲	初期値
p8	DIN0強制1shot			0
	DIN1強制1shot) N(/) 猫制1shOt機能を設定します。	0:1shot機能が無効 1:1shot機能が有効	0
	DIN2強制1shot			0
	DIN3強制1shot			0
	DIN4強制1shot			0
	DIN5強制1shot			0

) HMI入力はノーマルクローズ (常時ON) でお使いいただきたい信号です。HMI入力をDINに割り付けたときは、「強制1shot] パラメータを [0:1shot機能が無効] のままでお使いください。

● コンポジット入力機能

MEXE02分類	名称	内容	設定範囲	初期値
p8	DIN0コンポジット入力機能		入力信号一覧 ウ 117ページ	0:未使用
	DIN1コンポジット入力機能			0:未使用
	DIN2コンポジット入力機能			0:未使用
	DIN3コンポジット入力機能			0:未使用
	DIN4コンポジット入力機能			0:未使用
	DIN5コンポジット入力機能			0:未使用

■ 仮想入力

● 仮想入力機能

MEXE02分類	名称	内容	設定範囲	初期値
p11	仮想入力(VIR-INO)機能		入力信号一覧	0:未使用
	仮想入力(VIR-IN1)機能			0:未使用
	仮想入力(VIR-IN2)機能		➡117ページ	0:未使用
	仮想入力(VIR-IN3)機能			0:未使用

● 仮想入力源選択

MEXE02分類	名称	内容	設定範囲	初期値
p11	仮想入力(VIR-INO)源選択			128: CONST-OFF
	仮想入力(VIR-IN1)源選択		出力信号一覧 ➡ 119ページ	128: CONST-OFF
	仮想入力(VIR-IN2)源選択			128: CONST-OFF
	仮想入力(VIR-IN3)源選択			128: CONST-OFF

● 仮想入力接点設定(信号反転)

MEXE02分類	名称	内容	設定範囲	初期値
p11	仮想入力(VIR-INO)接点設定 (信号反転)	(VIR-INI/))接向影定发炎用几乎可	0:反転しない	0
	仮想入力(VIR-IN1)接点設定 (信号反転)			0
	仮想入力(VIR-IN2)接点設定 (信号反転)		1:反転する	0
	仮想入力(VIR-IN3)接点設定 (信号反転)			0

● 仮想入力ON信号検出不感時間

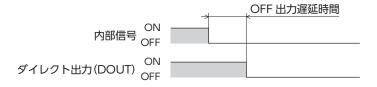
MEXE02分類	名称	内容	設定範囲	初期値
p11	仮想入力(VIR-INO)ON信号 検出不感時間	VIR-INのON信号検出不感時間を設定します。	0∼250 ms	0
	仮想入力(VIR-IN1)ON信号 検出不感時間			0
	仮想入力(VIR-IN2)ON信号 検出不感時間		0~250 IIIS	0
	仮想入力(VIR-IN3)ON信号 検出不感時間			0

● 仮想入力強制1shot

MEXE02分類	名称	内容	設定範囲	初期値
p11	仮想入力(VIR-INO)強制1shot	VIR-INの強制1shot機能を有効 にします。	0:1shot機能が無効 1:1shot機能が有効	0
	仮想入力(VIR-IN1)強制1shot			0
	仮想入力(VIR-IN2)強制1shot			0
	仮想入力(VIR-IN3)強制1shot			0

■ ダイレクト出力

● (通常)出力機能


MEXE02分類	名称	内容	設定範囲	初期値
	DOUT0 (通常) 出力機能	DOUTに割り付ける出力信号を選択 します。		144: HOME-END
p9	DOUT1 (通常) 出力機能		出力信号一覧 ➡ 119ページ	138:IN-POS
	DOUT2(通常)出力機能			0:未使用
	DOUT3 (通常) 出力機能			132:READY
	DOUT4(通常)出力機能			134:MOVE
	DOUT5 (通常) 出力機能			130:ALM-B

● 接点設定(信号反転)

MEXE02分類	名称	内容	設定範囲	初期値
p9	DOUT0接点設定(信号反転)		0:反転しない 1:反転する	0
	DOUT1接点設定(信号反転)	{)()() (の接点設定を変更します。		0
	DOUT2接点設定(信号反転)			0
	DOUT3接点設定(信号反転)			0
	DOUT4接点設定(信号反転)			0
	DOUT5接点設定(信号反転)			0

● OFF出力遅延時間

MEXE02分類	名称	内容	設定範囲	初期値
p9	DOUTO OFF出力遅延時間		0∼250 ms	0
	DOUT1 OFF出力遅延時間	DOUTのOFF出力遅延時間を設定します。 (0
	DOUT2 OFF出力遅延時間			0
	DOUT3 OFF出力遅延時間			0
	DOUT4 OFF出力遅延時間			0
	DOUT5 OFF出力遅延時間			0

● コンポジット論理結合

MEXE02分類	名称	内容	設定範囲	初期値
р9	DOUT0コンポジット論理結合	DOUTのコンポジット論理結合を設定しま す。		1
	DOUT1コンポジット論理結合			1
	DOUT2コンポジット論理結合		0:AND 1:OR	1
	DOUT3コンポジット論理結合			1
	DOUT4コンポジット論理結合			1
	DOUT5コンポジット論理結合			1

● コンポジット出力機能

MEXE02分類	名称	内容	設定範囲	初期値
	DOUT0コンポジット 出力機能		出力信号一覧 ➡119ページ	128: CONST-OFF
	DOUT1コンポジット 出力機能			128: CONST-OFF
20	DOUT2コンポジット 出力機能	DOUTの信号と論理演算を行なう出力		128: CONST-OFF
р9	DOUT3コンポジット 出力機能	信号を選択します。		128: CONST-OFF
	DOUT4コンポジット 出力機能			128: CONST-OFF
	DOUT5コンポジット 出力機能			128: CONST-OFF

● コンポジット接点設定(信号反転)

MEXE02分類	名称	内容	設定範囲	初期値
	DOUT0コンポジット 接点設定(信号反転)	DOUTのコンポジット出力機能の接点設定を変更します。	0:反転しない 1:反転する	0
p9	DOUT1コンポジット 接点設定(信号反転)			0
	DOUT2コンポジット 接点設定(信号反転)			0
	DOUT3コンポジット 接点設定(信号反転)			0
	DOUT4コンポジット 接点設定(信号反転)			0
	DOUT5コンポジット 接点設定(信号反転)			0

■ ユーザー出力

● ユーザー出力源A-機能

MEXE02分類	名称	内容	設定範囲	初期値
n11	ユーザー出力(USR-OUT0) 源A-機能	LISD OLITの出わ海Aを設定します	出力信号一覧	128: CONST-OFF
p11	ユーザー出力(USR-OUT1) 源A-機能	・USR-OUTの出力源Aを設定します。 	➡119ページ	128: CONST-OFF

● ユーザー出力源A-接点設定(信号反転)

MEXE02分類	名称	内容	設定範囲	初期値
j	ユーザー出力(USR-OUT0) 源A-接点設定(信号反転)	USR-OUTの出力源Aの接点を変更しま	0:反転しない	0
p11	ユーザー出力(USR-OUT1) 源A-接点設定(信号反転)	ਰ 。	1:反転する	0

● ユーザー出力源B-機能

MEXE02分類	名称	内容	設定範囲	初期値
n11	ユーザー出力(USR-OUT0) 源B-機能	LICD OLITの出力酒Pを設定します	出力信号一覧	128: CONST-OFF
p11	ユーザー出力(USR-OUT1) 源B-機能	USR-OUTの出力源Bを設定します。 	➡119ページ	128: CONST-OFF

● ユーザー出力源B-接点設定(信号反転)

MEXE02分類	名称	内容	設定範囲	初期値
n11	ユーザー出力(USR-OUT0) 源B-接点設定(信号反転)	USR-OUTの出力源Bの接点を変更しま	0:反転しない	0
p11	ユーザー出力(USR-OUT1) 源B-接点設定(信号反転)	ਰ .	1:反転する	0

● ユーザー出力論理結合選択

MEXE02分類	名称	内容	設定範囲	初期値
n11	ユーザー出力(USR-OUT0) 論理結合選択	USR-OUTの出力源Aと出力源Bの論理結合を設	0:AND	1
p11	ユーザー出力(USR-OUT1) 論理結合選択	定します。	1:OR	1

2 信号一覧

入出力信号は、MEXE02またはネットワークで割り付けてください。

2-1 入力信号一覧

EtherNet/IPで信号を割り付けるときは、信号名ではなく表の「割付No.」を使用してください。 各信号の詳細は、129ページ「4 入力信号」をご覧ください。

割付No.	信号名	機能
0	未使用	入力端子を使用しないときに設定します。
1	FREE	モーターの電流を遮断して無励磁にします。 電磁ブレーキ付の場合は、電磁ブレーキを解放します。
2	S-ON	モーターを励磁します。
3	CLR	指令位置と検出位置の偏差(位置偏差)をクリアします。
4	STOP-SOFF	モーターを停止して、無励磁にします。
5	STOP	モーターを停止させます。
7	BREAK-ATSQ	自動順送を手動順送に切り替えます。形状接続は変わりません。
8	ALM-RST	発生中のアラームを解除します。
9	P-PRESET	機械原点を現在位置に書き換えます。
10	EL-PRST	電気原点を原点とする座標系に切り替えます。
12	ETO-CLR	HWTO1入力とHWTO2入力の両方をONにして動力遮断機能を解除した後、 ETO-CLR入力をONにすると、モーターが励磁します。
13	LAT-CLR	ラッチ情報を解除します。
14	INFO-CLR	インフォメーション状態を解除します。
16	HMI	MEXE02の機能制限を解除します。
22	TRQ-LMT	トルク制限を行います。
23	SPD-LMT	速度制限を行ないます。
26	FW-BLK	FWD方向の運転を停止します。
27	RV-BLK	RVS方向の運転を停止します。
28	FW-LS	FWD方向のリミットセンサから入力される信号です。
29	RV-LS	RVS方向のリミットセンサから入力される信号です。
30	HOMES	機械原点センサから入力される信号です。
31	SLIT	スリットセンサから入力される信号です。
32	START	ストアードデータ運転を実行します。
33	SSTART	ストアードデータ運転を実行します。 手動順送運転のときは、結合先の運転を実行します。
35	NEXT	結合された運転データNo.へ強制的に遷移します。
36	HOME	原点復帰運転を実行します。
37	ZHOME	高速原点復帰運転を実行します。
40	D-SEL0	
41	D-SEL1	
42	D-SEL2	
43	D-SEL3	│ ─ ダイレクト位置決め運転を実行します。
44	D-SEL4	- 1001
45	D-SEL5	
46	D-SEL6	
47	D-SEL7	
48	FW-JOG	FWD方向のJOG運転を実行します。
49	RV-JOG	RVS方向のJOG運転を実行します。
50	FW-JOG-H	FWD方向の高速JOG運転を実行します。
51	RV-JOG-H	RVS方向の高速JOG運転を実行します。

割付No.	信号名	機能
52	FW-JOG-P	FWD方向のインチング運転を実行します。
53	RV-JOG-P	RVS方向のインチング運転を実行します。
54	FW-JOG-C	FWD方向の複合JOG運転を実行します。
55	RV-JOG-C	RVS方向の複合JOG運転を実行します。
56	FW-POS	FWD方向の連続運転を実行します。
57	RV-POS	RVS方向の連続運転を実行します。
64	MO	
65	M1	
66	M2	
67	M3	 8個のbitを使って、運転データNo.を選択します。
68	M4	O回のDitで使うと、建転ケークNO.で選択しより。
69	M5	
70	M6	
71	M7	
75	TEACH	ティーチングを行ないます。
76	MON-REQ0	1/○位署山力機能で山力される桂起を選択します
77	MON-REQ1	I/O位置出力機能で出力される情報を選択します。
78	MON-CLK	座標情報モニタ機能の情報を送信します。
79	PLSM-REQ	パルスリクエスト機能を有効にします。
80	RO RO	
81	R1	
82	R2	
83	R3	
84	R4	
85	R5	
86	R6	
87	R7	· · · · · · · · · · · · · · · · · · ·
88	R8	・汎用信号です。
89	R9	
90	R10	
91	R11	
92	R12	
93	R13	
94	R14	
95	R15	

2-2 出力信号一覧

EtherNet/IPで信号を割り付けるときは、信号名ではなく表の「割付No.」を使用してください。 各信号の詳細は、147ページ「5 出力信号」をご覧ください。

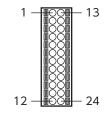
割付No.	信号名	機能
0	未使用	出力端子を使用しないときに設定します。
1	FREE_R	
2	S-ON_R	
3	CLR_R	
4	STOP-SOFF_R	
5	STOP_R	
7	BREAK-ATSQ_R	
8	ALM-RST_R	
9	P-PRESET_R	
10	EL-PRST_R	
12	ETO-CLR_R	
13	LAT-CLR_R	
14	INFO-CLR_R	
16	HMI_R	
22	TRQ-LMT_R	
23	SPD-LMT_R	
26	FW-BLK_R	
27	RV-BLK_R	
28	FW-LS_R	
29	RV-LS_R	
30	HOMES_R	
31	SLIT_R	
32	START_R	
33	SSTART_R	 入力信号に対する応答を出力します。
35	NEXT_R	
36	HOME_R	
37	ZHOME_R	
40	D-SELO_R	
41	D-SEL1_R	
42	D-SEL2_R	
43	D-SEL3_R	
45	D-SEL4_R D-SEL5_R	
45	D-SEL5_R D-SEL6_R	
47	D-SEL7_R	
48	FW-JOG_R	
49	RV-JOG_R	
50	FW-JOG-H_R	
51	RV-JOG-H_R	
52	FW-JOG-P_R	
53	RV-JOG-P_R	
54	FW-JOG-C_R	
55	RV-JOG-C_R	
56	FW-POS_R	
57	RV-POS_R	
64	M0_R	
65	M1_R	

割付No.	信号名	機能
66	M2_R	
67	M3_R	
68	M4_R	
69	M5_R	
70	M6_R	
71	M7_R	
75	TEACH R	
76	MON-REQ0 R	
77	MON-REQ1 R	
78	MON-CLK_R	
79	PLSM-REQ_R	
80	RO_R	
81	R1_R	
82	R2_R	」 入力信号に対する応答を出力します。
83	R3_R	一人の一方に対するからを出力します。
84	R4_R	
85	R5_R	
86	R6_R	
87		
	R7_R	
88 89	R8_R	
	R9_R	
90	R10_R	
91	R11_R	
92	R12_R	
93	R13_R	
94	R14_R	
95	R15_R	##OFF#UH + + +
128	CONST-OFF	常時OFFを出力します。
129	ALM-A	ドライバのアラーム状態を出力します(A接点)。
130	ALM-B	ドライバのアラーム状態を出力します(B接点)。
131	SYS-RDY	ドライバの制御電源を投入すると出力されます。
132	READY	ドライバの運転準備が完了したときに出力されます。
134	MOVE	モーターが動作中のときに出力されます。
135	-	ドライバのインフォメーション状態を出力します。
136	SYS-BSY	ドライバが内部処理状態のときに出力されます。
137	ETO-MON	HWTO1入力またはHWTO2入力がOFFになってからモーターが励磁されるまでの間、 出力されます。
138	IN-POS	位置決め運転が完了したときに出力されます。
139	ZV	検出速度が速度のに到達すると出力されます。
140	TLC	出力トルクが最大出力トルクまたはトルク制限値に到達すると出力されます。
141	VA	運転速度が目標速度に到達すると出力されます。
142	SON-MON	モーターが励磁しているときに出力されます。
144	HOME-END	高速原点復帰運転や原点復帰運転の終了時、および位置プリセットの実行時に出力されます。
145	ABSPEN	をす。 座標が確定されているときに出力されます。
146	ELPRST-MON	電気原点座標が有効となっているときに出力されます。
149	PRST-DIS	プリセット後、モーターを動かす前に再度プリセットが必要な場合にONになります。
150	PRST-STLD	機械原点が設定されているときに出力されます。
151	ORGN-STLD	工場出荷時に、製品に合わせた機械原点が設定されている場合に出力されます。
152	RND-OVF	ラウンド範囲を超えると出力が反転します。(トグル動作)
153	FW-SLS	FWD方向のソフトウェアリミットに到達すると出力されます。
154	RV-SLS	RVS方向のソフトウェアリミットに到達すると出力されます。

割付No.	信号名	機能
155	ZSG	モーターの検出位置が、プリセット位置から1回転するたびに出力されます。
156	RND-ZERO	「ラウンド (RND) 設定」パラメータが「1:有効」のとき、モーターがラウンド範囲の原点にあると出力されます。
159	MAREA	モーターが運転データに設定したエリア内にあるときに出力されます。
160	AREA0	
161	AREA1	
162	AREA2	
163	AREA3	
164	AREA4	- モーターがエリア内にあるときに出力されます。 -
165	AREA5	
166	AREA6	
167	AREA7	
168	MPS	主電源を投入しているときに出力されます。
169	MBC	- 電磁ブレーキが解放状態のときに出力されます。
170	RG	回生状態のときに出力されます。
172	EDM-MON	HWTO1入力、HWTO2入力が両方OFFになると出力されます。
173	HWTOIN-MON	HWTO1入力、HWTO2入力の片方がOFFになると出力されます。
176	MON-OUT	
177	PLS-OUTR	パルスリクエスト機能の準備が完了すると出力されます。
180	USR-OUT0	
181	USR-OUT1	- 2種類の出力信号の論理積または論理和を出力します。
192	TRQ-LMTD	トルク制限を行なっているときに出力されます。
193	SPD-LMTD	速度制限を行なっているときに出力されます。
196	OPE-BSY	内部発振が行なわれているときに出力されます。
198	SEQ-BSY	ストアードデータ運転が行なわれているときに出力されます。
199	DELAY-BSY	ドライバが待機状態(運転終了遅延、Dwell)になると出力されます。
200	JUMP0-LAT	弱イベントトリガが検出されたときに出力されます。
201	JUMP1-LAT	強イベントトリガが検出されたときに出力されます。
202	NEXT-LAT	NEXT入力によって運転の遷移が行なわれたときに出力されます。
204	DCMD-RDY	ダイレクトデータ運転の準備が完了したときに出力されます。
205	DCMD-FULL	ダイレクトデータ運転のバッファ領域にデータが書き込まれているときに出力されます。
206	OL-DTCT	出力トルクが過負荷アラームを検出するトルクに到達すると出力されます。
207	M-CHG	運転データNo.が遷移すると出力が反転します。(トグル動作)
208	M-ACT0	運転中の運転データNo.に対応するMO入力の状態を出力します。
209	M-ACT1	運転中の運転データNo.に対応するM1入力の状態を出力します。
210	M-ACT2	運転中の運転データNo.に対応するM2入力の状態を出力します。
211	M-ACT3	運転中の運転データNo.に対応するM3入力の状態を出力します。
212	M-ACT4	運転中の運転データNo.に対応するM4入力の状態を出力します。
213	M-ACT5	運転中の運転データNo.に対応するM5入力の状態を出力します。
214	M-ACT6	運転中の運転データNo.に対応するM6入力の状態を出力します。
215	M-ACT7	運転中の運転データNo.に対応するM7入力の状態を出力します。
216	D-END0	
217	D-END1	
218	D-END2	
219	D-END3	 指定した運転データNo.の運転が終わると出力されます。
220	D-END4	
221	D-END5	
222	D-END6	
223	D-END7	
224	INFO-USRIO	- 対応オスノンフェメーションが終生するト川もされます
225	INFO-POSERR	対応するインフォメーションが発生すると出力されます。 インフォメーションの一覧は249ページをご覧ください。
226	INFO-DRVTMP	

割付No.	信号名	機能
227	INFO-MTRTMP	
228	INFO-OVOLT	
229	INFO-UVOLT	
230	INFO-TLCTIME	
231	INFO-LOAD	
232	INFO-SPD	
233	INFO-START	
234	INFO-ZHOME	
235	INFO-PR-REQ	
237	INFO-EGR-E	
238	INFO-RND-E	サウナスノンフェス・シューン・ボダケナストリナナカナナ
240	INFO-FW-OT	対応するインフォメーションが発生すると出力されます。 インフォメーションの一覧は249ページをご覧ください。
241	INFO-RV-OT	17777 7170 950243 1 7 6 6 5 7 7 6 6 5 7 7 6 6 5 7 7 6 6 5 7 7 6 6 5 7 7 6 6 5 7 7 6 6 5 7 7 6 6 5 7 7 6 6 6 7 7 6 6 7 7 7 6 6 7 7 7 6 6 7
242	INFO-CULD0	
243	INFO-CULD1	
244	INFO-TRIP	
245	INFO-ODO	
247	INFO-TRQ	
248	INFO-STLTIME	
252	INFO-DSLMTD	
253	INFO-IOTEST	
254	INFO-CFG	
255	INFO-RBT	

3 信号の種類


3-1 ダイレクトI/O

ダイレクトI/Oとは、入出力信号コネクタからアクセスするI/Oです。

■ 入力端子への割り付け

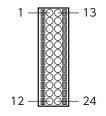
パラメータで、入力信号を入力端子DINO~DIN5に割り付けます。 割り付けできる入力信号は、117ページ[2-1 入力信号一覧]をご覧ください。

コネクタ端子番号	端子名	初期値
3	DIN0	ZHOME
4	DIN2	STOP
6	DIN4	FW-JOG

コネクタ 端子番号	端子名	初期値
15	DIN1	FREE
16	DIN3	ALM-RST
18	DIN5	RV-JOG

● 関連するパラメータ

MEXE02分類	名称	内容	設定範囲	初期値
	DIN0入力機能	DINIC割り付ける人力信号を選択します。		37:ZHOME
	DIN1入力機能		入力信号一覧 ➡ 117ページ	1:FREE
n0	DIN2入力機能			5:STOP
p8	DIN3入力機能			8:ALM-RST
	DIN4入力機能			48:FW-JOG
	DIN5入力機能			49:RV-JOG



- 複数の入力端子に同じ入力信号を割り付けたときは、どこかの端子に入力があれば、機能が実行されます。
- HMI入力は、入力端子に割り付けなかったときは常時ONになります。また、ダイレクトI/Oとリモート I/Oの両方に割り付けたときは、両方ともONにならないと機能しません。

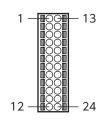
■ 出力端子への割り付け

パラメータで、出力信号を出力端子DOUT0~DOUT5に割り付けます。 割り付けできる出力信号は119ページ[2-2 出力信号一覧]をご覧ください。

コネクタ端子番号	端子名	初期値
7	DOUT0	HOME-END
8	DOUT2	未使用
9	DOUT4	MOVE

コネクタ端子番号	端子名	初期値
19	DOUT1	IN-POS
20	DOUT3	READY
21	DOUT5	ALM-B

関連するパラメータ

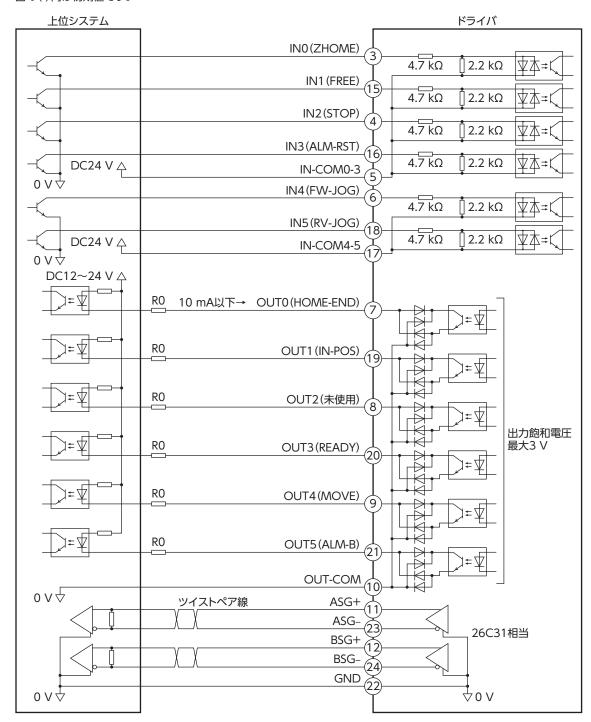

MEXE02分類	名称	内容	設定範囲	初期値
	DOUTO(通常)出力機能		出力信号一覧 ➡ 119ページ	144:HOME-END
	DOUT1 (通常) 出力機能			138:IN-POS
p9	DOUT2(通常)出力機能	DOUTに割り付ける出力信号を		0:未使用
	DOUT3(通常)出力機能	選択します。		132:READY
	DOUT4(通常)出力機能			134:MOVE
	DOUT5 (通常) 出力機能			130:ALM-B

■ ピンアサイン一覧

(memo) • ドライバの入力信号は、すべてフォトカプラ入力です。

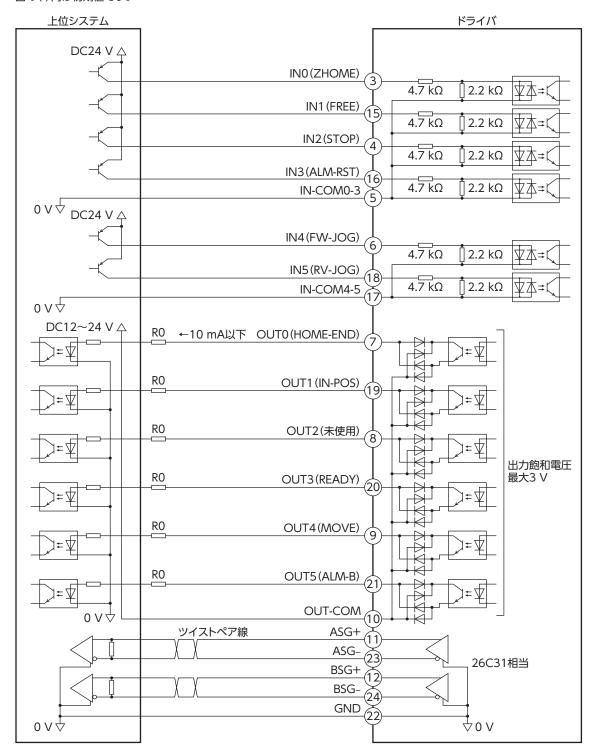
• 信号の状態は、次のようになります。 A接点のI/O:「ON:通電」「OFF:非通電」 B接点のI/O:「ON:非通電」「OFF:通電」

ピン No.	信号名	内容※
1	NC	無接続
2	NC	無接続
3	IN0	制御入力0(ZHOME)
4	IN2	制御入力2(STOP)
5	IN-COM 0-3	IN0~IN3入力コモン
6	IN4	制御入力4(FW-JOG)
7	OUT0	制御出力0 (HOME-END)
8	OUT2	制御出力2(未使用)
9	OUT4	制御出力4(MOVE)
10	OUT-COM	出力コモン
11	ASG+	A相パルス出力+
12	BSG+	B相パルス出力+



ピン No.	信号名	内容※
13	NC	無接続
14	NC	無接続
15	IN1	制御入力1 (FREE)
16	IN3	制御入力3 (ALM-RST)
17	IN-COM 4-5	IN4、IN5入力コモン
18	IN5	制御入力5 (RV-JOG)
19	OUT1	制御出力1 (IN-POS)
20	OUT3	制御出力3 (READY)
21	OUT5	制御出力5 (ALM-B)
22	GND	GND
23	ASG-	A相パルス出力-
24	BSG-	B相パルス出力-

※ ()内は初期値です。


■ 電流シンク出力回路との接続例

図の()内は初期値です。

■ 電流ソース出力回路との接続例

図の()内は初期値です。

3-2 リモートI/O

リモートI/Oとは、EtherNet/IPでアクセスするI/Oです。

■ 入力信号への割り付け

パラメータで、入力信号をリモートI/OのR-INO~R-IN15に割り付けます。 割り付けできる入力信号は、117ページ[2-1 入力信号一覧]をご覧ください。

リモートI/O信号名	初期値
R-IN0	未使用
R-IN1	未使用
R-IN2	未使用
R-IN3	未使用
R-IN4	未使用
R-IN5	未使用
R-IN6	未使用
R-IN7	未使用

リモートI/O信号名	初期値
R-IN8	未使用
R-IN9	未使用
R-IN10	未使用
R-IN11	未使用
R-IN12	未使用
R-IN13	未使用
R-IN14	未使用
R-IN15	未使用

● 関連するパラメータ

MEXE02分類	名称	内容	設定範囲	初期値
	R-IN0入力機能		入力信号一覧 □ 117ページ	0:未使用
	R-IN1入力機能			0:未使用
	R-IN2入力機能			0:未使用
	R-IN3入力機能			0:未使用
	R-IN4入力機能			0:未使用
	R-IN5入力機能			0:未使用
	R-IN6入力機能			0:未使用
p10	R-IN7入力機能	 R-INに割り付ける入力信号を選択します。		0:未使用
рто	R-IN8入力機能	R-IIVIC計り刊ける八/川吉号で選択しより。		0:未使用
	R-IN9入力機能			0:未使用
	R-IN10入力機能			0:未使用
	R-IN11入力機能			0:未使用
	R-IN12入力機能			0:未使用
	R-IN13入力機能			0:未使用
	R-IN14入力機能			0:未使用
	R-IN15入力機能			0:未使用

- 複数の入力端子に同じ入力信号を割り付けたときは、どこかの端子に入力があれば、機能が実行されます。
- HMI入力は、入力端子に割り付けなかったときは常時ONになります。また、ダイレクトI/Oとリモート I/Oの両方に割り付けたときは、両方ともONにならないと機能しません。

■ 出力信号への割り付け

パラメータで、出力信号をリモートI/OのR-OUT0~R-OUT15に割り付けます。 割り付けできる出力信号は、119ページ「2-2 出力信号一覧」をご覧ください。

リモートI/O信号名	初期値
R-OUT0	M0_R
R-OUT1	M1_R
R-OUT2	M2_R
R-OUT3	START_R
R-OUT4	HOME-END
R-OUT5	READY
R-OUT6	INFO
R-OUT7	ALM-A

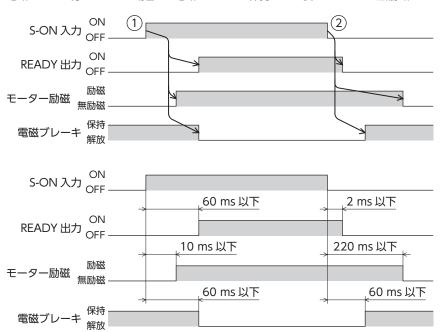
リモートI/O信号名	初期値
R-OUT8	SYS-BSY
R-OUT9	AREA0
R-OUT10	AREA1
R-OUT11	AREA2
R-OUT12	ZSG
R-OUT13	MOVE
R-OUT14	IN-POS
R-OUT15	TLC

● 関連するパラメータ

MEXE02分類	名称	内容	設定範囲	初期値
	R-OUT0出力機能			64:M0_R
	R-OUT1出力機能			65:M1_R
	R-OUT2出力機能			66:M2_R
	R-OUT3出力機能			32:START_R
	R-OUT4出力機能			144:HOME-END
	R-OUT5出力機能			132:READY
	R-OUT6出力機能		135:INFC	135:INFO
n10	R-OUT7出力機能	R-OUTに割り付ける出力信号を選択	出力信号一覧	129:ALM-A
p10	R-OUT8出力機能	します。	➡119ページ	136:SYS-BSY
	R-OUT9出力機能			160:AREA0
	R-OUT10出力機能			161:AREA1
	R-OUT11出力機能			162:AREA2
	R-OUT12出力機能			155:ZSG
	R-OUT13出力機能			134:MOVE
	R-OUT14出力機能			138:IN-POS
	R-OUT15出力機能			140:TLC

4 入力信号

4-1 運転制御


■ 励磁切替信号

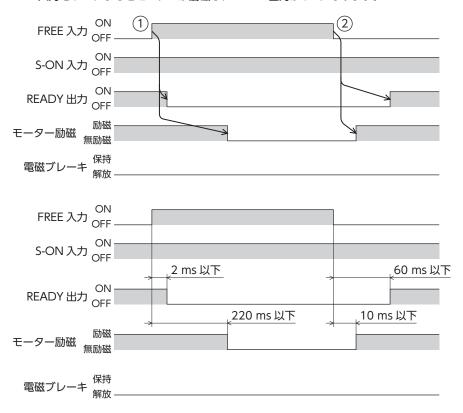
モーターの励磁/無励磁を切り替える信号です。

● S-ON入力

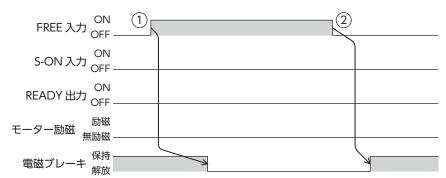
S-ON入力をONにするとモーターが励磁します。OFFにすると無励磁になります。

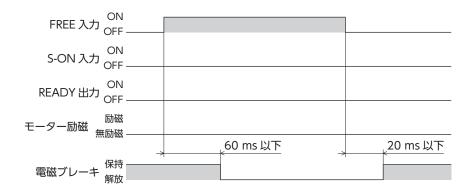
- 1. S-ON入力をONにするとモーターが励磁し、READY出力がONになります。 電磁ブレーキ付モーターの場合は、モーターが励磁した後に電磁ブレーキが解放されます。
- 2. S-ON入力をOFFにするとREADY出力がOFFになり、モーターが無励磁になります。 電磁ブレーキ付モーターの場合は、電磁ブレーキが保持された後にモーターが無励磁になります。

● FREE入力


FREE入力をONにすると、モーターの電流が遮断されて無励磁になります。 モーターの保持力がなくなるため、手動で出力軸を動かせるようになります。電磁ブレーキ付モーターの場合は、電磁ブレー キも解放されます。

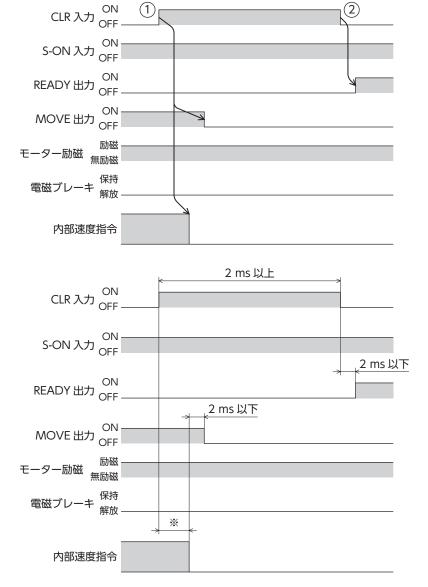
負荷を垂直に設置しているときは、FREE入力をONにしないでください。保持力がなくなって負荷が落下する原因になります。


モーターが励磁している場合


- 1. FREE入力をONにするとREADY出力がOFFになり、モーターが無励磁になります。
- 2. FREE入力をOFFにするとモーターが励磁し、READY出力がONになります。

モーターが無励磁の場合

- 1. FREE入力をONにすると、電磁ブレーキが解放されます。
- 2. FREE入力をOFFにすると、電磁ブレーキが保持されます。


■ 運転停止信号

モーターの運転を停止させる信号です。運転停止信号をONにしても、IN-POS出力はONになりません。

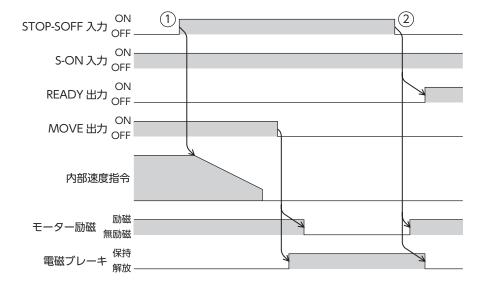
CLR入力

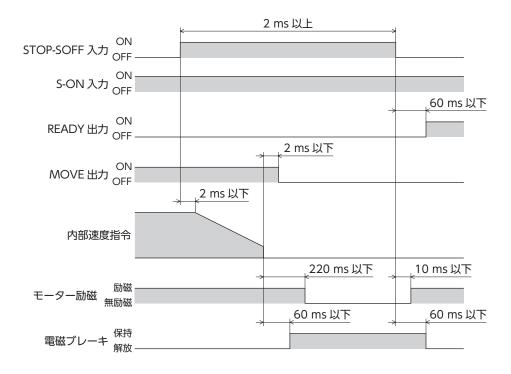
CLR入力をONにすると、位置偏差カウンタがクリアされて、指令位置と検出位置の偏差がゼロになります。運転中のときは、モーターが現在の検出位置で即停止します。残りの移動量はクリアされます。

- 1. 運転中にCLR入力をONにすると、モーターが停止して、位置偏差もクリアされます。
- 2. CLR入力をOFFにすると、READY出力がONになります。

※ 駆動条件によって異なります。

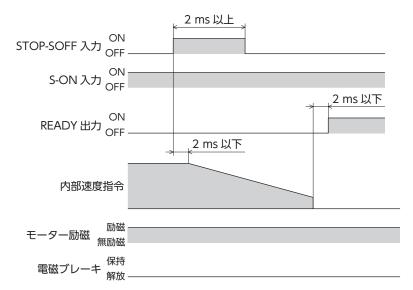
● STOP-SOFF入力


STOP-SOFF入力をONにすると、「STOP・STOP-SOFF入力停止方法」パラメータに従って、運転を停止します。運転を停止すると、モーターは無励磁になり、残りの移動量はクリアされます。

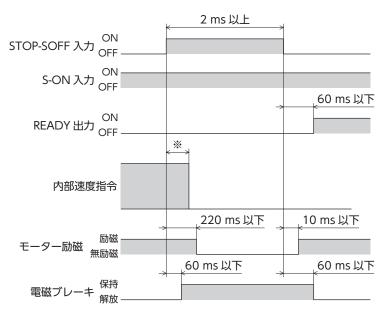

関連するパラメータ

MEXE02分類	名称	内容	設定範囲	初期値
р7	STOP・STOP-SOFF 入力停止方法	STOP入力またはSTOP-SOFF入 力がONになったときの、モー ターの停止方法を設定します。	0:STOP入力、STOP-SOFF入力 ともに即停止 1:STOP入力は減速停止、 STOP-SOFF入力は即停止 2:STOP入力は即停止、 STOP-SOFF入力は減速停止 3:STOP入力、STOP-SOFF入力 ともに減速停止	3

STOP-SOFF入力をONにしたときのモーターの停止方法が減速停止の場合 (STOP-SOFF入力がONの間にモーターが停止するとき)


- 1. 運転中にSTOP-SOFF入力をONにすると、モーターが停止動作を開始します。 モーターが停止すると、無励磁になります。
- 2. STOP-SOFF入力をOFFにするとモーターが励磁し、READY出力がONになります。

STOP-SOFF入力をONにしたときのモーターの停止方法が減速停止の場合 (STOP-SOFF入力がONの間にモーターが停止しないとき)


- 1. 運転中にSTOP-SOFF入力をONにすると、モーターが停止動作を開始します。 STOP-SOFF入力がOFFになった後も、モーターは停止するまで減速運転を継続します。
- 2. モーターが停止すると、READY出力がONになります。

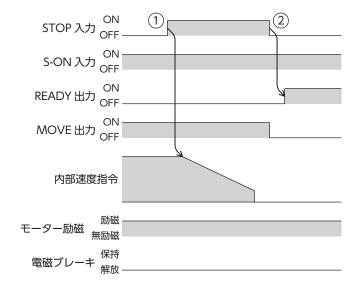
(memo) STOP·STOP-SOFF入力停止方法が「減速停止」の場合(STOP-SOFF入力がONの間にモーターが停止しな いとき)は、モーターが停止しても無励磁になりません。

STOP-SOFF入力をONにしたときのモーターの停止方法が即停止の場合

- 1. 運転中にSTOP-SOFF入力をONにすると、モーターはSTOP-SOFF入力のONを検知した時点の指令位置で停止して、 無励磁になります。
- 2. STOP-SOFF入力をOFFにするとモーターが励磁し、READY出力がONになります。

※ 駆動条件によって異なります。

● STOP入力

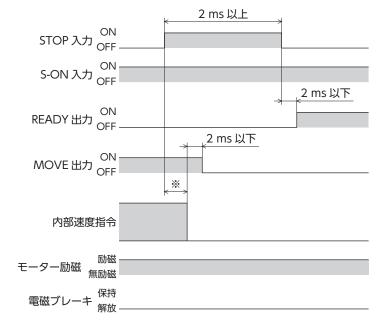

STOP入力をONにすると、「STOP・STOP-SOFF入力停止方法」パラメータに従って、運転を停止します。運転を停止すると、残りの移動量はクリアされます。

関連するパラメータ

MEXE02分類	名称	内容	設定範囲	初期値
р7	STOP・STOP-SOFF 入力停止方法	STOP入力またはSTOP-SOFF入 力がONになったときの、モー ターの停止方法を設定します。	0:STOP入力、STOP-SOFF入力 ともに即停止 1:STOP入力は減速停止、 STOP-SOFF入力は即停止 2:STOP入力は即停止、 STOP-SOFF入力は減速停止 3:STOP入力、STOP-SOFF入力 ともに減速停止	3

STOP入力をONにしたときのモーターの停止方法が減速停止の場合 (STOP入力がONの間にモーターが停止するとき)

- 1. 運転中にSTOP入力をONにすると、モーターが停止動作を開始します。
- 2. STOP入力をOFFにすると、READY出力がONになります。


STOP入力をONにしたときのモーターの停止方法が減速停止の場合 (STOP入力がONの間にモーターが停止しないとき)

- 1. 運転中にSTOP入力をONにすると、モーターが停止動作を開始します。 STOP入力がOFFになった後も、モーターは停止するまで減速運転を継続します。
- 2. モーターが停止すると、READY出力がONになります。

STOP入力をONにしたときのモーターの停止方法が即停止の場合

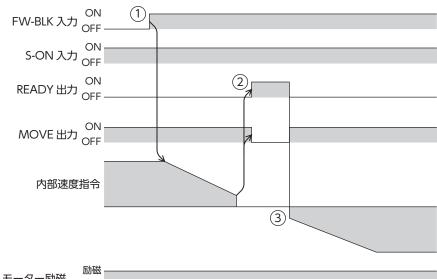
- 1. 運転中にSTOP入力をONにすると、モーターはSTOP入力のONを検知した時点の指令位置で停止します。
- 2. STOP入力をOFFにすると、READY出力がONになります。

※ 駆動条件によって異なります。

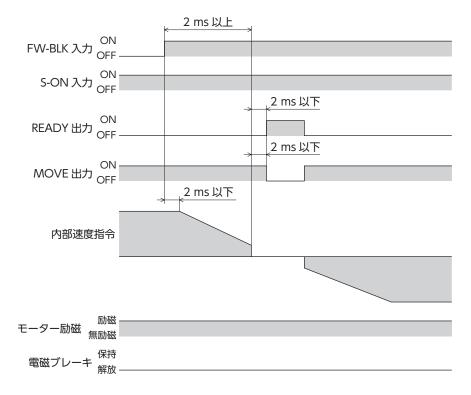
● FW-BLK入力、RV-BLK入力

FW-BLK入力またはRV-BLK入力をONにすると、「FW-BLK・RV-BLK入力停止方法」パラメータに従って運転を停止します。 FW-BLK入力をONにするとFWD方向、RV-BLK入力をONにするとRVS方向の運転を停止します。運転を停止すると、残り の移動量はクリアされます。それぞれの入力がONの間は、停止している方向の運転開始信号が入力されてもモーターは動 きません。反対方向の運転開始信号は機能します。

関連するパラメータ

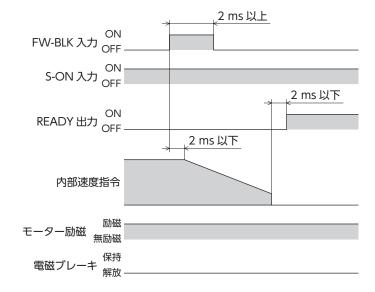

I	MEXE02分類	名称	内容	設定範囲	初期値
	р7	FW-BLK·RV-BLK入力 停止方法	FW-BLK入力またはRV-BLK入力がONになったとき の、モーターの停止方法を設定します。	0:即停止 1:減速停止	1

(memo) FW-BLK入力、RV-BLK入力がONになると次のインフォメーションが発生します。

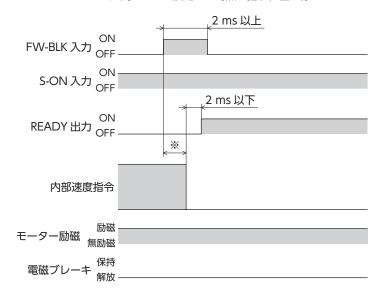

- ・FW-BLK入力がONの場合:正転方向運転禁止状態
- ・RV-BLK入力がONの場合:逆転方向運転禁止状態

FW-BLK・RV-BLK入力停止方法が「減速停止」の場合 (FW-BLK入力がONの間にモーターが停止するとき)

- 1. FWD方向の運転中にFW-BLK入力をONにすると、モーターが停止動作を開始します。
- 2. 運転が停止すると、READY出力がONになります。
- 3. FW-BLK入力がONのときにRVS方向の運転開始信号を入力すると、READY出力がOFFになり、運転が始まります。



モーター励磁 電磁ブレーキ


FW-BLK・RV-BLK入力停止方法が「減速停止」の場合 (FW-BLK入力がONの間にモーターが停止しないとき)

- 1. FWD方向の運転中にFW-BLK入力をONにすると、モーターが停止動作を開始します。
- 2. FW-BLK入力がOFFになった後も、モーターは停止するまで減速運転を継続します。 運転が停止すると、READY出力がONになります。

FW-BLK・RV-BLK入力停止方法が「即停止」の場合

- 1. FWD方向の運転中にFW-BLK入力をONにすると、モーターが停止します。
- 2. モーターはFW-BLK入力のONを検知した時点の指令位置で停止します。

※ 駆動条件によって異なります。

■ ストアードデータ運転に使用する信号

● BREAK-ATSQ入力

BREAK-ATSQ入力をONにしている間、自動順送から手動順送に切り替わります。

START入力

運転データNo.を選択してSTART入力をONにすると、ストアードデータ運転を開始します。 手動順送運転の場合は、起点となる運転データNo.を起動します。

SSTART入力

SSTART入力をONにすると、ストアードデータ運転を開始します。

手動順送運転のときは、SSTART入力をONにするたびに、結合先の運転データNo.の運転を開始します。手動順送運転以外のときは、選択した運転データNo.の運転を開始します。

● D-SEL0~D-SEL7入力

D-SELO~D-SEL7入力のどれかをONにすると、設定した運転データNo.のストアードデータ運転を開始します。 D-SELO~D-SEL7入力のどれかをONにするだけで運転ができるため、運転データNo.を選択する手間が省けます。

関連するパラメータ

MEXE02分類	名称	内容	設定範囲	初期値		
	D-SEL運転起動	D-SEL入力がONになったときに運転を 起動させるかを設定します。	0:運転データNo.選択のみ 1:運転データNo.選択+ START機能	1		
	D-SEL0 No.選択			0		
	D-SEL1 No.選択			1		
р7	D-SEL2 No.選択			2		
·	D-SEL3 No.選択	D-SEL入力に対応させる運転データ	 0~255:運転データNo.	3		
	D-SEL4 No.選択	No.を設定します。	U~255.建転ナータNO.	4		
	D-SEL5 No.選択					5
	D-SEL6 No.選択			6		
	D-SEL7 No.選択			7		

M0~M7入力

MO~M7のON/OFFを組み合わせて、位置決め運転や連続運転の運転データNo.を選択します。

運転データNo.	M7	M6	M5	M4	M3	M2	M1	MO
0	OFF							
1	OFF	ON						
2	OFF	OFF	OFF	OFF	OFF	OFF	ON	OFF
3	OFF	OFF	OFF	OFF	OFF	OFF	ON	ON
•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•
252	ON	ON	ON	ON	ON	ON	OFF	OFF
253	ON	ON	ON	ON	ON	ON	OFF	ON
254	ON	OFF						
255	ON							

設定例1:運転データNo.8 (2進数表現:0000 1000) を指定したい場合

運転データNo.	M7	M6	M5	M4	M3	M2	M1	MO
8	OFF	OFF	OFF	OFF	ON	OFF	OFF	OFF

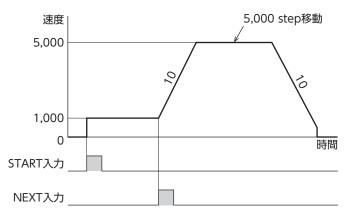
設定例2:運転データNo.116(2進数表現:0111 0100)を指定したい場合

運転データNo.	M7	M6	M5	M4	M3	M2	M1	MO
116	OFF	ON	ON	ON	OFF	ON	OFF	OFF

NEXT入力

運転中にNEXT入力をONにすると、結合先の運転データNo.へ強制的に遷移します。結合先がないときは、現在の運転を継続します。連続運転の途中で違う運転を行ないたいときに必要な信号です。

設定例1:

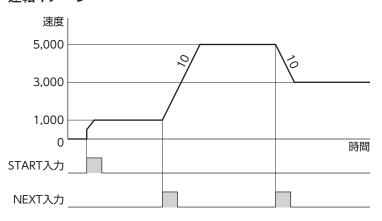

一方向へ連続運転を行なっている途中にセンサを検出したら、検出位置から5,000 stepだけ移動して停止する

- 1. NEXT入力をDIN入力機能に割り付けます。
- 2. NEXT入力を割り付けたDINにセンサを接続します。

運転データの設定

	方式	位置 [step]	速度[Hz]	起動・変速レート [kHz/s]	停止レート [kHz/s]	結合	結合先
No.0	連続運転(位置制御)	0	1,000	1,000.000	1,000.000	形状接続	↓ (+1)
No.1	相対位置決め(指令位置基準)	5,000	5,000	10.000	10.000	結合無	Stop

運転イメージ



設定例2:

速度の異なる複数の連続運転を形状接続で結合し、任意のタイミングで運転速度を変化させる 運転データの設定

	方式	速度[Hz]	起動・変速レート [kHz/s]	停止レート [kHz/s]	結合	結合先
No.0	連続運転(位置制御)	1,000	10.000	10.000	形状接続	↓ (+1)
No.1	連続運転(位置制御)	5,000	10.000	10.000	形状接続	↓ (+1)
No.2	連続運転(位置制御)	3,000	10.000	10.000	結合無	Stop

運転イメージ

■ 高速原点復帰に使用する信号

ZHOME入力

ZHOME入力をONにすると、高速原点復帰運転を開始します。

電動アクチュエータによっては、出荷時に原点が確定されているものがあります。しかしモーター単体は出荷時に、原点が確定していません。また、分解能を変更したときも、原点は未確定になります。このような状態で高速原点復帰運転を開始すると、ZHOME起動失敗のインフォメーションが発生して、運転が行なわれません。必ず原点を確定してから、高速原点復帰運転を行なってください。

■ 原点復帰運転に使用する信号

HOME入力

HOME入力をONにすると、原点復帰運転を開始します。原点復帰運転が終了してモーターが停止すると、HOME-END出力がONになります。

■ マクロ運転に使用する信号

● FW-JOG入力、RV-JOG入力

FW-JOG入力をONにするとFWD方向、RV-JOG入力をONにするとRVS方向へJOG運転を行ないます。

● FW-JOG-H入力、RV-JOG-H入力

FW-JOG-H入力をONにするとFWD方向、RV-JOG-H入力をONにするとRVS方向へ高速JOG運転を行ないます。

● FW-JOG-P入力、RV-JOG-P入力

FW-JOG-P入力をONにするとFWD方向、RV-JOG-P入力をONにするとRVS方向ヘインチング運転を行ないます。

● FW-JOG-C入力、RV-JOG-C入力

FW-JOG-C入力をONにするとFWD方向、RV-JOG-C入力をONにするとRVS方向へ複合JOG運転を行ないます。

● FW-POS入力、RV-POS入力

運転データNo.を選択して、FW-POS入力またはRV-POS入力をON にすると、選択した運転データNo.の運転速度で連続 運転を開始します。FW-POS入力をONにしたときはFWD方向、RV-POS入力をONにしたときはRVS方向へ回転します。 減速停止中、同じ回転方向の信号がONになると、モーターは再加速して運転を続けます。

FW-POS入力とRV-POS入力が両方ともONになると、モーターは減速停止します。

連続運転中に運転データNo.を変更すると、変更した運転データNo.の運転速度に変速します。

4-2 座標管理

■ 外部センサ入力信号

● FW-LS入力、RV-LS入力

リミットセンサからの入力信号です。FW-LS入力はFWD方向センサ、RV-LS入力はRVS方向センサになります。

• 原点復帰時

FW-LS入力またはRV-LS入力が検出されると、「(HOME)原点復帰方法」パラメータの設定に従って、原点復帰運転を行ないます。

• 原点復帰以外

ハードウェアオーバートラベルを検出して、モーターを停止させます。「FW-LS・RV-LS入力動作」パラメータを「−1:原 点復帰センサとして使う」に設定したときは、モーターは停止しません。

関連するパラメータ

MEXE02分類	名称	内容	設定範囲	初期値
р7	FW-LS・RV-LS 入力動作	FW-LS入力またはRV-LS入力がONに なったときの、モーターの停止方法を設 定します。	-1:原点復帰センサとして使う 0:即停止 1:減速停止 2:即停止(アラーム発生) 3:減速停止(アラーム発生)	2

HOMES入力

「(HOME)原点復帰方法」パラメータを「1:3センサ」または「2:1方向回転」に設定したときの、機械原点センサからの入力信号です。

関連するパラメータ

MEXE02分類	名称	内容	設定範囲	初期値
p5	(HOME)原点復帰方法	原点復帰方法を設定します。	0:2センサ 1:3センサ 2:1方向回転	1

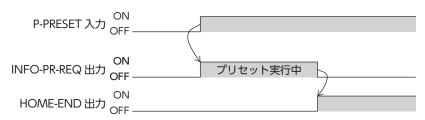
SLIT入力

スリット付のセンサなどを使用して原点復帰するときに接続してください。 原点復帰運転時、SLIT入力を併用すると、より正確に原点を検出できます。

■ 座標プリセット信号

機械原点または電気原点のプリセットを行ないます。

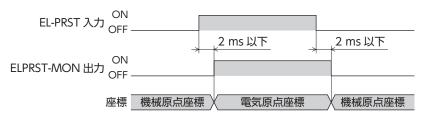
● P-PRESET入力


P-PRESET入力をONにすると、指令位置および検出位置が「プリセット位置」パラメータの設定値に書き換えられます。 同時に、NVメモリに書き込まれます。

ただし、モーターの動作中は、プリセットを実行できません。

モーターが停止中でも、TLC出力がONのときはプリセットを実行できません。

プリセットの実行中は、INFO-PR-REQ出力がONになります。プリセットが完了すると、HOME-END出力がONになります。



● EL-PRST入力

EL-PRST入力をONにしている間、電気原点を原点とする座標系に切り替わります。

EL-PRST入力をOFFからONにしたときの座標位置が電気原点になり、モーターは電気原点座標系で運転します。 EL-PRST入力をOFFにすると機械原点を原点とする座標系に戻ります。

機械原点とは別の原点(電気原点)を設定することで、一時的に別座標でモーターを制御できるようになります。

(memo)

- 運転中に、EL-PRST入力をONにすると、そのときの指令位置と検出位置が電気原点座標に設定されます。しかし、実行している運転の目標位置は、機械原点座標系の位置のままです。電気原点座標系での運転は、運転停止後に実行してください。
- EL-PRST入力がONの間は、高速原点復帰運転を実行できません。

■ 座標情報モニタ機能信号

座標情報モニタ機能で使う信号です。

座標情報モニタ機能の詳細は、104ページをご覧ください。

● MON-REQ0入力、MON-REQ1入力

I/O位置出力機能で出力される情報を選択します。

MON-REQ入力をONにすると、それぞれのパラメータで選択した情報が出力されます。

関連するパラメータ

MEXE02分類	名称	内容	設定範囲	初期値
p7	MON-REQ0 対象設定	MON-REQ入力をONにしたときに、I/O位置出力機能で出力される情報を選択します。	1:検出位置(32 bit) 2:検出位置32 bitカウンタ(32 bit) 3:指令位置(32 bit) 4:指令位置32 bitカウンタ(32 bit) 8:アラームコード(8 bit) 9:検出位置(32 bit) &アラーム	1
	MON-REQ1 対象設定		コード (8 bit) 10:検出位置32 bitカウンタ (32 bit) &アラームコード (8 bit) 11:指令位置 (32 bit) &アラーム コード (8 bit) 12:指令位置32 bitカウンタ (32 bit) &アラームコード (8 bit)	8

MON-CLK入力

MON-CLK入力をONにすると、座標情報モニタ機能の情報を送信します。

I/O位置出力機能の場合

情報をモニタする際の同期通信用クロックを入力します。MON-CLK入力をOFFからONにすると送信する値が確定し、MON-OUT出力から送信されます。

パルスリクエスト機能の場合

MON-CLK入力をOFFからONにすると、情報送信を開始します。

● PLSM-REQ入力

PLSM-REQ入力をOFFからONにすると、パルスリクエスト機能で送信される座標情報を確定します。

関連するパラメータ

MEXE02分類	名称	内容	設定範囲	初期値
p7	PLSOUT対象設定	パルスリクエスト機能で出力される 情報を選択します。	0:指令位置(32 bit) 1:指令位置32 bitカウンタ (32 bit) 2:検出位置(32 bit) 3:検出位置32 bitカウンタ (32 bit)	0
	PLSOUT最大周波数	パルスリクエスト機能で使用する出 カパルスの周波数を設定します。	1~10,000(1=0.1 kHz)	100

4-3 ドライバの管理

■ 状態解除信号

自動的に解除されない信号や状態を解除します。

● ALM-RST入力

アラームが発生するとモーターが停止します。このとき、ALM-RST入力をOFFからONにすると、アラームが解除されます(ONエッジで有効)。必ず、アラームが発生した原因を取り除き、安全を確保してからアラームを解除してください。なお、ALM-RST入力では解除できないアラームもあります。

アラームについては239ページ[2-4 アラーム一覧]をご覧ください。

● LAT-CLR入力

LAT-CLR入力をONにすると、ラッチ状態が解除されます。 ラッチ機能の詳細は263ページをご覧ください。

INFO-CLR入力

「INFO自動クリア」パラメータが「0:無効(自動でOFFにならない)」に設定されているときに有効です。INFO-CLR入力をONにすると、インフォメーション状態を解除します。

■ ドライバ機能変更信号

● HMI入力

HMI入力をONにすると、MEXEO2の機能制限を解除します。OFFにすると、機能が制限されます。制限される機能は次のとおりです。

- I/Oテスト
- ティーチング・リモート運転
- 運転データとパラメータの書き込み
- [通信]メニューの[工場出荷時設定に戻す]

- HMI入力は、ダイレクトI/OやリモートI/Oに割り付けないときは常時ONになります。また、ダイレクトI/OとリモートI/Oの両方に割り付けたときは、両方ともONにならないと機能しません。
- HMI入力をDIN入力機能に割り付けたときは、「強制1shot」を「有効」にしないでください。

● TEACH入力

TEACH入力をOFFからONにすると、ティーチングを行ないます。

ティーチングは、現在位置を運転データの「位置」に設定する機能です。ティーチングで「位置」を設定したときの運転方式は、「TEACH運転方式設定」パラメータで選択できます。

ティーチングによって書き込まれる運転データNo.は、MO~M7入力で設定します。

関連するパラメータ

MEXE02分類	名称	内容	設定範囲	初期値
p7	TEACH運転方式設定	ティーチングで「位置」を設定し たときの運転方式を選択します。	-1:運転方式を設定しない 1:絶対位置決め 8:ラウンド絶対位置決め	1

● TRQ-LMT入力

TRQ-LMT入力をONにすると、トルクが制限されます。

● SPD-LMT入力

SPD-LMT入力をONにすると、運転速度が制限されます。

関連するパラメータ

MEXE02分類	名称	内容	設定範囲	初期値
	SPD-LMT速度制限方法	速度制限値の設定方法を選択します。	0:割合 1:値	0
р7	SPD-LMT速度割合	運転データの「速度」を100%として、制限する速度の割合を設定します。「SPD-LMT速度制限方法」パラメータを「0:割合」に設定したときに有効です。	1~100 %	50
	SPD-LMT速度上限値	速度制限値を「値」で設定します。「SPD- LMT速度制限方法」パラメータを「1:値」 に設定したときに有効です。	1~4,000,000 Hz	1,000

5 出力信号

5-1 ドライバの管理

■ ドライバ状態表示信号

● ALM-A出力、ALM-B出力

アラームが発生すると、ALM-A出力がON、ALM-B出力がOFFになります。同時に、ドライバのPWR/ALM LEDが赤色に点滅して、モーターが停止します。無励磁になるアラームが発生したときは、モーター停止後に無励磁になります。ALM-A出力はA接点(ノーマルオープン)、ALM-B出力はB接点(ノーマルクローズ)です。

● SYS-RDY出力

制御電源投入後に出力信号の状態が確定して、信号入力が有効になると、SYS-RDY出力がONになります。

● INFO出力

インフォメーションが発生すると、INFO出力がONになります。

関連するパラメータ

MEXE02分類	名称	内容	設定範囲	初期値
р6	INFO自動クリア	インフォメーションの原因が取り除かれたときに、INFO出力や対応するインフォメーションのビット出力を自動でOFFにします。	0:無効(自動でOFFにならない) 1:有効(自動でOFFになる)	1
	INFO LED表示	インフォメーションが発生したとき のLEDの状態を設定します。	0:LEDを点滅させない 1:LEDを点滅させる	1

● SYS-BSY出力

ドライバがメンテナンスコマンドを実行しているときに、SYS-BSY出力がONになります。

● インフォメーション信号の出力

対応するインフォメーションが発生すると、各出力信号がONになります。 インフォメーションの詳細は、249ページ「3-2 インフォメーション一覧」をご覧ください。

■ ハードウェア状態表示

● SON-MON出力

モーターが励磁している間、SON-MON出力がONになります。

MPS出力

主電源が投入されると、MPS出力がONになります。

MBC出力

上位システムで電磁ブレーキを制御するときに使用してください。 MBC出力は、電磁ブレーキを解放するとON、保持するとOFFになります。上位システムでMBC出力のON/OFFを検出して、電磁ブレーキを制御してください。

● RG出力

ドライバの入力電圧が増大して回生状態になると、RG出力がONになります。

5-2 運転の管理

■ 運転状態表示

● READY出力

ストアードデータ運転、マクロ運転、原点復帰運転の準備が完了すると、READY出力がONになります。READY出力がONになってから、運転開始指令をドライバに入力してください。

次のすべての条件が満たされると、READY出力がONになります。

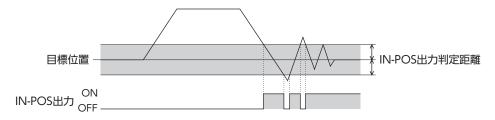
- ドライバの制御電源と主電源を投入
- 運転を開始する入力がすべてOFF
- FREE入力がOFF
- S-ON入力がON
- STOP入力がOFF
- STOP-SOFF入力がOFF
- CLR入力がOFF
- アラームが発生していない
- モーターが運転していない
- MEXE02で次のモニタやメニューを実行していない
 - ティーチング・リモート運転
 - I/Oテスト
 - データの書き込み
 - 工場出荷時設定に戻す
- EtherNet/IPで次のコマンドを実行していない
 - Configuration
 - データー括初期化
 - 全データー括初期化
 - NVメモリー括読み出し
 - NVメモリー括書き込み
 - バックアップデータ読み出し
 - バックアップデータ書き込み

MOVE出力

モーターの動作中、MOVE出力がONになります。

関連するパラメータ

MEXE02分類	名称	内容	設定範囲	初期値
p7	MOVE出力最小ON時間	MOVE出力の最小ON時間を設定します。	0∼255 ms	0


● OPE-BSY出力

ドライバが内部発振を行なっているときに、OPE-BSY出力がONになります。 次の運転を行なっているときに、内部発振が行なわれます。

- ストアードデータ運転
- マクロ運転
- ダイレクトデータ運転
- 原点復帰運転

● IN-POS出力

位置決め運転の終了後、ローターが指令位置に対して[IN-POS出力判定距離]パラメータの値に収束したときに、IN-POS出力がONになります。

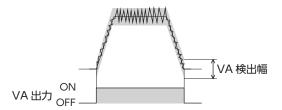
関連するパラメータ

MEXE02分類	名称	内容	設定範囲	初期値
p7	IN-POS出力判定距離	目標位置を中心に、IN-POS出力の出力 範囲(ローターが収束する角度範囲)を設 定します。	0~180(1=0.1°)	18
	IN-POS出力オフセット	目標位置からのオフセット量を設定します。	-18~18(1=0.1°)	0

memo

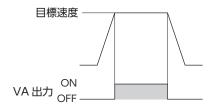
連続運転を停止したとき、またはSTOP入力などの運転停止信号で運転を中断したときは、IN-POS出力がONになりません。

TLC出力

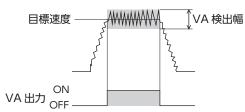

出力トルクが最大出力トルクまたはトルク制限値に到達すると、TLC出力がONになります。

VA出力

運転速度が目標速度に到達すると、VA出力がONになります。 判定基準は、「VA判定対象」パラメータで設定できます。


「VA判定対象」パラメータが「O:検出速度到達(検出位置基準)」の場合

モーターの検出速度が、指令速度を中心に「VA検出幅」パラメータの設定範囲に収まっているときに、VA出力がONになります。


[VA判定対象] パラメータが [1:プロファイル指令速度到達(指令位置基準)] の場合

モーターの指令速度が目標速度と一致したときに、 VA出力がONになります。

[VA判定対象]パラメータが[2:速度到達(検出速度&プロファイル指令速度)]の場合

モーターの検出速度が、目標速度を中心に「VA検出幅」パラメータの設定範囲に収まっているときに、VA出力がONになります。

関連するパラメータ

MEXE02分類	名称	内容	設定範囲	初期値
7	VA判定対象	VA出力の判定基準を選択します。	0:検出速度到達(検出位置基準) 1:プロファイル指令速度到達 (指令位置基準) 2:速度到達(検出速度&プロファ イル指令速度)	0
ρ7 	VA検出幅	「VA判定対象」パラメータを「0:検出速度 到達(検出位置基準)」または「2:速度到達 (検出速度&プロファイル指令速度)」に 設定した場合における、検出速度の判定 許容範囲を設定します。	1~200 r/min	30

● TRQ-LMTD出力

トルク制限を行なっているときに有効です。モーターの出力トルクがトルク制限値に達すると、TRQ-LMTD出力がONになります。トルク制限機能については108ページをご覧ください。

● SPD-LMTD出力

速度制限を行なっているときに有効です。「SPD-LMT速度割合」パラメータまたは「SPD-LMT速度上限値」パラメータで設定した値以上の運転速度になると運転速度が制限され、SPD-LMTD出力がONになります。

関連するパラメータ

MEXE02分類	名称	内容	設定範囲	初期値
	SPD-LMT速度制限方法	速度制限値の設定方法を選択します。	0:割合 1:値	0
р7	SPD-LMT速度割合	運転データの「速度」を100%として、制限する速度の割合を設定します。「SPD-LMT速度制限方法」パラメータを「0:割合」に設定したときに有効です。	1~100 %	50
	SPD-LMT速度上限値	速度制限値を「値」で設定します。「SPD- LMT速度制限方法」パラメータを「1:値」 に設定したときに有効です。	1~4,000,000 Hz	1,000

● HOME-END出力

HOME-END出力は次のときにONになります。

- 高速原点復帰運転が終了したとき
- 原点復帰運転が終了したとき
- 位置プリセットを実行して、座標が確定したとき

また、次のときにOFFになります。

- 制御電源を投入したとき
- 運転を開始したとき

● M-CHG出力

運転データを使用する運転(ストアードデータ運転、連続マクロ運転)で有効です。 運転の開始時、または運転中に運転データNo.が切り替わるときに、M-CHG出力のON/OFFが反転します。

● M-ACT0出力~M-ACT7出力

運転データを使用する運転(ストアードデータ運転、連続マクロ運転)で有効です。

運転中の運転データNo.を2進数で出力します。

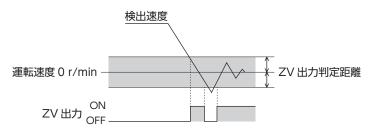
運転データを使わない運転(高速原点復帰運転、JOG運転など)では、前回の運転で出力した信号の状態が維持されています。

出力例

運転データNo.1で位置決め運転を行なった後に高速原点復帰運転を実行し、最後に運転データNo.3で運転した場合

- 1. 運転データNo.1の位置決め運転を行なうと、運転データNo.1に対応する信号 (M-ACT0) がONになります。
- 2. 高速原点復帰運転を行なうと、運転データNo.1の信号状態(M-ACT0がON)が維持されます。
- 3. 運転データNo.3の位置決め運転を行なうと、運転データNo.3に対応する信号(M-ACT0とM-ACT1)がONになります。

● D-END0出力~D-END7出力


運転データを使用する運転(ストアードデータ運転、連続マクロ運転)で有効です。 運転の開始時にOFF、指定した運転データNo.の運転が終了したときにONになります。 結合運転中、それぞれの運転が終了したことを確認するために使用してください。

関連するパラメータ

MEXE02分類	名称	内容	設定範囲	初期値
	D-END0 No.選択			0
	D-END1 No.選択		0~255:運転データNo.	1
	D-END2 No.選択	D-END出力に対応させる運転データ No.を設定します。		2
n7	D-END3 No.選択			3
р7	D-END4 No.選択			4
	D-END5 No.選択			5
	D-END6 No.選択			6
	D-END7 No.選択			7

ZV出力

運転速度の0 r/minを中心に、検出速度が「ZV出力判定距離」パラメータで設定した速度以下になると、ZV出力がONになります。

関連するパラメータ

MEXE02分類	名称	内容	設定範囲	初期値
p7	ZV出力判定距離	運転速度の0 r/minを中心に、ZV出力の出力範囲(片幅)を設定します。	0~200 r/min	15

● OL-DTCT出力

出力トルクが過負荷のアラームを検出するトルクに到達すると、OL-DTCT出力がONになります。 過負荷アラームの検出については、243ページをご覧ください。

■ ストアードデータ運転状態表示

● SEQ-BSY出力

ストアードデータ運転中にSEQ-BSY出力がONになります。

● DELAY-BSY出力

ドライバが運転終了遅延や待機状態(Dwell)のときに、DELAY-BSY出力がONになります。

■ ダイレクトデータ運転状態表示

DCMD-FULL出力

ダイレクトデータ運転のバッファ領域にデータが書き込まれているときに、DCMD-FULL出力がONになります。

DCMD-RDY出力

ダイレクトデータ運転の準備が完了すると出力されます。

次のすべての条件が満たされると、DCMD-RDY出力がONになります。

- ドライバの制御電源と主電源を投入
- S-ON入力がON
- STOP入力がOFF
- STOP-SOFF入力がOFF
- CLR入力がOFF
- アラームが発生していない
- 原点復帰運転またはマクロ運転を実行していない
- MEXEO2で次のモニタやメニューを実行していない
 - ティーチング・リモート運転
 - I/Oテスト
 - データの書き込み
 - 工場出荷時設定に戻す
- EtherNet/IPで、次のコマンドを実行していない
 - Configuration
 - データー括初期化
 - 全データー括初期化
 - NVメモリー括読み出し
 - NVメモリー括書き込み
 - バックアップデータ読み出し - バックアップデータ書き込み

■ モーター位置表示

モーターの位置に応じて出力される信号です。

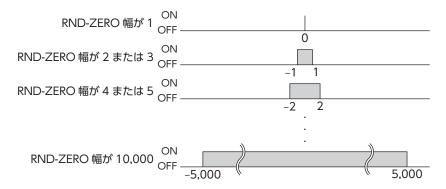
ZSG出力

MEXE02の[ZSGプリセット]、またはEtherNet/IPのメンテナンスコマンド[ZSG-PRESET]でプリセットした位置から、 モーターの検出位置が一周分増加するたびにONになります。

関連するパラメータ

I	MEXE02分類	名称	内容	設定範囲	初期値
	р7	ZSG幅	ZSG出力の出力幅を設定します。	1~1,800(1=0.1°)	18

(memo) ZSG出力が1 ms以上出力されるように、運転速度に応じて「ZSG幅」パラメータを設定してください。


● RND-ZERO出力

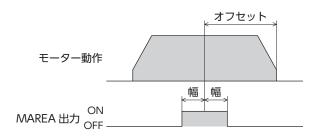
「ラウンド(RND)設定」パラメータが「1:有効」に設定されているときに、「RND-ZERO対象設定」パラメータで設定した位置がラウンド範囲の原点位置にあると、RND-ZERO出力がONになります。

[RND-ZERO出力用RND分割数]パラメータを使用すると、ラウンド範囲を任意の分割数で等分して、一定の区間ごとに出力させることもできます。

関連するパラメータ

MEXE02分類	名称	内容	設定範囲	初期値
p5	RND-ZERO出力用RND 分割数	ラウンド範囲内で、RND-ZERO出力を ONにする回数を設定します。	1~536,870,911 分割	1
	RND-ZERO幅	RND-ZERO出力の出力幅を設定します。	1~10,000 step	10
р7	RND-ZERO対象設定	RND-ZERO出力の基準を設定します。	0:検出位置基準 1:指令位置基準	0

MAREA出力


モーターが設定したエリアにあると、MAREA出力がONになります。

関連するパラメータ

MEXE02分類	名称	内容	設定範囲	初期値
р7	MAREA出力設定	MAREA出力をONにする基準、 および運転後のMAREA出力の状態を設定します。	0:検出位置基準(運転後も判定維持) 1:指令位置基準(運転後も判定維持) 2:検出位置基準(運転完了時OFF) 3:指令位置基準(運転完了時OFF)	0

関連する運転データ

MEXE02分類	名称	内容	設定範囲	初期値
p1	オフセット (エリア)	MAREA出力がONになる範囲の中心位置から、 位置決め運転の目標位置までの距離を設定しま す。 連続運転の場合は、運転開始位置までの距離を設 定します。	-2,147,483,648~ 2,147,483,647 step	0
	幅(エリア)	MAREA出力がONになる範囲を設定します。	-1:無効 0~4,194,303 step	-1

設定例1:

移動量が10,000 stepの相対位置決め運転で、5,000 stepの位置を中心に±10 stepの範囲で MAREAをONにしたい場合

- オフセット(エリア):-5,000 step
- 幅(エリア):10 step

設定例2:

現在位置5,000から目標位置-8,000 stepへの絶対位置決め運転で、座標1,000を中心に ±100 stepの範囲でMAREAをONにしたい場合

- オフセット(エリア):9,000 step
- 幅(エリア):100 step

(memo) 運転データの「方式」が「連続運転(位置制御)」の場合、オフセット(エリア)の基準は運転開始位置になりま す。

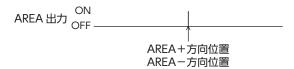
● AREA0~AREA7出力

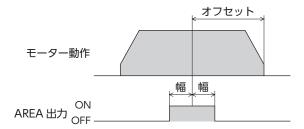
モーターが設定したエリア内にあるとき、AREA出力がONになります。 モーターの停止中でも、モーターがエリア内にあるときはONになります。

関連するパラメータ

MEXE02分類	名称	内容	設定範囲	初期値
	AREAO+位置/オフセット 〜 AREA7+位置/オフセット	AREA出力の+方向位置、または目標 位置からのオフセットを設定します。	-2,147,483,648~	0
n7	AREAO — 位置/判定距離 ~ AREA7 — 位置/判定距離	判定距離 AREA出力の一方向位置、またはオフセット位置からの距離を設定します。	0	
р7	AREAO範囲指定方法 ~ AREA7範囲指定方法	AREA出力の範囲指定方法を設定し ます。	0:絶対値で範囲指定 1:目標位置からのオフ セット・幅を指定	0
	AREAO位置判定基準 ~ AREA7位置判定基準	AREA出力の位置判定基準を設定し ます。	0:検出位置基準 1:指令位置基準	0

「AREA範囲指定方法」パラメータが「O:絶対値で範囲指定」の場合


• 「AREA+位置/オフセット」パラメータ>「AREA-位置/判定距離」パラメータのとき モーターの位置が「AREA-位置/判定距離」以上、または「AREA+位置/オフセット」以下のとき、AREA出力がONになり ます。


• 「AREA+位置/オフセット」パラメータ<「AREA-位置/判定距離」パラメータのとき モーターの位置が「AREA+位置/オフセット」以下、または「AREA-位置/判定距離」以上のとき、AREA出力がONになり ます。

• 「AREA+位置/オフセット|パラメータ=「AREA-位置/判定距離|パラメータのとき モーターの位置が「AREA-位置/判定距離」と「AREA+位置/オフセット」と等しいときに、AREA出力がONになります。

「AREA範囲指定方法」パラメータが「1:目標位置からのオフセット・幅を指定」の場合

● FW-SLS出力、RV-SLS出力

「ソフトウェアオーバートラベル」パラメータが「-1:無効」以外に設定されているときに、指令位置が「ソフトウェアリミッ ト」パラメータに設定されている範囲を超えると、FW-SLS出力、RV-SLS出力がONになります。

■ RND-OVF出力

ラウンド範囲を超えると、RND-OVF出力のON/OFFが切り替わります。

■ 位置モニタ機能

位置モニタ機能の詳細は、107ページ「パルスリクエスト機能」をご覧ください。

MON-OUT出力

I/O位置出力機能で使用する信号です。座標情報またはアラーム情報を出力します。

PLS-OUTR出力

パルスリクエスト機能の準備が完了するとONになり、パルスによる座標情報の出力が終わると、PLS-OUTR出力がOFFに なります。

■ 座標状態表示

● ELPRST-MON出力

電気原点座標が有効のときに、ELPRST-MON出力がONになります。

ABSPEN出力

座標が確定しているときに、ABSPEN出力がONになります。

PRST-DIS出力

原点位置の再設定が必要なときに、PRST-DIS出力がONになります。

「プリセット位置」パラメータが「0」以外の場合、プリセットまたは原点復帰運転を行なった後に分解能を変更すると、 PRST-DIS出力がONになります。

PRST-DIS出力がONになったときは、再度プリセットまたは原点復帰運転を行ない、原点を確定してください。

(memo) 「プリセット位置」パラメータが「0」の状態で分解能を変更すると、座標が自動で再設定されます。そのた め、分解能を変更しても、PRST-DIS出力はONになりません。

● PRST-STLD出力

プリセットを行なって原点情報がABZOセンサに記憶されると、PRST-STLD出力がONになります。

● ORGN-STLD出力

直動アクチュエータなど、工場出荷時に原点位置が決められている製品は、ORGN-STLD出力がONの状態で出荷されます。

5-3 ラッチ情報表示

ラッチ機能の詳細は、263ページ[5 ラッチ機能]をご覧ください。

● JUMP0-LAT出力、JUMP1-LAT出力

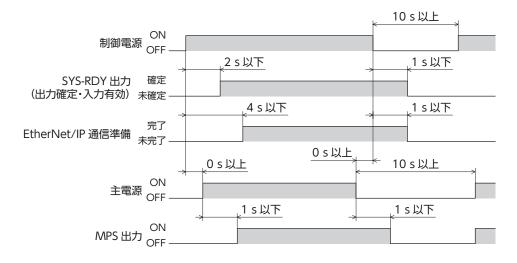
弱イベントトリガが検出されるとJUMP0-LAT出力が、強イベントトリガが検出されるとJUMP1-LAT出力がそれぞれONになります。LAT-CLR入力をOFFからONにすると、JUMP0-LAT出力とJUMP1-LAT出力がOFFになります。

● NEXT-LAT出力

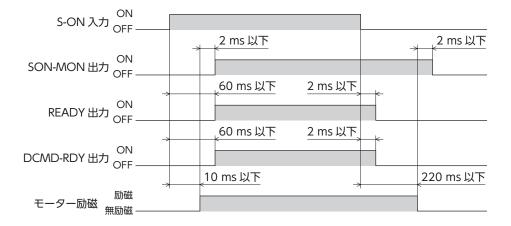
NEXT入力がOFFからONになると、NEXT-LAT出力がONになります。LAT-CLR入力をOFFからONにすると、NEXT-LAT出力がOFFになります。

5-4 レスポンス出力

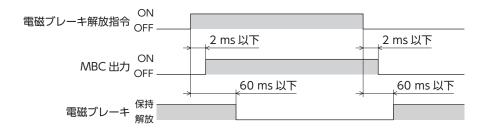
レスポンス出力は、対応する入力信号のON/OFF状態を出力する信号です。 入力信号と出力信号の対応は表のとおりです。


入力信号	出力信号
FREE	FREE_R
S-ON	S-ON_R
CLR	CLR_R
STOP-SOFF	STOP-SOFF_R
STOP	STOP_R
BREAK-ATSQ	BREAK-ATSQ_R
ALM-RST	ALM-RST_R
P-PRESET	P-PRESET_R
EL-PRST	EL-PRST_R
ETO-CLR	ETO-CLR_R
LAT-CLR	LAT-CLR_R
INFO-CLR	INFO-CLR_R
HMI	HMI_R
TRQ-LMT	TRQ-LMT_R
SPD-LMT	SPD-LMT_R
FW-BLK	FW-BLK_R
RV-BLK	RV-BLK_R
FW-LS	FW-LS_R
RV-LS	RV-LS_R
HOMES	HOMES_R
SLIT	SLIT_R
START	START_R
SSTART	SSTART_R
NEXT	NEXT_R
HOME	HOME_R

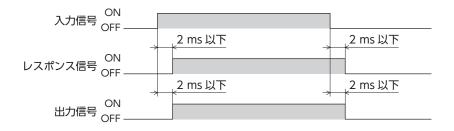
入力信号	出力信号
ZHOME	ZHOME_R
D-SEL0	D-SEL0_R
D-SEL1	D-SEL1_R
D-SEL2	D-SEL2_R
D-SEL3	D-SEL3_R
D-SEL4	D-SEL4_R
D-SEL5	D-SEL5_R
D-SEL6	D-SEL6_R
D-SEL7	D-SEL7_R
FW-JOG	FW-JOG_R
RV-JOG	RV-JOG_R
FW-JOG-H	FW-JOG-H_R
RV-JOG-H	RV-JOG-H_R
FW-JOG-P	FW-JOG-P_R
RV-JOG-P	RV-JOG-P_R
FW-JOG-C	FW-JOG-C_R
RV-JOG-C	RV-JOG-C_R
FW-POS	FW-POS_R
RV-POS	RV-POS_R
MO	M0_R
M1	M1_R
M2	M2_R
M3	M3_R
M4	M4 R
7714	1011_1


出力信号
M6_R
M7_R
TEACH_R
MON-REQ0_R
MON-REQ1_R
MON-CLK_R
PLSM-REQ_R
RO_R
R1_R
R2_R
R3_R
R4_R
R5_R
R6_R
R7_R
R8_R
R9_R
R10_R
R11_R
R12_R
R13_R
R14_R
R15_R

6 タイミングチャート


■ 電源投入

■ 励磁

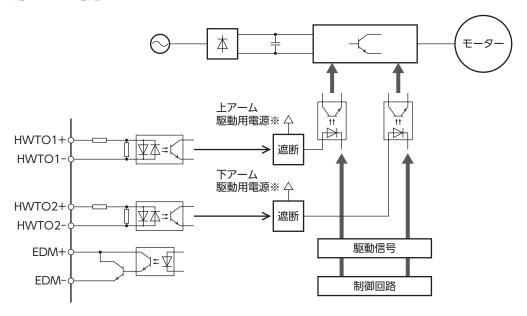

■ 電磁ブレーキ

■ 入出力信号(入力信号のONエッジによって出力が切り替わる場合)

■ 入出力信号(入力信号のON/OFFエッジに連動して出力が切り替わる場合)

5 動力遮断機能

±,	1	18


1	動力	つ遮断機能の概要	160
2	動力	つ遮断機能使用時の注意事項	161
3	入出	出力信号	162
3-	-1	入力信号	162
3-	2	出力信号	162
4	動力	つ遮断機能の動作	163
4-	-1	動力遮断状態への移行	163
4-	2	動力遮断状態からの復帰	164
4-	-3	動力遮断機能の故障検出	165
5	関連	車機能	166
5-	-1	入力信号	166
5-	2	出力信号	
5-	-3	パラメータ	167
5-	4	アラーム	168

1 動力遮断機能の概要

動力遮断機能とは、モーターへの電力供給をハードウェアで遮断する機能です。

2チャンネルの入力(HWTO1入力、HWTO2入力)によって、モーター電流を制御するインバータ回路の駆動信号を遮断します。これにより、モーターへの電力供給が遮断された状態(動力遮断状態)になります。

動力遮断機能は、装置可動部の動作範囲内で作業しなければならない場合に、可動部の予期しない起動を防止する目的で使用することを想定しています。

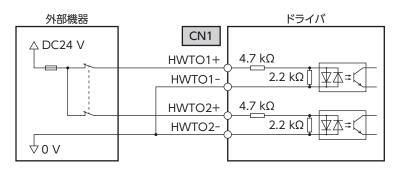
※ HWTO1入力をOFFにすると、インバータ回路の上アーム駆動信号が遮断されます。 HWTO2入力をOFFにすると、インバータ回路の下アーム駆動信号が遮断されます。

- 動力遮断機能は、安全機能ではありません。
- 必ずモーターが停止していることを確認してから、動力遮断機能を実行してください。運転中に動力遮断機能を実行すると、モーター、ドライバ、装置が破損するおそれがあります。

2 動力遮断機能使用時の注意事項

- 動力遮断機能が動作すると、外力(垂直軸における重力など)によって出力軸が回転することがあります。出力軸を保持する場合は、外部ブレーキなどを設置してください。電磁ブレーキ付モーターのブレーキ機構は、位置を保持するためのものです。制動ブレーキとして使用しないでください。けが、装置破損の原因になります。
- 動力遮断機能が動作しても、インバータ回路が故障していると、出力軸が電気角で最大180°(機械角で30°)回転する可能性があります。この動きによって危険な状態が引き起こされないことを確認してください。けが、装置破損の原因になります。

入出力信号


入力信号

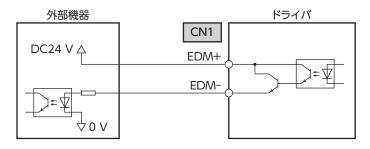
■ HWTO1入力、HWTO2入力

動力遮断機能を動作させる信号です。

重要)HWTO1入力、HWTO2入力を操作する接点は、個別に設けてください。

仕様

• 入力電圧:DC24 V±10 %


3-2 出力信号

■ EDM出力

動力遮断機能の故障を監視する信号です。

要 EDM出力は故障監視の用途以外に使用しないでください。

仕様

• 電圧:DC30 V以下

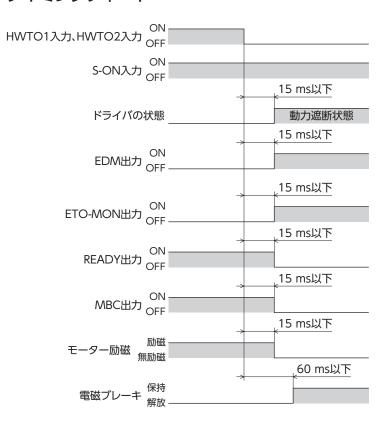
● 電流:50 mA以下

• 出力飽和電圧:最大1.1 V

4 動力遮断機能の動作

4-1 動力遮断状態への移行

HWTO1入力とHWTO2入力の両方をOFFにするとドライバは動力遮断状態に移行し、ハードウェアによってモーターへの電力供給が遮断されてモーターは無励磁になります。

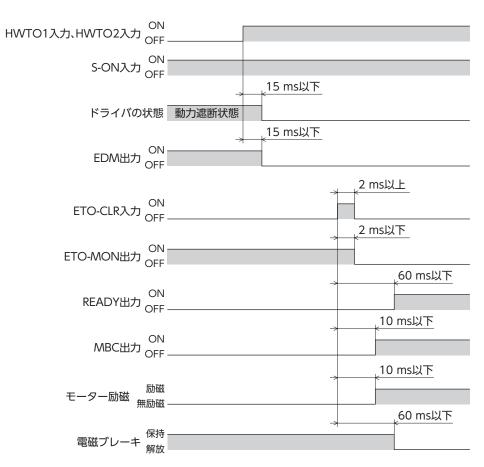

動力遮断状態になると、モーター、ドライバの状態は次のようになります。(「HWTO動作」パラメータが「0:アラーム発生なし(初期値)」の場合)

- ETO-MON出力がON
- READY出力、MBC出力がOFF
- PWR/ALM LEDが緑色に点滅
- 電磁ブレーキ付モーターの場合は、電磁ブレーキが保持状態

- 必ずモーターが停止していることを確認してから、動力遮断機能を実行してください。運転中に動力遮断機能を実行すると、モーター、ドライバ、装置が破損するおそれがあります。
- HWTO1入力とHWTO2入力をOFFにしてから動力遮断状態になるまで、最大で15 msかかります。
- 動力遮断状態に移行するには、HWTO1入力とHWTO2入力を必ず15 ms以上OFFにしてください。

■ タイミングチャート

4-2 動力遮断状態からの復帰


HWTO1入力とHWTO2入力の両方をONにすると、動力遮断状態は解除されます。このときモーターは無励磁のままです。 モーターを励磁するには、S-ON入力がON状態で、ETO-CLR入力をONにしてください(初期値:ONエッジで有効)。 ETO-CLR入力をONにしたとき、モーター、ドライバの状態は次のようになります。

- ETO-MON出力がOFF
- READY出力、MBC出力がON
- PWR/ALM LEDが緑色に点灯
- 電磁ブレーキ付モーターの場合は、電磁ブレーキが解放状態

- HWTO1入力またはHWTO2入力の片方だけをONにしても、動力遮断状態は解除できません。
- HWTO1入力とHWTO2入力のON時間が15 ms未満だと、動力遮断状態を解除できない場合があります。
- 動力遮断状態が解除されると、ハードウェアによるモーターへの電力供給の遮断状態も解除されます。

タイミングチャート

4-3 動力遮断機能の故障検出

HWTO1入力とHWTO2入力の入力状態と、それに対するEDM出力の出力状態を監視することで、動力遮断機能の故障を検出できます。

動力遮断機能が正常に動作しているとき、各信号の組み合わせは次のどれかになります。この組み合わせ以外は、ドライバの動力遮断機能が故障していることを示しています。

HWTO1入力	HWTO2入力	EDM出力
ON	ON	OFF
OFF	OFF	ON
ON	OFF	OFF
OFF	ON	OFF

HWTO1入力またはHWTO2入力の片方だけがONまたはOFFの場合は、外部機器や配線が故障しています。原因を確認し、すみやかに対処してください。このとき、EDM出力はOFF、モーターは無励磁になります。

- EDM出力がOFFのときは、動力遮断機能を解除しないでください。
- ドライバや外部機器の故障、配線の異常などが発生したときは、原因を確認し、すみやかに対処してください。

5 関連機能

5-1 入力信号

■ ETO-CLR入力

HWTO1入力とHWTO2入力の両方をONにして動力遮断機能を解除した後、S-ON入力がONの状態でETO-CLR入力をONにすると、モーターが励磁します。

関連するパラメータ

MEXE02分類	名称	内容	設定範囲	初期値
р6	ETO解除動作 (ETO-CLR入力)	ETO-CLR入力でモーターを励磁させる場合の、信号の判定基準を設定します。	1:ONエッジ 2:ONレベル	1

5-2 出力信号

■ HWTOIN-MON出力

HWTO1入力またはHWTO2入力がOFFになると、HWTOIN-MON出力がONになります。

■ ETO-MON出力

[HWTO動作]パラメータが[0:アラーム発生なし]に設定されているときに、HWTO1入力またはHWTO2入力がOFFになると、ETO-MON出力がONになります。HWTO1入力とHWTO2入力を両方ともONにした後にETO-CLR入力をONにすると、ETO-MON出力はOFFになります。

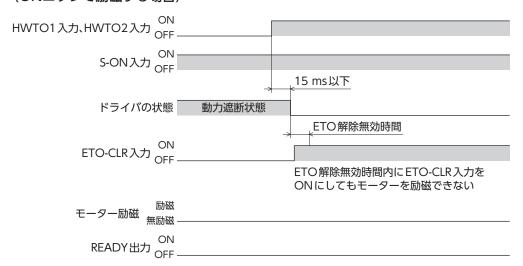
関連するパラメータ

MEXE02分類	名称	内容	設定範囲	初期値
р6	HWTO動作	HWTO1入力またはHWTO2入力をOFFにしたとき にアラームを発生させます。	0:アラーム発生なし 1:アラーム発生あり	0

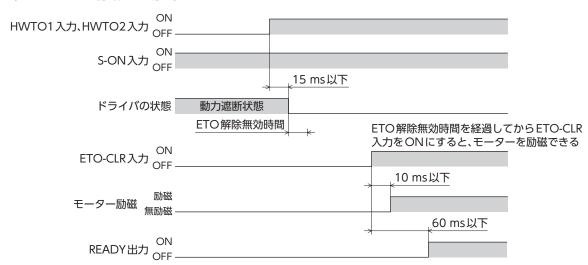
■ EDM-MON出力

HWTO1入力とHWTO2入力の両方がOFFになると、EDM-MON出力がONになります。

5-3 パラメータ


■ ETO解除無効時間

[ETO解除無効時間]パラメータの設定時間を過ぎるまでは、ETO-CLR入力をONにしてもモーターを励磁できません。


関連するパラメータ

MEXE02分類	名称	内容	設定範囲	初期値
p6	ETO解除無効時間	HWTO1入力とHWTO2入力をONにした後に、ETO-CLR入力でモーターを励磁させる場合、ETO-CLR入力が無効になる時間を設定します。ここで設定した時間を過ぎるまでは、ETO-CLR入力をONにしてもモーターを励磁できません。	0~100 ms	0

[ETO解除無効時間] パラメータの設定時間が経過する前に、ETO-CLR入力をONにした場合 (ONエッジで励磁する場合)

[ETO解除無効時間] パラメータの設定時間が経過してから、ETO-CLR入力をONにした場合 (ONエッジで励磁する場合)

■ ETO-CLR入力の信号判定基準

「ETO解除動作(ETO-CLR入力)」パラメータを「2:ONレベル」に設定すると、ETO-CLR入力のONエッジではなくONレベルでモーターを励磁できます。(初期値:ONエッジ)

関連するパラメータ

MEXE02分類	名称	内容	設定範囲	初期値
р6	ETO解除動作 (ETO-CLR入力)	ETO-CLR入力でモーターを励磁させる場合の、信号の判定基準を設定します。	1:ONエッジ 2:ONレベル	1

■ ETO-CLR入力以外の入力信号によるモーターの励磁

パラメータで、ALM-RST入力、S-ON入力、およびSTOP入力に、モーターを励磁させる機能を追加できます。 初期値では、この機能はS-ON入力とSTOP入力に追加されています。

関連するパラメータ

MEXE02分類	名称	内容	設定範囲	初期値
p6	ETO解除動作 (ALM-RST入力)	HWTO1入力とHWTO2入力をONにした後に、 ALM-RST入力でモーターを励磁させます。		0
	ETO解除動作 (S-ON入力)	HWTO1入力とHWTO2入力をONにした後に、 S-ON入力でモーターを励磁させます。	0:無効 1:ONエッジで励磁	1
	ETO解除動作 (STOP入力)	HWTO1入力とHWTO2入力をONにした後に、 STOP入力でモーターを励磁させます。	1.ONTAS CIMIRA	1

5-4 アラーム

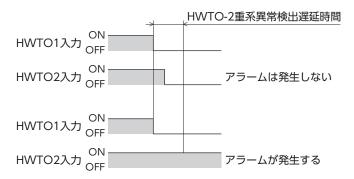
■ HWTO入力検出のアラーム

[HWTO動作]パラメータを[1:アラーム発生あり]に設定すると、HWTO1入力またはHWTO2入力をOFFにしたときにアラームが発生します。(HWTO入力検出、アラームコード68h)

このとき、PWR/ALM LEDが赤色に1回点滅を繰り返します。

「HWTO動作」パラメータを「1:アラーム発生あり」に設定したときは、動力遮断機能を解除した後にALM-RST入力をOFFからONにすると、モーターを励磁できます。(ONエッジで有効です。)

関連するパラメータ


MEXE02分類	名称	内容	設定範囲	初期値
р6	HWTO動作	HWTO1入力またはHWTO2入力をOFFにしたとき にアラームを発生させます。	0:アラーム発生なし 1:アラーム発生あり	0

■ HWTO入力回路異常のアラーム

HWTO1入力またはHWTO2入力の片方がOFFになってから、もう片方の入力がOFFになるまでの時間が「HWTO-2重系 異常検出遅延時間」パラメータの設定値を過ぎると、アラームが発生します。(HWTO入力回路異常、アラームコード53h) このとき、PWR/ALM LEDが赤色に2回点滅を繰り返します。

関連するパラメータ

MEXE02分類	名称	内容	設定範囲	初期値
p6	HWTO-2重系異常 検出遅延時間	HWTO1入力またはHWTO2入力の片方がOFFになってから、もう片方の入力がOFFになるまでの閾値を設定します。この閾値を過ぎても、もう片方の入力がOFFにならない場合はアラームが発生します。	0~10 (無効) 、 11~100 ms	0

6 EtherNet/IP制御

EtherNet/IPで制御する方法について説明しています。

◆もくじ

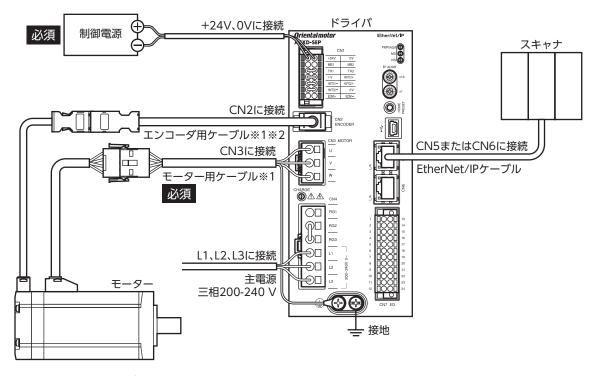
1	ガィ	′ ダンス	172
2	通信	[仕様	175
3	IPア	'ドレスの設定	176
3-	1	IPアドレスの設定方法	176
3-	2	IPアドレス設定スイッチを使用する場合	176
3-	3	パラメータで設定する場合	178
3-	4	DHCPサーバで設定する場合	
4	Imp	olicitメッセージ	179
4-	1	Implicitメッセージフォーマット	179
4-	2	Inputデータ	180
4-	3	Outputデータ	183
4-	4	Implicit通信の処理順序	186
4-	5	データの書き込み	187
4-	6	データの読み出し	188
5	運転	Gの実行例	190
5-	1	ストアードデータ(SD)運転	190
5-	2	マクロ運転	192
5-	3	ダイレクトデータ運転	193

1 ガイダンス

はじめてお使いになるときはここをご覧になり、運転のながれについてご理解ください。 ここで紹介する例は、スキャナで運転データを設定して、モーターを起動する方法です。

● 運転条件

ここでは、次の条件で運転するものとします。


- 接続ドライバ数: 1台
- IPアドレス:192.168.1.2

- モーターを動かすときは周囲の状況を確認し、安全を確保してから運転してください。
- 事前にEDSファイルをスキャナの設定ツールにインポートし、システムの構成を登録してからガイダンスを進めてください。EDSファイルは当社のWEBサイトからダウンロードできます。
 https://www.orientalmotor.co.jp/

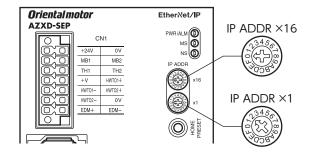
STEP 1 設置と接続を確認します

図は、三相200-240 Vの場合です。

- ※1 別途お買い求めください。
- ※2 エンコーダ用ケーブルは、長さが足りないときにお使いください。

STEP 2 運転準備をします

[2 運転準備]と[3 運転操作]をご覧いただき、次の内容を設定してください。


- 分解能の設定 → 18ページ
- 原点の確定 → 20ページ
- 座標の設定 → 92ページ

STEP 3 IPアドレスを設定します

ここでは、ドライバのIPアドレス設定スイッチ(IP ADDR ×16、×1)を使ってIPアドレスを設定します。

1. IPアドレス設定スイッチを次のように設定します。

設定内容:×16:0、×1:2(192.168.1.2)

2. 制御電源を再投入します。

スイッチを設定したら、制御電源を再投入してください。制御電源を再投入しないと設定が有効になりません。

STEP 4 スキャナがモーターを起動します

例として、次の位置決め運転を実行する方法を説明します。

● 設定例

運転データNo.:1

• 位置:5,000 step

• その他の設定:初期値

● 運転処理のながれ

スキャナを主語にして説明しています。

1. 次の運転データを設定し、WR-REQをONにします。

運転データがドライバに設定されます。設定が完了するとWR-ENDがONになります。

バイト	内容	設定値	備考
34、35	ライトパラメータID	3104	運転データNo.1の「方式」のパラメータID
36~39	ライトデータ	1	方式:絶対位置決め

WR-REQをOFFにします。
 WR-ENDがOFFに戻ります。

3. 次の運転データを設定し、WR-REQをONにします。

運転データがドライバに設定されます。設定が完了するとWR-ENDがONになります。

バイト	内容	設定値	備考
34、35	ライトパラメータID	3105	運転データNo.1の「位置」のパラメータID
36~39	ライトデータ	5,000	位置:5,000 step

- WR-REQをOFFにします。
 WR-ENDがOFFに戻ります。
- 5. S-ONをONにします。
- 6. READYがONになっていることを確認します。
- 7. 運転データNo.1を選択し、STARTをONにします。 絶対位置決め運転が始まります。
- 8. READYがOFFになっていることを確認し、STARTをOFFにします。

STEP 5 運転できましたか?

いかがでしたか。うまく運転できたでしょうか。モーターが動かないときは、次の点を確認してください。

- PWR/ALM LEDが赤色に点滅していませんか?
 アラームが発生しています。詳細は、237ページをご覧ください。
- 主電源、制御電源、モーター、EtherNet/IPケーブルは確実に接続されていますか?
- IPアドレスの設定は正しいですか?
- NS LEDが赤色に点灯または点滅していませんか? 通信異常が検出されています。詳細は、236ページをご覧ください。

2 通信仕様

		EtherNet/IP(CT18準拠)
	ベンダーID	187: Oriental Motor Co., Ltd
		·
	デバイスタイプ	43:Generic Device
	伝送速度	10/100 Mbps(オートネゴシエーション)
	通信方式	全二重/半二重(オートネゴシエーション)
	ケーブル仕様	シールド付きツイストペア (STP) ケーブル ストレート/クロス、カテゴリ5e以上を推奨
⊢ /- / "	出力(スキャナ→ドライバ)	40バイト
占有バイト数	入力(ドライバ→スキャナ)	56バイト
	対応コネクション数	2
	コネクションタイプ	Exclusive Owner、Input Only
Implicit语信	通信サイクル (RPI)	1~3,200 ms
Implicit通信	接続タイプ(スキャナ→ドライバ)	Point-to-Point
	接続タイプ(ドライバ→スキャナ)	Point-to-Point、Multicast
データ反映トリガ		Cyclic
	IPアドレス設定方法	IPアドレス設定スイッチ、パラメータ、DHCP
	対応トポロジ	スター、リニア、リング (Device Level Ring)

3 IPアドレスの設定

IPアドレス、サブネットマスク、デフォルトゲートウェイは、 それぞれ図のように構成されています。

3-1 IPアドレスの設定方法

IPアドレス、サブネットマスク、デフォルトゲートウェイは、次の3種類の方法で設定できます。

	設定手段			具体的な設定方法		
設定方法	IPアドレス 設定スイッチ		「Configuration Control」パラメータ	IPアドレス	サブネットマスク	デフォルトゲートウェイ
	×16	×1	Controlly /			7 1 1
IPアドレス設定 スイッチ	0	1	0%	第1~第3オクテット:パラメータ 第4オクテット:IPアドレス設定	パラメータ	パラメータ
	F	Е	0%	スイッチ	11011	7727
	F	F	0%	192.168.1.1	255.255.255.0	0.0.0.0
パラメータ	0	0	0	パラメータ	パラメータ	パラメータ
DHCPサーバ	0	0	2	DHCPサーバ	DHCPサーバ	DHCPサーバ

[※] IPアドレス設定スイッチが「00」以外のときは、「Configuration Control」パラメータが自動で「0:パラメータ」に設定されます。

3-2 IPアドレス設定スイッチを使用する場合

■ IPアドレスの設定

第1オクテットから第3オクテットは、パラメータで設定します。第4オクテットは、IPアドレス設定スイッチで設定します。

● 第1オクテットから第3オクテット

関連するパラメータ

MEXE02分類	名称	内容	設定範囲	初期値
	IP Address 1	IPアドレスの第1オクテットを設定します。		192
p12	IP Address 2	IPアドレスの第2オクテットを設定します。	0~255	168
	IP Address 3	IPアドレスの第3オクテットを設定します。		1

● 第4オクテット

IPアドレス設定スイッチ(IP ADDR ×16、×1)を使用して、IPアドレスの第4オクテットを設定します。 IPアドレス設定スイッチは16進数です。10進数のIPアドレスを16進数に変換して設定してください。

出荷時設定 ×16:0、×1:0(パラメータまたはDHCPサーバの設定が有効)

設定例

スイッチの設定		IDマドレスの店	備考	
×16	×1	· IPアドレスの値	1/#	
0	0	パラメータまたはDHCPサーバの 設定が有効になります。	パラメータとDHCPサーバのどちらが有効になっているかは 「Configuration Control」パラメータで確認できます。	
0	1	XXX.XXX.XXX.1	第4オクテットが[1]に設定されます。	
F	Е	XXX.XXX.XXX.254	第4オクテットが「254」に設定されます。	
F	F	192.168.1.1	パラメータ、およびDHCPサーバの設定に関係なく、この値 になります。	

- スイッチを設定したときは、制御電源を再投入してください。制御電源を再投入しないと設定が有効に なりません。
- EtherNet/IP対応製品を2台以上接続したときは、IPアドレスが重複しないように設定してください。 IPアドレスが重複すると、「IPアドレス競合」の通信異常が検出されます。

■ サブネットマスク、デフォルトゲートウェイの設定

パラメータでサブネットマスクとデフォルトゲートウェイを設定します。

関連するパラメータ

MEXE02分類	名称	内容	設定範囲	初期値
	Network Mask 1 サブネットマスクの第1オクテットを設定しま			255
	Network Mask 2	サブネットマスクの第2オクテットを設定します。	0~255	255
	Network Mask 3	サブネットマスクの第3オクテットを設定します。	0~255	255
p12	Network Mask 4	サブネットマスクの第4オクテットを設定します。		0
ριΖ	Gateway Address 1	デフォルトゲートウェイの第1オクテットを設定します。		0
	Gateway Address 2	デフォルトゲートウェイの第2オクテットを設定します。	0~255	0
	Gateway Address 3	デフォルトゲートウェイの第3オクテットを設定します。	0~255	0
	Gateway Address 4	デフォルトゲートウェイの第4オクテットを設定します。		0

(memo) スイッチが「FF」のときは、パラメータやDHCPサーバの設定に関係なく、次の値になります。

- サブネットマスク:255.255.255.0
- デフォルトゲートウェイ:0.0.0.0

パラメータで設定する場合 3-3

ドライバのIPアドレス設定スイッチを[00]、[Configuration Control]パラメータを[0:パラメータ]に設定してください。 パラメータとDHCPサーバは併用できません。

関連するパラメータ

MEXE02分類	名称	内容	設定範囲	初期値
	Configuration Control	 IPアドレスの取得方法を設定します。	0:パラメータ 2:DHCPサーバ	2
	IP Address 1	IPアドレスの第1オクテットを設定します。		192
	IP Address 2	IPアドレスの第2オクテットを設定します。	0~255	168
	IP Address 3	IPアドレスの第3オクテットを設定します。	0~255	1
	IP Address 4	IPアドレスの第4オクテットを設定します。		1
	Network Mask 1	サブネットマスクの第1オクテットを設定し ます。	0~255	255
	Network Mask 2	サブネットマスクの第2オクテットを設定し ます。		255
p12	Network Mask 3	サブネットマスクの第3オクテットを設定し ます。		255
	Network Mask 4	サブネットマスクの第4オクテットを設定し ます。		0
	Gateway Address 1	デフォルトゲートウェイの第1オクテットを 設定します。		0
	Gateway Address 2	デフォルトゲートウェイの第2オクテットを 設定します。	0 255	0
	Gateway Address 3	デフォルトゲートウェイの第3オクテットを 設定します。	0~255	0
	Gateway Address 4	デフォルトゲートウェイの第4オクテットを 設定します。		0

EtherNet/IP対応製品を2台以上接続したときは、IPアドレスが重複しないように設定してください。IP アドレスが重複すると、「IPアドレス競合」の通信異常が検出されます。

3-4 DHCPサーバで設定する場合

DHCPサーバからIPアドレス、サブネットマスク、およびデフォルトゲートウェイが自動で割り付けられます。 ドライバのIPアドレス設定スイッチを「00」、「Configuration Control」パラメータを「2:DHCPサーバ」に設定してくださ い。パラメータとDHCPサーバは併用できません。

(memo) 制御電源を遮断すると、DHCPサーバから取得したIPアドレスは消去されます。

関連するパラメータ

MEXE02分類	名称	内容	設定範囲	初期値
p12	Configuration Control	IPアドレスの取得方法を設定します。	0:パラメータ 2:DHCPサーバ	2

4 Implicitメッセージ

4-1 Implicitメッセージフォーマット

Implicitメッセージの転送内容を示します。データの並び順はリトルエンディアンです。 Implicitメッセージの内容は固定されているため、変更できません。

バイト	Input(ドライバ→スキャナ)	Output (スキャナ→ドライバ)		
0.1	リモートI/O(R-OUT)	リモートI/O(R-IN)		
2,3	運転データNo.選択_R	運転データNo.選択		
4.5	固定I/O(OUT)	固定I/O(IN)		
6.7	現在アラーム	ダイレクトデータ運転 運転方式		
8.9	検出位置(下位)	ダイレクトデータ運転 位置(下位)		
10,11	検出位置(上位)	ダイレクトデータ運転 位置(上位)		
12,13	検出速度[Hz](下位)	ダイレクトデータ運転 速度(下位)		
14、15	検出速度 [Hz] (上位)	ダイレクトデータ運転 速度(上位)		
16、17	指令位置(下位)	ダイレクトデータ運転 起動・変速レート(下位)		
18、19	指令位置(上位)	ダイレクトデータ運転 起動・変速レート(上位)		
20,21	トルクモニタ	ダイレクトデータ運転 停止レート(下位)		
22,23	負荷率モニタ	ダイレクトデータ運転 停止レート(上位)		
24、25	インフォメーション(下位)	ダイレクトデータ運転 トルク制限値		
26、27	インフォメーション(上位)	ダイレクトデータ運転 転送先		
28,29	予約	予約		
30、31	リードパラメータID_R	リードパラメータID		
32,33	リード/ライトステータス	ライトリクエスト		
34、35	ライトパラメータID_R	ライトパラメータID		
36、37	リードデータ (下位)	ライトデータ(下位)		
38,39	リードデータ (上位)	ライトデータ (上位)		
40、41	任意モニタ0(下位)	-		
42、43	任意モニタ0(上位)	_		
44、45	任意モニタ1(下位)	-		
46、47	任意モニタ1(上位)	_		
48、49	任意モニタ2(下位)	-		
50、51	任意モニタ2(上位)	_		
52,53	任意モニタ3(下位)	-		
54、55	任意モニタ3(上位)	_		

4-2 Inputデータ

ドライバからスキャナに転送するデータをInputデータといいます。

■ Inputデータフォーマット

Inputデータの内容は次のとおりです。データの並び順はリトルエンディアンです。

Assembly Instance	Attribute	バイト	サイズ(バイト)	内容
	3	0.1	2	リモートI/O(R-OUT)
		2,3	2	運転データNo.選択_R
		4.5	2	固定I/O(OUT)
		6.7	2	現在アラーム
		8~11	4	検出位置
		12~15	4	検出速度[Hz]
		16~19	4	指令位置
		20、21	2	トルクモニタ
		22,23	2	負荷率モニタ
100		24~27	4	インフォメーション
		28,29	2	予約
		30、31	2	リードパラメータID_R
		32,33	2	リード/ライトステータス
		34、35	2	ライトパラメータID_R
		36~39	4	リードデータ
		40~43	4	任意モニタ0
		44~47	4	任意モニタ1
		48~51	4	任意モニタ2
		52~55	4	任意モニタ3

■ Inputデータの詳細

● リモートI/O(R-OUT)

EtherNet/IPでアクセスするI/Oです。

「R-OUT出力機能」パラメータで信号の割り付けを変更できます。

Bit	名称	内容	初期割付				
0	R-OUT0	「R-OUT出力機能」パラメータで割り付けた 信号の応答を出力します。	64:M0_R				
1	R-OUT1		65:M1_R				
2	R-OUT2		66:M2_R				
3	R-OUT3		32:START_R				
4	R-OUT4		144:HOME-END				
5	R-OUT5		132:READY				
6	R-OUT6		135:INFO				
7	R-OUT7		129:ALM-A				
8	R-OUT8		136:SYS-BSY				
9	R-OUT9		160:AREA0				
10	R-OUT10		161:AREA1				
11	R-OUT11		162:AREA2				
12	R-OUT12		155:ZSG				
13	R-OUT13		134:MOVE				
14	R-OUT14		138:IN-POS				
15	R-OUT15		140:TLC				

● 運転データNo.選択_R

Bit	名称	内容
0	M0_R	
1	M1_R	
2	M2_R	
3	M3_R	 入力信号に対する応答を出力します。
4	M4_R	八刀信号に対する心告を击刀しよす。
5	M5_R	
6	M6_R	
7	M7_R	
8~15	予約	0が返ります。

● 固定I/O(OUT)

EtherNet/IPでアクセスするI/Oです。 信号の割り付けは変更できません。

Bit	名称	内容
0	SEQ-BSY	ストアードデータ運転が行なわれているときに出力されます。
1	MOVE	モーターが動作中のときに出力されます。
2	IN-POS	位置決め運転が完了したときに出力されます。
3	START_R	入力信号に対する応答を出力します。
4	HOME-END	高速原点復帰運転や原点復帰運転の終了時、および位置プリセットの実行時に出力されます。
5	READY	ドライバの運転準備が完了したときに出力されます。
6	DCMD-RDY	ダイレクトデータ運転の準備が完了したときに出力されます。
7	ALM-A	ドライバのアラーム状態を出力します。(A接点)
8	TRIG_R	- 入力信号に対する応答を出力します。
9	TRIG-MODE_R	スカース・スカーの一名で出力します。
10	SET-ERR	ダイレクトデータ運転の運転方式、位置、速度、起動・変速レート、停止レート、転送先の どれかの設定にエラーがあるときに出力されます。
11	EXE-ERR	ダイレクトデータ運転の実行に失敗したときに出力されます。
12	DCMD-FULL	ダイレクトデータ運転のバッファ領域にデータが書き込まれているときに出力されます。
13	STOP_R	入力信号に対する応答を出力します。
14	ETO-MON	HWTO1入力またはHWTO2入力がOFFになってからモーターが励磁されるまでの間、 出力されます。
15	TLC	出力トルクが上限値に到達すると出力されます。

● 現在アラーム

Bit	名称	内容
0~15	現在アラーム	現在発生中のアラームコードを示します。

● 検出位置

Bit	名称	内容
0~3	1 検出位置	現在の検出位置を示します。 ラウンド機能が有効のときは、ラウンド座標上の値が表示されます。

● 検出速度[Hz]

Bit	名称	内容
0~31	検出速度[Hz]	現在の検出速度を示します。

● 指令位置

Bit	名称	内容
0~31	指令位置	現在の指令位置を示します。 ラウンド機能が有効のときは、ラウンド座標上の値が表示されます。

● トルクモニタ

Bit	名称	内容
0~15	トルクモニタ	現在の出力トルクを、定格トルクに対する割合で示します。 (1=0.1 %)

● 負荷率モニタ

Bit	名称	内容
0~15	負荷率モニタ	現在のモーター出力を、連続運転領域の最大出力に対する割合で示します。(1=0.1 %)

● インフォメーション

Bit	名称	内容
0~31	インフォメーション	発生中のインフォメーションコードを示します。

● リードパラメータID_R

Bit	名称	内容
0~15	リードパラメータID_R	リードパラメータIDの応答を示します。

● リード/ライトステータス

Bit	名称	内容
0~6	予約	0が返ります。
7	RD-ERR	読み出しにエラーが発生したときに出力されます。 読み出しが正常に行なわれると、RD-ERRもOFFになります。
8	WR-END	WR-REQに対する応答を出力します。 WR-REQがONの間、WR-ENDもONになります。 OFF:書き込み要求待ち ON:書き込み処理完了
9	SYS-BSY	ドライバが内部処理状態のときに出力されます。
10	予約	0が返ります。
11	WR-SET-ERR	ライトパラメータID、またはライトデータが設定範囲外のときに出力されます。
12	WR-IF-ERR	ユーザーI/F通信中で書き込みが実行できないときに出力されます。
13	WR-NV-ERR	NVメモリ処理中で書き込みが実行できないときに出力されます。
14	WR-EXE-ERR	コマンド実行不可のときに出力されます。
15	WR-ERR	書き込みにエラーが発生したときに出力されます。 WR-REQがOFF、または書き込みが正常に行なわれると、WR-ERRもOFFになり ます。

● ライトパラメータID_R

Bit	名称	内容
0~15	ライトパラメータID_R	ライトパラメータIDの応答を示します。

● リードデータ

Bit	名称	内容
0~31	リードデータ	パラメータID_Rに示されているパラメータの値を示します。

● 任意モニタ

Bit	名称	内容
0~31	任意モニタn※	「任意モニタアドレスn」パラメータに設定されたパラメータの値を示します。

4-3 Outputデータ

スキャナからドライバに転送するデータをOutputデータといいます。

■ Outputデータフォーマット

Outputデータの内容は次のとおりです。データの並び順はリトルエンディアンです。

Assembly Instance	Attribute	バイト	サイズ(バイト)	内容
		0.1	2	リモートI/O(R-IN)
		2,3	2	運転データNo.選択
		4.5	2	固定I/O(IN)
		6.7	2	ダイレクトデータ運転 運転方式
		8~11	4	ダイレクトデータ運転 位置
		12~15	4	ダイレクトデータ運転 速度
		16~19	4	ダイレクトデータ運転 起動・変速レート
101	3	20~23	4	ダイレクトデータ運転 停止レート
		24、25	2	ダイレクトデータ運転 トルク制限値
		26、27	2	ダイレクトデータ運転 転送先
		28、29	2	予約
		30、31	2	リードパラメータID
		32、33	2	ライトリクエスト
		34、35	2	ライトパラメータID
		36~39	4	ライトデータ

■ Outputデータの詳細

● リモートI/O(R-IN)

EtherNet/IPでアクセスするI/Oです。

[R-IN入力機能]パラメータで信号の割り付けを変更できます。

Bit	名称	内容	初期割付	
0	R-IN0			
1	R-IN1			
2	R-IN2			
3	R-IN3			
4	R-IN4			
5	R-IN5			
6	R-IN6	「R-IN入力機能」パラメータで割り付けた信号を	0:未使用	
7	R-IN7			
8	R-IN8	実行します。	0.不使用	
9	R-IN9			
10	R-IN10			
11	R-IN11			
12	R-IN12			
13	R-IN13			
14	R-IN14			
15	R-IN15			

● 運転データNo.選択

Bit	名称	内容	初期値	
0	MO			
1	M1			
2	M2		0	
3	M3	8個のbitを使って、運転データNo.を選択します。 0		
4	M4			
5	M5			
6	M6			
7	M7			
8~15	予約	値は無視されます。	0	

● 固定I/O(IN)

EtherNet/IPでアクセスするI/Oです。 信号の割り付けは変更できません。

Bit	名称	内容	初期値
0	FW-JOG	FWD方向のJOG運転を実行します。	
1	RV-JOG	RVS方向のJOG運転を実行します。	
2	S-ON	モーターを励磁します。	
3	START	ストアードデータ運転を実行します。	
4	ZHOME	高速原点復帰運転を実行します。	
5	STOP	モーターを停止させます。	
6	FREE	モーターの電流を遮断して無励磁にします。 電磁ブレーキ付モーターの場合は、電磁ブレーキが解放状態になります。	
7	ALM-RST	発生中のアラームを解除します。	
8	TRIG	ダイレクトデータ運転を実行します。	0
9	TRIG-MODE	TRIGの判定基準を設定します。 0:ONエッジで起動 1:ONレベルで起動	
10	ETO-CLR	動力遮断状態を解除後、モーターを励磁させます。	
11	TRQ-LMT	運転データのトルク制限値でトルクを制限します	
12	FW-JOG-P	FWD方向のインチング運転を実行します。	
13	RV-JOG-P	RVS方向のインチング運転を実行します。	
14	FW-POS	FWD方向の連続運転を実行します。	
15	RV-POS	RVS方向の連続運転を実行します。	

● ダイレクトデータ運転 運転方式

Bit	名称	内容	設定範囲	初期値
0~15	ダイレクトデータ運転 運転方式	ダイレクトデータ運転の運転方 式を設定します。	0:設定なし 1:絶対位置決め 2:相対位置決め(指令位置基準) 3:相対位置決め(検出位置基準) 7:連続運転(位置制御) 8:ラウンド絶対位置決め 9:ラウンド近回り位置決め 10:ラウンドFWD方向絶対位置決め 11:ラウンドRVS方向絶対位置決め	2

● ダイレクトデータ運転 位置

Bit	名称	内容	設定範囲	初期値
0~31	ダイレクトデータ運転 位置	ダイレクトデータ運転の目標位 置を設定します。	-2,147,483,648~2,147,483,647 step	0

● ダイレクトデータ運転 速度

Bit	名称	内容	設定範囲	初期値
0~31	ダイレクトデータ運転 速度	ダイレクトデータ運転の運転速度を設定し ます。	-4,000,000~ 4,000,000 Hz	1,000

● ダイレクトデータ運転 起動・変速レート

Bit	名称	内容	設定範囲	初期値
0~31		ダイレクトデータ運転の起動・変速レート または起動・変速時間を設定します。	1~1,000,000,000 (1=0.001) %	1,000,000

※ 設定単位は「加減速単位」パラメータに従います。

● ダイレクトデータ運転 停止レート

Bit	名称	内容	設定範囲	初期値
0~31	ダイレクトデータ運転 停止レート	ダイレクトデータ運転の停止レートまたは 停止時間を設定します。	1~1,000,000,000 (1=0.001) %	1,000,000

※ 設定単位は「加減速単位」パラメータに従います。

● ダイレクトデータ運転 トルク制限値

Bit	名称	内容	設定範囲	初期値
0~15	ダイレクトデータ運転 トルク制限値	ダイレクトデータ運転のトルク制限値を設 定します。	0~10,000 (1=0.1 %)	1,000

● ダイレクトデータ運転 転送先

Bit	名称	内容	設定範囲	初期値
0~15	ダイレクトデータ運転 転送先	ダイレクトデータの運転中に、次のダイレ クトデータが転送されたときの格納場所を 選択します。	0:実行メモリ 1:バッファメモリ	0

● リードパラメータID

Bit	名称	内容	設定範囲	初期値
0~15	リードパラメータID	読み出し対象のパラメータIDを設定します。	パラメータ一覧	0

● ライトリクエスト

Bit	名称	内容	設定範囲	初期値
0	WR-REQ	書き込み要求を設定します。	0:無効 1:書き込み要求 (ONエッジ)	0
1~15	予約	値は無視されます。	_	0

● ライトパラメータID

Bit	名称	内容	設定範囲	初期値
0~15	ライトパラメータID	書き込み対象のパラメータIDを設定します。	パラメータ一覧	0

● ライトデータ

Bit	名称	内容	設定範囲	初期値
0~31	¬	ライトパラメータIDで指定したパラメータ に書き込む値を設定します。	パラメータ一覧	0

4-4 Implicit通信の処理順序

Implicit通信の処理順序を示します。

データの書き込み

1

運転指令の設定

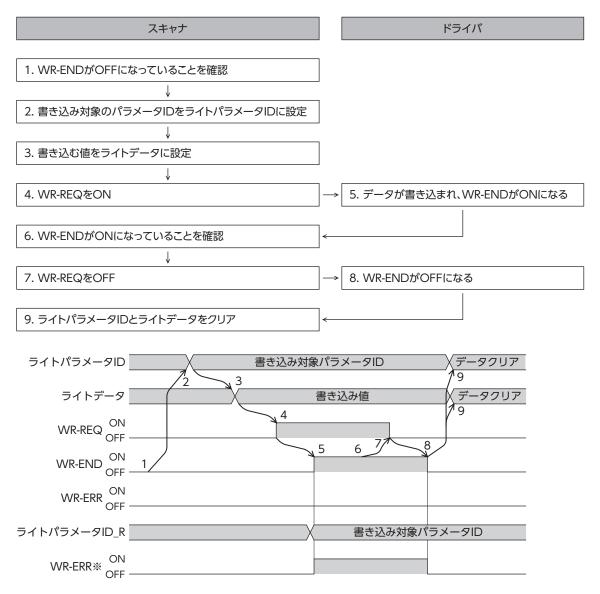
 $\mathbf{\Psi}$

データの読み出し

- Implicitメッセージフォーマットで複数の運転指令を設定した場合は、ダイレクトデータ運転の運転指令が優先されます。
- リモートI/O(R-IN)と固定I/O(IN)の運転指令を同時に設定すると次のようになります。
 - ・同じ運転指令を設定した場合:モーターが起動します。
 - ・異なる運転指令を設定した場合:モーターは起動せず、運転起動失敗のインフォメーションが発生します。

データの書き込み

Implicit通信で、スキャナからドライバにデータが書き込まれるながれを説明します。


■ 使用するImplicitメッセージフォーマットの領域

バイト	内容
32,33	リード/ライトステータス
34,35	ライトパラメータID_R

Input (ドライバからスキャナへの転送) Output (スキャナからドライバへの転送)

バイト	内容
32,33	ライトリクエスト
34、35	ライトパラメータID
36~39	ライトデータ

| データが書き込まれるながれ

※ データの書き込み中にエラーが発生すると、WR-ENDとWR-ERRが同時にONになります。

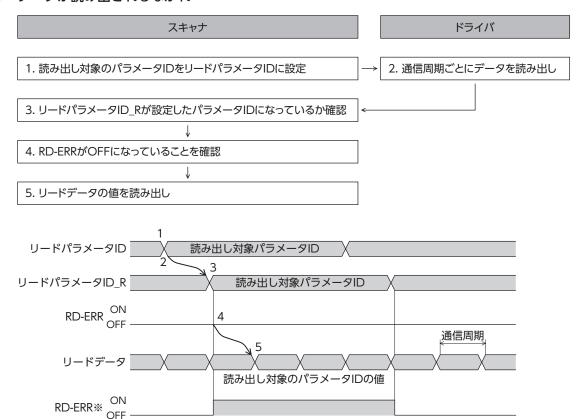
4-6 データの読み出し

Implicit通信で、ドライバからスキャナにデータが読み出されるながれを説明します。 データの読み出しには、次の2つの方法があります。

- 「リードデータ」の領域を使う
- 「任意モニタ」の領域を使う

■ リードデータの領域を使う場合

● 使用するImplicitメッセージフォーマットの領域

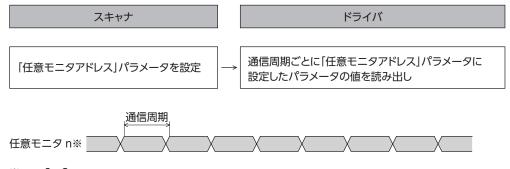

Input (ドライバからスキャナへの転送)

バイト	内容
30,31	リードパラメータID_R
32,33	リード/ライトステータス
36~39	リードデータ

 バイト
 内容

 30、31
 リードパラメータID

● データが読み出されるながれ


※ 設定範囲外のパラメータIDをリードパラメータIDに設定すると、リードパラメータID_Rの更新と同時にRD-ERRがON になります。

■ 任意モニタの領域を使う場合

● 使用するImplicitメッセージフォーマットの領域 Input (ドライバからスキャナへの転送)

バイト	内容
40~55	任意モニタ0~任意モニタ3

更一タが読み出されるながれ

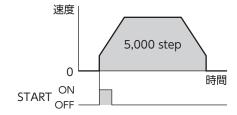
% n:0~3

● 関連するパラメータ

MEXE02分類	名称	内容	設定範囲	初期値
	任意モニタアドレス0			124:ドライバ温度
-12	任意モニタアドレス1	12/5/ 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	パラメータ一覧	125:モーター温度
p12	任意モニタアドレス2			109:積算負荷モニタ
	任意モニタアドレス3			127:TRIPメーター

5 運転の実行例

ここでは、ライトデータ領域を使って運転データを設定しています。 運転を実行する方法は、固定I/OとリモートI/Oで共通です。


モーターを動かすときは周囲の状況を確認し、安全を確保してから運転してください。

5-1 ストアードデータ(SD)運転

例として、次の位置決め運転を実行する方法を説明します。

● 設定例

- 運転データNo.:1
- 方式:絶対位置決め
- 位置:5,000 step
- その他の設定:初期値

● 運転処理のながれ

スキャナを主語にして説明しています。

- 1. 次の運転データを設定します。
 - Output (スキャナ→ドライバ)

バイト	内容	設定値	備考
34,35	ライトパラメータID	3104	運転データNo.1の「方式」のパラメータID
36~39	ライトデータ	1	方式:絶対位置決め

2. WR-REQをONにします。

運転データがドライバに設定されます。設定が完了するとWR-ENDがONになります。

Output (スキャナ→ドライバ)

バイト	内容	Bit	信号名	設定値
32、33	ライトリクエスト	0	WR-REQ	1

Input(ドライバ→スキャナ)

バイト	内容	Bit	信号名	応答
32,33	リード/ライトステータス	8	WR-END	1
34,35	ライトパラメータID_R	-	_	3104

3. WR-REQをOFFにします。

WR-ENDがOFFに戻ります。

Output (スキャナ→ドライバ)

バイト	内容	Bit	信号名	設定値
32,33	ライトリクエスト	0	WR-REQ	0

Input (ドライバ→スキャナ)

I	バイト	内容	Bit	信号名	応答
	32、33	リード/ライトステータス	8	WR-END	0

4. 次の運転データを設定します。

Output (スキャナ→ドライバ)

バイト	内容	設定値	備考
34、35	ライトパラメータID	3105	運転データNo.1の「位置」のパラメータID
36~39	ライトデータ	5,000	位置:5,000 step

5. WR-REQをONにします。

運転データがドライバに設定されます。設定が完了するとWR-ENDがONになります。

• Output (Z + v + v) + (Z + v)

バイト	内容	Bit	信号名	設定値
32,33	ライトリクエスト	0	WR-REQ	1

• Input (ドライバ→スキャナ)

バイト	内容	Bit	信号名	応答
32,33	リード/ライトステータス	8	WR-END	1
34、35	ライトパラメータID_R	-	_	3105

6. WR-REQをOFFにします。

WR-ENDがOFFに戻ります。

Output (スキャナ→ドライバ)

バイト	内容	Bit	信号名	設定値
32,33	ライトリクエスト	0	WR-REQ	0

バイト	内容	Bit	信号名	応答
32,33	リード/ライトステータス	8	WR-END	0

7. S-ONをONにします。

モーターが励磁します。

Output (スキャナ→ドライバ)

バイト	内容	Bit	信号名	設定値
4.5	固定I/O(IN)	2	S-ON	1

8. READYがONになっていることを確認します。

• Input (ドライバ→スキャナ)

バイト	内容	Bit	信号名	応答
4,5	固定I/O(OUT)	5	READY	1

9. 運転データNo.1を選択します。

Output (スキャナ→ドライバ)

バイト	内容	Bit	信号名	設定値
2,3	運転データNo.選択	0	MO	1

10. STARTをONにします。

絶対位置決め運転が始まります。

• Output (Z + v + v) + (Z + v)

バイト	内容	Bit	信号名	設定値
4.5	固定I/O(IN)	3	START	1

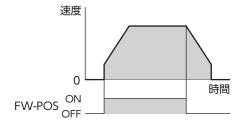
11. READYがOFFになっていることを確認します。

• Input (ドライバ→スキャナ)

バイト	内容	Bit	信号名	応答
4.5	固定I/O(OUT)	5	READY	0

12. STARTをOFFにします。

Output (スキャナ→ドライバ)


バイト	内容	Bit	信号名	設定値
4.5	固定I/O(IN)	3	START	0

5-2 マクロ運転

例として、次の連続運転を実行する方法を説明します。

● 設定例

- 運転データNo.:0
- 回転方向:FWD方向(正転方向)
- その他の設定:初期値

スキャナを主語にして説明しています。

- S-ONをONにします。
 モーターが励磁します。
 - Output (スキャナ→ドライバ)

バイト	内容	Bit	信号名	設定値
4、5	固定I/O(IN)	2	S-ON	1

2. READYがONになっていることを確認します。

• Input ($F \ni T) \rightarrow X \Rightarrow T \Rightarrow T$

バイト	内容	Bit	信号名	応答
4.5	固定I/O(OUT)	5	READY	1

3. 運転データNo.0を選択します。

Output (スキャナ→ドライバ)

バイト	内容	設定値
2,3	運転データNo.選択	0

4. FW-POSをONにします。

連続運転が始まります。

Output (スキャナ→ドライバ)

バイト	内容	Bit	信号名	設定値
4.5	固定I/O(IN)	14	FW-POS	1

5. FW-POSをOFFにします。

モーターが減速停止します。

• Output $(Z + \tau + \tau) + (Z + \tau)$

バイト	内容	Bit	信号名	設定値
4.5	固定I/O(IN)	14	FW-POS	0

5-3 ダイレクトデータ運転

ダイレクトデータ運転を実行する条件は、固定I/O (IN)のTRIGのONエッジまたはONレベルから選択できます。条件は、固定I/O (IN)のTRIG-MODEで選択できます。

■ TRIGのONエッジでダイレクトデータ運転を実行する場合

例として、次のダイレクトデータ運転を実行する方法を説明します。

● 設定例

- 運転方式:絶対位置決め
- 位置:5,000 step
- 速度:1,000 Hz
- 起動・変速レート:1,000 kHz/s
- 停止レート:1,000 kHz/s
- トルク制限値:100%
- 転送先:実行メモリ

● 運転処理のながれ

スキャナを主語にして説明しています。

- S-ONをONにします。
 モーターが励磁します。
 - Output $(Z + \tau + \tau) + (Z + \tau)$

バイト	内容	Bit	信号名	設定値
4.5	固定I/O(IN)	2	S-ON	1

- 2. DCMD-RDYがONになっていることを確認します。
 - Input ($F \ni T) \rightarrow X \Rightarrow T \Rightarrow T$

バイト	内容	Bit	信号名	応答
4.5	固定I/O(OUT)	6	DCMD-RDY	1

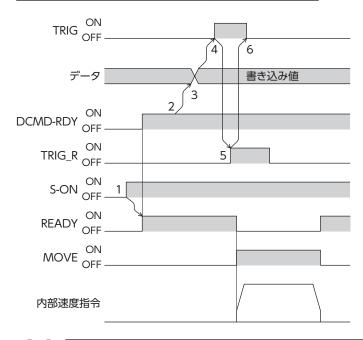
- 3. 次のデータを設定します。
 - Output (スキャナ→ドライバ)

バイト	内容	設定値	備考
4.5	TRIG-MODE[固定I/O(IN)のbit9]	0	ONエッジで起動
6.7	ダイレクトデータ運転 運転方式	1	絶対位置決め
8~11	ダイレクトデータ運転 位置	5,000	5,000 step
12~15	ダイレクトデータ運転 速度	1,000	1,000 Hz
16~19	ダイレクトデータ運転 起動・変速レート	1,000,000	1,000 kHz/s
20~23	ダイレクトデータ運転 停止レート	1,000,000	1,000 kHz/s
24,25	ダイレクトデータ運転 トルク制限値	1,000	100.0 %
26、27	ダイレクトデータ運転 転送先	0	実行メモリ

4. TRIGをONにします。

ダイレクトデータ運転が始まります。

Output (スキャナ→ドライバ)


バイト	内容	Bit	信号名	設定値
4.5	固定I/O(IN)	8	TRIG	1

- 5. TRIG_RがONになっていることを確認します。
 - Input (ドライバ→スキャナ)

バイト	内容	Bit	信号名	応答
4.5	固定I/O(OUT)	8	TRIG_R	1

- 6. TRIGをOFFにします。
 - Output (スキャナ→ドライバ)

バイト	内容	Bit	信号名	設定値
4.5	固定I/O(IN)	8	TRIG	0

(memo) TRQ-LMTをONにしないとトルク制限は働きません。 瞬時最大トルクまで出力されます。

■ TRIGのONレベルでダイレクトデータ運転を実行する場合

反映トリガを「位置」とし、次のダイレクトデータ運転を実行する方法を説明します。 反映トリガは「ダイレクトデータ運転 トリガ設定」パラメータで設定してください。

● 設定例

• 運転1の位置:7,000 step

• 運転2の位置:3,000 step

• 運転方式:絶対位置決め

• 速度:1,000 Hz

• 起動・変速レート: 1,000 kHz/s

• 停止レート:1,000 kHz/s

• トルク制限値:100%

• 転送先:実行メモリ

● 運転処理のながれ

スキャナを主語にして説明しています。

- 1. 次のパラメータを設定します。
 - Output (スキャナ→ドライバ)

バイト	内容	設定値	備考
34、35	ライトパラメータID	24852	「ダイレクトデータ運転 トリガ設定」のパラメータID
36~39	ライトデータ	-5	位置

2. WR-REQをONにします。

パラメータがドライバに設定されます。設定が完了するとWR-ENDがONになります。

• Output (Z + v + v) + (Z + v)

バイト	内容	Bit	信号名	設定値
32,33	ライトリクエスト	0	WR-REQ	1

Input(ドライバ→スキャナ)

バイト	内容	Bit	信号名	応答
32,33	リード/ライトステータス	8	WR-END	1

3. WR-REQをOFFにします。

WR-ENDがOFFに戻ります。

Output (スキャナ→ドライバ)

バイト	内容	Bit	信号名	設定値
32、33	ライトリクエスト	0	WR-REQ	0

Input(ドライバ→スキャナ)

バイト	内容	Bit	信号名	応答
32,33	リード/ライトステータス	8	WR-END	0

4. S-ONをONにします。

モーターが励磁します。

Output (スキャナ→ドライバ)

バイト	内容	Bit	信号名	設定値
4,5	固定I/O(IN)	2	S-ON	1

- 5. DCMD-RDYがONになっていることを確認します。
 - Input(ドライバ→スキャナ)

1	バイト	内容	Bit	信号名	応答
	4.5	固定I/O(OUT)	6	DCMD-RDY	1

- 6. 次のデータを設定します。
 - Output $(Z + v + \rightarrow V = V)$

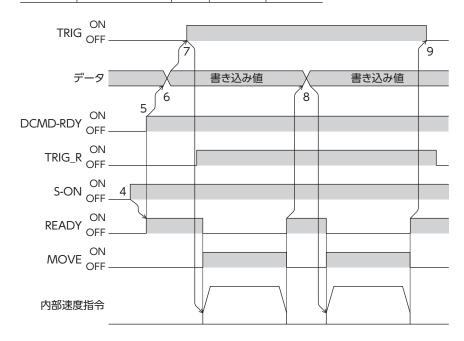
バイト	内容	設定値	備考
4.5	TRIG-MODE[固定I/O(IN)のbit9]	1	ONレベルで起動
6.7	ダイレクトデータ運転 運転方式	1	絶対位置決め
8~11	ダイレクトデータ運転 位置	7,000	7,000 step
12~15	ダイレクトデータ運転 速度	1,000	1,000 Hz
16~19	ダイレクトデータ運転 起動・変速レート	1,000,000	1,000 kHz/s
20~23	ダイレクトデータ運転 停止レート	1,000,000	1,000 kHz/s
24,25	ダイレクトデータ運転 トルク制限値	1,000	100.0 %
26、27	ダイレクトデータ運転 転送先	0	実行メモリ

7. TRIGをONにします。

運転1のダイレクトデータ運転が始まります。

Output (スキャナ→ドライバ)

バイト	内容	Bit	信号名	設定値
4,5	固定I/O(IN)	8	TRIG	1


- 8. 運転1が完了したことを確認し、次のデータを設定します。 運転2のダイレクトデータ運転が始まります。
 - Output (スキャナ→ドライバ)

バイト	内容	設定値	備考
8~11	ダイレクトデータ運転 位置	3,000	3,000 step

memo

- 運転2のダイレクトデータ運転を実行するには、運転2の「位置」を運転1とは違う値にしてください。
- 「位置」以外の値を変更した場合、運転2のダイレクトデータ運転は実行されません。
- 9. 運転2が完了したことを確認し、TRIGをOFFにします。
 - Output (スキャナ→ドライバ)

İ	バイト	バイト 内容		信号名	設定値	
•	4.5	固定I/O(IN)	8	TRIG	0	_

7 パラメータ一覧

EtherNet/IPで設定するパラメータの一覧です。 ここで紹介しているデータやパラメータは、MEXEO2でも設定できます。

◆もくじ

1 パラメータの反映タイミング198	8 /\stacksquare	ラメータR/Wコマンド	215
2 メンテナンスコマンド199	8-1	(p4)基本設定パラメータ	
3 モニタコマンド201	8-2	(p5)モーター・機構(座標/JOG/原点 設定パラメータ	
4 運転データR/Wコマンド208	8-3	(p6) Alarm・Info設定パラメータ	218
	8-4	(p7)I/O動作・機能パラメータ	221
4-1 運転データNo.の基準アドレス208	8-5	(p8) Direct-IN機能選択(DIN)	
4-2 パラメータID210		パラメータ	224
4-3 設定例211	8-6	(p9) Direct-OUT機能選択(DOUT)	
5 運転I/OイベントR/Wコマンド212		パラメータ	
5-1 運転I/Oイベントの基準アドレス 212	8-7	(p10) Remote-I/O機能選択 (R-I/O) パラメータ	
5-2 運転I/OイベントR/Wコマンドの	8-8	(p11)EXT-IN·VIR-IN·USR-OUT機	能選択
パラメータID212		(拡張) パラメータ	227
6 プロテクト解除コマンド213	8-9	(p12)通信・I/F機能パラメータ	229
	8-10	(p13)調整・機能パラメータ	230
7 運転データ拡張用設定R/Wコマンド214	9 入	出力信号 割り付け一覧	232
	9-1	入力信号	232
	9-2	出力信号	233

パラメータの反映タイミング

ドライバで使用するデータはすべて32 bit幅です。

パラメータはRAMまたはNVメモリに保存されます。RAMのパラメータは制御電源を遮断すると消去されますが、NVメモ リのパラメータは制御電源を遮断しても保存されています。

ドライバに制御電源を投入すると、NVメモリのパラメータがRAMに転送され、RAM上でパラメータの再計算やセットアッ プが行なわれます。

Implicit通信で設定したパラメータはRAMに保存されます。RAMに保存されたパラメータをNVメモリに保存するには、メ ンテナンスコマンドの[NVメモリー括書き込み]を行なってください。

パラメータを変更したときに、変更した値が反映されるタイミングはパラメータによって異なります。「表記の規則」でご確 認ください。

- (memo) Implicit通信で設定したパラメータはRAMに保存されます。制御電源の再投入が必要なものは、電源を 切る前に必ずNVメモリへ保存してください。
 - NVメモリへの書き込み可能回数は、約10万回です。
 - MEXE02で設定したパラメータは、[データの書き込み]を行なうとNVメモリに保存されます。

■ 表記の規則

● 反映タイミングについて

本編では、それぞれの反映タイミングをアルファベットで表わしています。

表記	反映タイミング	内容
Α	即時反映	パラメータを書き込むと、すぐに再計算とセットアップが行なわれます。
В	運転停止後に反映	運転を停止すると、再計算とセットアップが行なわれます。
С	Configurationの実行後に反映	Configurationの実行後または制御電源の再投入後に再計算とセット アップが行なわれます。
D	制御電源の再投入後に反映	制御電源の再投入後に再計算とセットアップが行なわれます。

● READ、WRITEについて

本編では、READ、WRITEを次のように表わす場合があります。

表記	内容	
R	READ	
W	WRITE	
R/W	READ/WRITE	

2 メンテナンスコマンド

アラームの解除、ラッチのクリア、NVメモリの一括処理などを行ないます。

「アラーム履歴詳細展開」以外のコマンドを実行するときは、パラメータIDをライトパラメータIDに設定してから、WR-REQをONにしてください。ライトデータの設定は不要です。

メンテナンスコマンドには、NVメモリー括処理やP-PRESETなど、メモリが操作される処理があります。 不必要に連続して実行しないようご注意ください。

パラメータID		AT III	rho ^r b	孙中华田	如如/法
Dec	Hex	· 名称	内容 	設定範囲	初期値
192	00C0h	アラームのリセット	現在発生中のアラームを解除します。アラームの 種類によっては解除できないものがあります。		
194	00C2h	アラーム履歴のクリア	アラーム履歴をクリアします。		
197	00C5h	P-PRESET実行	指令位置をプリセットします。		
198	00C6h	Configuration	パラメータの再計算とセットアップを実行しま す。		
199	00C7h	データー括初期化(通信用パラメータ除く)	NVメモリに保存されているパラメータを初期値に戻します。(通信設定に関するパラメータを除く)		
200	00C8h	NVメモリー括読み出し	NVメモリに保存されているパラメータをRAMに 読み出します。RAMに保存されている運転デー タとパラメータは、すべて上書きされます。		
201	00C9h	NVメモリー括書き込み	RAMに保存されているパラメータをNVメモリに 書き込みます。NVメモリの書き込み可能回数は 約10万回です。		
202	00CAh	全データー括初期化(通信用 パラメータ含む)	NVメモリに保存されているすべてのパラメータ を初期値に戻します。	_	_
203	00CBh	バックアップデータ読み出し	すべてのデータをバックアップ領域から読み出 します。		
204	00CCh	バックアップデータ書き込み	すべてのデータをバックアップ領域に書き込み ます。		
205	00CDh	ラッチ情報のクリア	ラッチ情報をクリアします。		
206	00CEh	シーケンス履歴のクリア	シーケンス履歴をクリアします。		
207	00CFh	TRIPメーターのクリア	TRIPメーターをクリアします。		
208	00D0h	ETO-CLR入力の実行	HWTO1入力とHWTO2入力の両方をONにして動力遮断状態を解除した後、モーターを励磁します。		
209	00D1h	ZSG-PRESET	Z相の位置を再設定します。		
210	00D2h	ZSG-PRESETクリア	「ZSG-PRESET」コマンドで再設定したZ相の位置 データをクリアします。		
211	00D3h	インフォメーションのクリア	インフォメーションを解除します。		
212	00D4h	インフォメーション履歴のク リア	インフォメーション履歴をクリアします。		
213	00D5h	アラーム履歴詳細展開	このコマンドに履歴番号(1~10)を書き込み、モニタコマンドの「アラーム履歴詳細」を実行すると、指定したアラーム履歴の詳細項目を確認できます。	0:未選択 1〜10:アラーム 履歴	0

■ Configuration

Configurationは、次のすべての条件が満たされると実行できます。

- アラームが発生していない。
- モーターが動作していない。
- EtherNet/IPで次のコマンドを実行していない。
 - データー括初期化
 - 全データー括初期化
 - NVメモリー括読み出し
 - NVメモリー括書き込み
 - バックアップデータ読み出し
 - バックアップデータ書き込み
- MEXE02で次のモニタやメニューを実行していない。
 - ティーチング・リモート運転
 - I/Oテスト
 - データの書き込み
 - 工場出荷時設定に戻す

Configuration実行前後のドライバの状態を示します。

項目	Configurationが可能な状態	Configurationの実行中	Configurationの実行後	
PWR/ALM LED	緑点灯	緑と赤が同時に点滅		
電磁ブレーキ	保持/解放	保持	ドライバの状態によります。	
モーター励磁	励磁/無励磁	無励磁		
出力信号	有効	無効	有効	
入力信号	有効	無効	有効	

 $ig({\sf memo} ig)$ Configurationの実行中にモニタを行なっても、正常なモニタ値が返らない場合があります。

3 モニタコマンド

指令位置、指令速度、アラーム・インフォメーション履歴などをモニタします。 すべてREADになります。

パラメータID		AT Hr	内容		
Dec	Hex	- - -	MA 		
64	0040h	現在アラーム	現在発生中のアラームコードです。		
65	0041h	アラーム履歴1	もっとも新しいアラーム履歴です。 アラームが発生しているときは、そのコードがアラーム履歴1にも同時に表示されます。		
66	0042h	アラーム履歴2			
67	0043h	アラーム履歴3			
68	0044h	アラーム履歴4			
69	0045h	アラーム履歴5	アラーム履歴です。		
70	0046h	アラーム履歴6	アン 乙辰征 (す)		
71	0047h	アラーム履歴7			
72	0048h	アラーム履歴8			
73	0049h	アラーム履歴9			
74	004Ah	アラーム履歴10	もっとも古いアラーム履歴です。		
97	0061h	現在の選択データNo.	選択されている運転データNo.です。 優先順位はダイレクト選択(D-SEL)、M0〜M7入力の順です。		
98	0062h	現在の運転データNo.	ストアードデータ運転中または連続マクロ運転で運転中の運転データNo.です。運転データを使用しない運転では、[-1]が表示されます。 停止中も[-1]が表示されます。		
99	0063h	指令位置	現在の指令位置です。ラウンド機能が有効のときは、ラウンド座標上の値が表示されます。		
100	0064h	指令速度(r/min)	現在の指令速度です。 (r/min)		
101	0065h	指令速度(Hz)	現在の指令速度です。(Hz)		
102	0066h	検出位置	現在の検出位置です。ラウンド機能が有効のときは、ラウンド座標上の値が表示されます。		
103	0067h	検出速度(r/min)	現在の検出速度です。(r/min)		
104	0068h	検出速度(Hz)	現在の検出速度です。(Hz)		
105	0069h	ドウェルの残り時間	運転終了遅延中またはドウェル時間中における残り時間です。		
106	006Ah	ダイレクト1/0	ダイレクト入出力、拡張入力、差動出力、および仮想入力の状態です。 (bitの配置 → 205ページ)		
107	006Bh	トルクモニタ(1=0.1 %)	現在の出力トルクを、定格トルクに対する割合で示します。		
108	006Ch	負荷率モニタ (1=0.1 %)	現在のモーター出力を、連続運転領域の最大出力に対する割合で示します。		
109	006Dh	積算負荷モニタ	運転中の負荷の積算値です。(内部単位) モーターの回転方向に関係なく、負荷を積算します。		
110	006Eh	トルク制限値	現在のトルク制限値です。		
111	006Fh	ターゲット位置	次の運転における目標指令位置を絶対座標で示します。 位置決めSD運転、インチング運転、高速原点復帰運転、原点復帰運転(オフセット移動時)、位置決めダイレクトデータ運転 次の運転では、運転開始位置を示します。		
			連続SD運転、連続マクロ運転、インチング運転以外のJOGマクロ 運転、原点復帰運転(センサ使用時)、連続ダイレクトデータ運転		
112	0070h	Next No.	運転中の運転データの「結合先」で指定された運転データNo.です。 運転終了後も値をラッチします。「結合」が「結合無」、または「結合先」 が「Stop」のときは、「−1」が表示されます。		
113	0071h	ループ戻りNo.	ループ運転(拡張ループ運転)において、ループの起点となる運転データNo.を示します。ループが実行されていないとき、または停止中は「-1」が表示されます。		

パラメ	ータID	AT UT	thợp
Dec	Hex	· 名称 	内容
114	0072h	ループカウント	ループ運転(拡張ループ運転)において、現在のループ回数を示します。ループ以外の運転が実行されているとき、または停止中は0が表示されます。
115	0073h	イベントモニタ指令位置(NEXT)	
116	0074h	イベントモニタ検出位置(NEXT)	
117	0075h	イベントモニタ指令位置(JUMP0- 弱イベント)	
118	0076h	イベントモニタ検出位置(JUMP0- 弱イベント)	 ()内のラッチトリガが発生したときの位置をラッチします。 =
119	0077h	イベントモニタ指令位置(JUMP1 – 強イベント)	ラッチ中に再度同じラッチトリガが発生すると、値が上書されます。 ラッチをクリアすると、0が表示されます。
120	0078h	イベントモニタ検出位置(JUMP1 – 強イベント)	
121	0079h	イベントモニタ指令位置(運転停止)	
122	007Ah	イベントモニタ検出位置(運転停止)	
123	007Bh	インフォメーション	現在発生中のインフォメーションコードです。
124	007Ch	ドライバ温度	現在のドライバ温度です。(1=0.1 ℃)
125	007Dh	モーター温度	現在のモーター温度です。(1=0.1°C)
126	007Eh	ODOメーター(1=0.1 kRev)	モーターの積算走行距離を回転数で示します。お客様側ではクリアできません。
127	007Fh	TRIPメーター(1=0.1 kRev)	モーターの走行距離を回転数で示します。お客様側でクリアできま す。
128	0080h	シーケンス履歴1	
129	0081h	シーケンス履歴2	
130	0082h	シーケンス履歴3	
131	0083h	シーケンス履歴4	
132	0084h	シーケンス履歴5	
133	0085h	シーケンス履歴6	
134	0086h	シーケンス履歴7	
135	0087h	シーケンス履歴8	」これまでに実行した運転データNo.の履歴です。停止したときは「−1」
136	0088h	シーケンス履歴9	が表示されます。運転中は、「現在の運転データNo.」と同じ値がシー ケンス履歴1にも表示されます。
137	0089h	シーケンス履歴10	クラスルを正言との表がですためます。
138	008Ah	シーケンス履歴11	
139	008Bh	シーケンス履歴12	
140	008Ch	シーケンス履歴13	
141	008Dh	シーケンス履歴14	
142	008Eh	シーケンス履歴15	
143	008Fh	シーケンス履歴16	
144	0090h	検出位置32 bitカウンタ	検出位置の32 bitカウンタです。ラウンド機能に依存せずにカウントします。制御電源を再投入すると、ラウンド座標内に戻ります。
145	0091h	指令位置32 bitカウンタ	指令位置の32 bitカウンタです。ラウンド機能に依存せずにカウントします。制御電源を再投入すると、ラウンド座標内に戻ります。
147	0093h	ループカウントバッファ	ループ運転(拡張ループ運転)において、現在のループ回数を示します。 運転開始信号がONになるまで値を保持します。
150	0096h	整定時間(ms)	指令終了後からIN-POS出力がONになるまでの時間です。
160	00A0h	主電源投入回数	主電源を投入した回数です。
161	00A1h	主電源通電時間(min)	主電源を投入してから経過した時間を分単位で示します。
162	00A2h	制御電源投入回数	制御電源を投入した回数です。
163	00A3h	インバータ電圧(1=0.1 V)	ドライバのインバータ電圧です。
166	00A6h	IP ADDR SW0	IPアドレス設定SW(×16)の入力状態です。
167	00A7h	IP ADDR SW1	IPアドレス設定SW(×1)の入力状態です。
169	00A9h	BOOTからの経過時間(ms)	制御電源を投入してから経過した時間です。
105	00/1011	2001/300/IEEE/III (1113)	

Pec	パラメータID							
184 0088h VOステータス2 106 0084h VOステータス2 106 0084h VOステータス3 187 0088h VOステータス4 188 008Ch VOステータス5 189 008Ch VOステータス5 190 008Ch VOステータス6 190 009Ch VOステータス6 190 009Ch VOステータス7 191 009Fh VOステータス7 191 009Fh VOステータス8 1280 0500h アラーム配歴評報(アラームコード) 1281 0501h アラーム配歴評報(アラームコード) 1282 0502h アラーム配歴評報(参加(アクス) 1286 0505h アラーム配歴評報(参加(アクス) 1287 0507h アラーム配配評報(参加(アクス) 1287 0507h アラーム配配評報(参加(アクス) 1287 0507h アラーム配配評報(参加(アクス) 1287 0508h アラーム配配評報(参加(アクス) 1291 0508h アラーム配配評報(参加(アクス) 1291 0508h アラーム配配評報(参加(アクス) 1292 050Ch 1292 050Ch 1292 050Ch 1293 0513h 4ンフォメーション派配2 1298 0513h 4ンフォメーション派配2 1298 0513h 4ンフォメーション派配2 1298 0513h 4ンフォメーション派配2 1298 0513h 4ンフォメーション派配2 1300 0518h 4ンフォメーション派配2 1310 0518h 4ンフォメーション派配2 1310 0518h 4ンフォメーション派配2 1310 0518h 4ンフォメーション派配2 1310 0518h 4ンフォメーション派配2 1311 0521h 4ンフォメーション派配2 1312 0520h 1313 0521h 4ンフォメーション系生時間派配2 4ンフォメーション系生時間派配2 4ンフォメーション系生時間派配2 4ンフォメーション系生時間派配2 4ンフォメーション系生時間派配2 4ンフォメーション系生時間派配2 4ンフォメーション系生時間派配2 4ンフォメーション系生時間派配2 4ンフォメーション系生時間派配2 4ンフォメーション系生時間源配3 4ンフォメーションアの配2 4ンフォメーション系生時間源配3 4ンフォメーションアの配2 4ンフォメーションアの配2 4ンフォメーションアの配2 4ンフォメーション系生時間源でする 4ンフォメーションアの配2 4ンフォメーション系生時間源でする 4ンフォメーションアの配2 4ンフォメーションアの2 4ンフォメーションアの2 4ン 本・セールの2 4			名称	内容				
185 0089h			1/07 テータフ1					
186								
187 0088h VOステータス4 188 008Ch VOステータス5 189 008bh VOステータス6 190 008Eh VOステータス6 190 008Eh VOステータス7 191 008Fh VOステータス8 1280 0500h アラーム魔獣料(アラームコード) 1281 0501h アラーム魔獣料(アラームコード) 1282 0502h アラーム魔獣科(アラームフード) 1283 0503h アラーム魔獣科(アラームア) 1285 0505h アラーム魔獣科(アラームア) 1286 0506h アラーム魔獣科(アラームア) 1286 0506h アラーム魔獣科(RMO) 1287 0509h アラーム魔獣科(RMO) 1288 0509h アラーム魔獣科(RMO) 1288 0509h アラーム魔獣科(RMO) 1289 0509h アラーム魔獣科(RMO) 1290 0508h アラーム魔獣科(RMO) 1290 0508h アラーム魔獣科(RMO) 1291 0508h 1979 1291 1292 0500h 7フーム魔獣科(RMO) 1291 1292 0500h 7フーム魔獣科(RMO) 1292 0500h 7フーム魔獣科(RMO) 1292 1293 0510h インフォメーション魔型 1294 0511h インフォメーション魔型 1294 0511h インフォメーション魔型 1295 0512h インフォメーション魔型 1296 0513h インフォメーション魔型 1297 0511h インフォメーション魔型 1298 0512h インフォメーション魔獣 1300 0516h インフォメーション発生時間魔獣 1311 0516h インフォメーション発生時間魔獣 1311 0520h インフォメーション発生時間魔獣 1315 0520h インフォメーション発生時間魔獣 1315 0520h インフォメーション発生時間を開発 インフォメーションが発生した時間の尾獣 インフォメーションが発生した時間の尾獣 インフォメーションが発生した時間の尾獣 インフォメーションが発生した時間の尾獣 インフォメーションが発生した時間の尾獣 インフォメーションが発生した時間の尾獣 インフォメーションのど 1315 0520h インフォメーション発音 インフォメーションが発生しているときは、その発生時間が開始 インフォメーションを開始 1315 0520h インフォメーションを開始 1316 0510h 1310 1310 1310 1310 1310 1310 1310								
188 00BCh VOステータス5 189 00BCh VOステータス6 190 00BCh VOステータス7 191 00BCh VOステータス7 191 00BCh VOステータス7 191 00BCh VOステータス7 1281 0500h アラーム版配評権(アラームコード) 1281 0501h アラーム配配評権(ドライバ温度) 1282 0502h アラーム配配評権(ドライバ温度) 1283 0503h アラーム配配評権(ドライバ温度) 1284 0504h アラーム配配評権(ドライバ温度) 1285 0505h アラーム配配評権(地口の力) 1286 0506h アラーム配配評権(地国の) 1287 0507h アラーム配配評権(地国の) 1287 0507h アラーム配配評権(機士の力) 1288 0508h アラーム履配評権(機士の者) 1290 050Ah 門から配配評権(株出の国) 1291 050Bh 対力スメーション配配計権(株出の国) 1292 050Ch アラーム履配評権(株出の国) 1292 050Ch アラーム履配評権(株出の国) 1292 0510h インフォメーション配配計権(地工の力) 1293 0510h インフォメーション配配計権(生産添済電時間) 1294 0510h インフォメーション配配計程 1300 0514h インフォメーション配配計程 1300 0514h インフォメーション配配計程 1300 0515h インフォメーション配配計程 1301 0515h インフォメーション配配計程 1302 0516h インフォメーション配配計程 1303 0517h インフォメーション配配計程 1306 051Ah インフォメーション配配目 1305 0516h インフォメーション配配目 1307 0518h インフォメーション配配目 1308 051Ch インフォメーション配配目 1308 051Ch インフォメーション配配目 1310 051Bh インフォメーション配配目 1310 051Bh インフォメーション配配目 1310 051Ch インフォメーション配配目 1311 051Ch インフォメーション発展目 1311 051Ch インフォメーション発展目 1311 051Ch インフォメーション発展目 1311 051Ch インフォメーション発生時間配配 1310 051Ch インフォメーション発展目 1311 051Ch インフォメーション発生時間配配 1311 052Ch インフォメーション発生時間配配 1315 0522h インフォメーションの配品 1315 0522h インフォメーションの配品 1316 0522h 1316 0								
189 008Dh 1/Oステータス6 190 008Eh 1/Oステータス7 191 008Eh 1/Oステータス7 191 008Eh 1/Oステータス8 1280 0500h アラーム薄腔詳細(アラームコード) 1281 0501h アラーム薄腔詳細(アラームコード) 1283 0503h アラーム意歴詳細(アラームコード) 1283 0503h アラーム意歴詳細(アクスカー) 1286 0505h アラーム意歴詳細(アクスカー) 1286 0506h アラーム意歴詳細(アクスカー) 1287 0505h アラーム意歴詳細(学の人力) 1286 0508h アラーム意歴詳細(学の人力) 1289 0509h アラーム意歴詳細(学の人力) 1289 0509h アラーム意歴詳細(学の内容) 1299 0509h アラーム意歴詳細(学の内容) 1290 0500h 1290 0500h 1290 0500h 1290 0510h 7フォメーション展歴1 1291 0510h 7フォメーション展歴1 1292 0510h 7ンフォメーション展歴1 1293 0510h 7ンフォメーション展歴3 1299 0513h 7ンフォメーション展歴3 1299 0513h 7ンフォメーション展歴3 1299 0513h 7ンフォメーション展歴5 1301 0515h 7ンフォメーション展歴6 1302 0516h 7ンフォメーション展歴8 1304 0518h 7ンフォメーション展歴1 1306 0516h 7ンフォメーション展歴1 1307 0516h 7ンフォメーション展歴1 1308 0510h 7ンフォメーション展歴1 1309 0510h 7ンフォメーション展歴13 1300 0510h 7ンフォメーション展歴13 1301 0510h 7ンフォメーション展歴13 1301 0510h 7ンフォメーション展歴13 1311 0520h 7ンフォメーション展歴15 1311 0520h 7ンフォメーション発生時間隠歴2 (ms) 1314 0520h 7ンフォメーション発生時間隠歴2 1315 0520h 7ンフォメーション発生時間隠歴2 1316 0520h 7ンフォメーション発生時間隠歴2 1317 0520h 7ンフォメーション発生時間隠歴2 1316 0520h 7ンフォメーション発生時間隠歴2 1316 0520h 7ンフォメーション発生時間隠歴2 1316 0520h 7ンフォメーション発生時間隠歴2 1317 0520h 7ンフォメーション発生時間隠歴2 1317 0520h 7ンフォメーション発生時間隠歴2 1318 0520h 7ンフォメーション発生時間隠歴2 1319 0520h 7ンフォメーション発生時間隠歴2 1316 0520h 7ンフォメーション発生時間隠歴2 1317 0520h 7ンフォメーション発生時間隠歴2 1316 0520h 7ンフォメーション発生時間隠歴2 1317 1318 1318 1319 1319 1310 1310 1310 1310				内部I/OのON/OFF状態です。(bitの配置 🗘 205ページ)				
190 008Fh I/Oステータス7 191 008Fh I/Oステータス7 191 008Fh I/Oステータス8 1280 0500h アラーム歴歴詳細(アラームコード) 1281 0501h アラーム歴歴詳細(アラームコード) 1282 0502h アラーム歴歴詳細(アラー温度) 1283 0503h アラーム歴歴詳細(アラー温度) 1284 0504h アラーム歴歴詳細(インパータ電圧) 1285 0505h アラー人歴歴詳細(マル(カナ)) 1287 0507h アラーム歴歴詳細(運転情報0) 1288 0508h アラーム歴歴詳細(運転情報0) 1288 0508h アラーム歴歴詳細(運転情報1) 1289 0509h アラーム歴歴詳細(理転情報1) 1290 050Ah アラーム歴歴詳細(理転情報1) 1291 050Bh アラーム歴歴詳細(理転情報5) 1292 050Ch アラーム歴歴詳細(理転情報5) 1292 050Ch アラーム歴歴詳細(理転情報5) 1293 0510h インフォメーション履歴2 1294 0510h インフォメーション履歴2 1295 0511h インフォメーション履歴2 1297 0511h インフォメーション履歴2 1297 0511h インフォメーション履歴2 1298 0512h インフォメーション履歴5 1300 0514h インフォメーション履歴5 1301 0515h インフォメーション履歴5 1301 0515h インフォメーション履歴7 1303 0519h インフォメーション履歴7 1304 0518h インフォメーション履歴1 1305 0519h インフォメーション履歴1 1310 0510h インフォメーション履歴1 1310 0510h インフォメーション履歴1 1311 0510h インフォメーション歴歴1 1313 0510h インフォメーション歴歴1 1314 0520h インフォメーション歴歴16 1315 0520h インフォメーション歴歴16 1316 0520h インフォメーション歴歴16 1317 0520h インフォメーション歴歴16 1318 0521h インフォメーション歴歴16 1319 0520h インフォメーション歴歴16 1310 0520h インフォメーション発生時間履歴2 (ms) 1311 0520h インフォメーション発生時間履歴2 センフォメーションが発生した時間の履歴です。インフォメーションが発生した時間の履歴です。インフォメーションが発生した時間の履歴です。インフォメーションが発生した時間の履歴です。インフォメーションが発生した時間の履歴です。		000000						
191								
1280 0501h								
1281 0501h								
1282 0502h アラーム履歴詳細(ドライバ温度) 1283 0503h アラーム履歴詳細(モーター温度) 1284 0504h アラーム履歴詳細(モノター選度) 1286 0505h アラーム履歴詳細(東州での上り) 1286 0505h アラーム履歴詳細(薬剤情報) メンテナンスコマンドの「アラーム履歴詳細展別」で指定したアラーム履歴計細(操剤情報) 1289 0508h アラーム履歴詳細(機型が入力) 1289 0509h アラーム履歴詳細(機型が入力) 1289 0508h アラーム履歴詳細(接型が) 1291 0508h アラーム履歴詳細(接型が) 1291 0508h アラーム履歴詳細(建型が) 1292 0506h [min] 1292 0510h インフォメーション履歴 1292 0511h インフォメーション履歴 1294 0511h インフォメーション履歴 1297 0511h インフォメーション履歴 1297 0511h インフォメーション履歴 1299 0513h インフォメーション履歴 1299 0513h インフォメーション履歴 1300 0514h インフォメーション履歴 1300 0515h インフォメーション履歴 1301 0515h インフォメーション履歴 1302 0516h インフォメーション履歴 1303 0517h インフォメーション履歴 1304 0518h インフォメーション履歴 1306 0518h インフォメーション履歴 1307 0518h インフォメーション履歴 1307 0518h インフォメーション履歴 1308 0516h インフォメーション履歴 1310 0515h インフォメーション履歴 1311 0517h インフォメーション履歴 1311 0517h インフォメーション発生時間履歴 インフォメーション経歴でする インフォメーション発生時間履歴 インフォメーション発生時間履歴 インフォメーション発生時間履歴 インフォメーション展歴 1315 0520h インフォメーション発生時間履歴 インフォメーション発生時間歴 インフォン・ローローローローローローローローローローローローローローローローローローロー								
1283 0503h アラーム履歴詳細(モーター温度) 1284 0505h アラーム履歴詳細(インパータ亜仁) 1285 0505h アラーム履歴詳細(根のリンの力) 1287 0507h アラーム履歴詳細(無いしの力) 1287 0507h アラーム履歴詳細(無いしの力) 1287 0507h アラーム履歴詳細(ほいしの力) 1289 0508h アラーム履歴詳細(医出位面) 1290 0508h アラーム履歴詳細(医出位面) 1290 0508h アラーム履歴詳細(産転情報の) 1291 0508h アラーム履歴詳細(全電が通常的) 1292 0508h アラーム履歴詳細(全電が通常的) 1292 0508h アラーム履歴詳細(主電が通常時間) 1292 0510h インフォメーション履歴1 1295 0510h インフォメーション履歴2 1298 0513h インフォメーション履歴3 1299 0513h インフォメーション履歴3 1299 0513h インフォメーション履歴5 1301 0515h インフォメーション履歴5 1301 0515h インフォメーション履歴5 1301 0515h インフォメーション履歴6 1302 0516h インフォメーション履歴7 1303 0517h インフォメーション履歴1 1306 0518h インフォメーション履歴1 1307 0518h インフォメーション履歴1 1307 0518h インフォメーション履歴1 1308 0510h インフォメーション履歴1 1310 0515h インフォメーション履歴1 1311 0516h インフォメーション履歴16 1312 0520h インフォメーション発生時間履歴2 (ms) インフォメーション発生時間履歴2 インフォメーション発生時間履歴2 インフォメーションが発生した時間の履歴です。 インフォメーション発生時間履歴2 インフォメーション発生時間履歴2 インフォメーション発生時間履歴2 インフォメーション発生時間履歴2 インフォメーションが発生した時間の履歴です。 インフォメーションが発生した時間の履歴です。 インフォメーションが発生的問題歴7 インフォメーション発生時間履歴2 インフォメーションが発生した時間の履歴です。 インフォメーションが発生した時間の履歴です。								
1284 0504h アラーム慰歴詳細(インバータ電圧) 1286 0505h アラーム履歴詳細(映理/(OA力)) 1287 0507h アラーム履歴詳細(映理/(OA力)) 1288 0508h アラーム履歴詳細(操師報の) 1289 0509h アラーム履歴詳細(接触情報の) 1290 0509h アラーム履歴詳細(接地位置) 1291 0508h 時期) [ms] 1291 0508h アラーム履歴詳細(建転情報の) 1292 050Ch 時期) [ms] 1292 050Ch アラーム履歴詳細(建転開始からの経過時期) [ms] 1293 0508h アラーム履歴詳細(建転開始からの経過時期) [ms] 1294 0510h インフォメーション履歴1								
1285 0505h アラーム機歴詳細(物理)(ア入力) 1286 0506h アラーム機歴詳細(準点情報の) 1287 0507h アラーム機歴詳細(運転情報の) 1289 0509h アラーム機歴詳細(運転情報の) 1289 0509h アラーム機歴詳細(接転情報の) 1290 0508h 万ラーム機歴詳細(接転情報の) 1291 0508h アラーム機歴詳細(接色の内容です。(アラームの履歴中237ページ) 1291 0508h アラーム機歴詳細(注電転開始からの経過時間) [ms] 1292 050Ch [min] 1292 050Ch [min] 1294 0510h インフォメーション機歴 インフォメーション機歴 インフォメーション機歴 1297 0511h インフォメーション機歴 インフォメーション機歴 1298 0512h インフォメーション機歴 1300 0514h インフォメーション機歴 1301 0515h インフォメーション機歴 1301 0515h インフォメーション機歴 1302 0516h インフォメーション機歴 1303 0517h インフォメーション機歴 1303 0517h インフォメーション機歴 1305 0519h インフォメーション機歴 1306 0518h インフォメーション機歴 1306 0518h インフォメーション機歴 1307 0518h インフォメーション機歴 1308 051Ch インフォメーション機歴 1308 051Ch インフォメーション機歴 1311 051Fh インフォメーション機歴 1311 051Fh インフォメーション機歴 1311 0522h (ms) インフォメーション発生時間機歴 インフォメーション発生時間機歴 インフォメーション発生時間機歴 1313 0521h インフォメーション発生時間機歴 インフォメーション発生 1315 0528h インフォメーション発生時間機歴 インフォメーション発生 1315 0528h インフォメーション発生 1316 1316 1317 1317 1318 131								
1286 0506h アラーム腰唇詳細(R-I/O出力) 1287 0507h アラーム腰唇詳細(康和情報)) 1288 0508h アラーム腰唇詳細(康転情報)) 1290 0508h アラーム腰唇詳細(康転情報)) 1290 050Ah 詩問) [ms] 1291 050Bh	_							
1287 0507h アラーム履歴詳細(運転情報の) 1288 0508h アラーム履歴詳細(運転情報の) 1290 0509h アラーム履歴詳細(接知情報の) 1290 0508h アラーム履歴詳細(接知情報の) 1291 0508h アラーム履歴詳細(接知情報の) 1291 0508h アラーム履歴詳細(接知情報の) 1292 0500ch アラーム履歴詳細(注電源通電時間) 1292 0500ch アラーム履歴詳細(注電源通電時間) 1294 0510h インフォメーション履歴1 1295 0511h インフォメーション履歴2 1296 0511h インフォメーション履歴2 1298 0511h インフォメーション履歴2 1298 0511h インフォメーション履歴3 1299 0513h インフォメーション履歴4 1300 0514h インフォメーション履歴6 1302 0516h インフォメーション履歴6 1302 0516h インフォメーション履歴7 1303 0517h インフォメーション履歴8 1304 0518h インフォメーション履歴8 1305 0519h インフォメーション履歴10 1306 0514h インフォメーション履歴10 1306 0516h インフォメーション履歴11 1307 0518h インフォメーション履歴11 1307 0518h インフォメーション履歴12 1318 0516h インフォメーション履歴15 1311 0516h インフォメーション履歴16 1312 0520h インフォメーション発生時間履歴1 1313 0521h インフォメーション発生時間履歴2 (ms) インフォメーション発生時間履歴2 インフォメーション発生時間履歴2 インフォメーション発生時間履歴2 インフォメーション発生時間履歴2 インフォメーション発生時間履歴2 インフォメーション発生時間履歴5 インフォメーション発生時間履歴6 センセもボレバインフォメーションが発生した時間の履歴です。 インフォメーションが発生した時間の履歴です。 インフォメーションが発生した時間の履歴です。 インフォメーションが発生した時間の履歴です。	. 200							
1288 0508h アラーム履歴詳細 (棟出位置) 1290 0508h アラーム履歴詳細 (検出位置) 1291 0508h アラーム履歴詳細 (検出位置) 1291 0508h アラーム履歴詳細 (検出位置) 1292 050Ch アラーム履歴詳細 (使転開始からの経過時間) [ms] 1292 050Ch アラーム履歴詳細 (連転開始からの経過時間) [mm] 1293 050Ch インフォメーション履歴1 セッとも新しいインフォメーション履歴です。 (インフォメーションの履歴・248ページ) インフォメーションが発生しているときは、そのコードがインフォメーション履歴 1298 0512h インフォメーション履歴 4 インフォメーション履歴 1299 0513h インフォメーション履歴 1 1300 0514h インフォメーション履歴 1 1301 0515h インフォメーション履歴 1 1301 0515h インフォメーション履歴 1 1303 0517h インフォメーション履歴 1 1303 0517h インフォメーション履歴 1 1305 0519h インフォメーション履歴 1 1305 0519h インフォメーション履歴 1 1307 0515h インフォメーション履歴 1 1308 051Ch インフォメーション履歴 1 1308 051Ch インフォメーション履歴 1 1311 051Eh インフォメーション履歴 1 1311 051Eh インフォメーション履歴 1 1311 0521h インフォメーション履歴 1 1311 0521h インフォメーション発生時間履歴 1 1312 0520h (ms) インフォメーション発生時間履歴 2 (ms) インフォメーションが発生した時間の履歴です。 インフォメーションが発生時間履歴 1 1314 0522h インフォメーション発生時間履歴 2 1315 0523h インフォメーション発生時間履歴 3 1316 0523h インフォメーション発生時間履歴 3 1317 0523h インフォメーション発生時間履歴 4 1318 0523h インフォメーション発生時間履歴 3 1318 0523h インフォメーション発生時間履歴 4 1319 0523h インフォメーション発生時間履歴 4 1311 0523h インフォメーション発生時間 4 1311 0523h インフォメーター 4 1311 0523h インフォンター 4 1311 0523h インフォメーター 4 1311 0523h インフォメーター 4 1311 0523h インフォメーター 4 1311 0523h インフォメーター 4 1311 052				 メンテナンスコマンドの「アラーム履歴詳細展開 で指定したアラー				
1289 0509h								
1290 050Ah アラーム履歴詳細(BOOTからの経過 時間) [ms] 1291 050Ch アラーム履歴詳細 (運転開始からの経過 通時間) [ms] 1292 050Ch アラーム履歴詳細 (主電源通電時間) [min] 1296 0510h インフォメーション履歴1								
1291 050Bh 時間 [ms] アラーム限歴詳細 (連転開始からの経過時間 [min] 1292 050Ch アラーム度歴詳細 (主電源通電時間 [min] 1296 0510h インフォメーション履歴1 1296 0510h インフォメーション履歴2 1298 0512h インフォメーション履歴3 1299 0513h インフォメーション履歴5 1300 0514h インフォメーション履歴5 1301 0515h インフォメーション履歴6 1302 0516h インフォメーション履歴7 1303 0517h インフォメーション履歴8 1304 0518h インフォメーション履歴8 1305 0519h インフォメーション履歴1 1307 0518h インフォメーション履歴1 1307 0518h インフォメーション履歴1 1307 0516h インフォメーション履歴1 1310 0516h インフォメーション履歴1 1311 0516h インフォメーション履歴1 1311 0516h インフォメーション履歴16 1311 0516h インフォメーション履歴16 1311 0517h インフォメーション発生時間履歴1 1312 0520h インフォメーション発生時間履歴2 (ms) インフォメーション発生時間履歴3 インフォメーション発生時間履歴6 インフォメーション発生時間履歴6 インフォメーション発生時間履歴6 インフォメーション発生時間履歴7 インフォメーション発生時間履歴8 インフォメーション発生時間履歴7 インフォメーション発生時間履歴8 インフォメーション発生時間展歴 インフォメーション発生時間展歴 インフォメーション発生時間展歴 インフォメーション発生時間展歴 インフォメーション発生時間展歴 インフォメーション発生時間展歴 インフォメーション発生時間展歴 インフォメーション発生時間展歴 インフォメーション発生時間展歴 インフォメーション発生 インフォメーション発生 インフォメーション発生 インフォメーション発生 インフォメーション発生 インフォメーション発生 インフォメーション発生 インフォメータ インフォメーション発生 インフォメータ インフォメータ インフォメータ インフォメータ インフォス インフォメータ インフォメータ インフォス インフォス インフォメータ インフォメータ インフォス インフォス インフォス インマス インフォス インフォス インフォス インマス インフォス インマス インマス インマス インフォス インマス インマス インマス インマス	1209	030911						
1291 OSORh 過時間 [ms]	1290	050Ah						
1292 050Ch [min] 1296 0510h インフォメーション履歴1 もっとも新しいインフォメーション履歴です。 (インフォメーションの履歴→248ページ) インフォメーション履歴2 1297 0511h インフォメーション履歴2 1298 0512h インフォメーション履歴3 1299 0513h インフォメーション履歴4 1300 0514h インフォメーション履歴5 1301 0515h インフォメーション履歴5 1302 0516h インフォメーション履歴6 1302 0516h インフォメーション履歴7 1303 0517h インフォメーション履歴7 1303 0517h インフォメーション履歴7 1305 0519h インフォメーション履歴10 1306 051Ah インフォメーション履歴10 1306 051Ah インフォメーション履歴11 1307 051Bh インフォメーション履歴12 1308 051Ch インフォメーション履歴12 1308 051Ch インフォメーション履歴15 1311 051Fh インフォメーション履歴16 1312 0520h インフォメーション履歴16 1313 0521h インフォメーション発生時間履歴1 (ms) 1314 0522h インフォメーション発生時間履歴2 (ms) 1315 0523h インフォメーション発生時間履歴3 インフォメーション発生時間履歴64 1316 0523h インフォメーション発生時間履歴67 1317 0523h インフォメーション発生時間履歴68	1291	050Bh						
1296 0510h	1292	050Ch						
1298 0512h インフォメーション履歴3 1299 0513h インフォメーション履歴5 1300 0514h インフォメーション履歴5 1301 0515h インフォメーション履歴6 1302 0516h インフォメーション履歴7 1303 0517h インフォメーション履歴8 1304 0518h インフォメーション履歴9 1305 0519h インフォメーション履歴10 1306 051Ah インフォメーション履歴12 1308 051Ch インフォメーション履歴13 1310 051Bh インフォメーション履歴14 1311 051Fh インフォメーション履歴15 1311 051Fh インフォメーション発生時間履歴1 (ms) 1313 0520h インフォメーション発生時間履歴2 (ms) 1314 0522h インフォメーション発生時間履歴3 (ms) 1315 0523h インフォメーション発生時間履歴4	1296	0510h	インフォメーション履歴1	(インフォメーションの履歴 ☆ 248ページ) インフォメーションが発生しているときは、そのコードがインフォ				
1299 0513h インフォメーション履歴4 1300 0514h インフォメーション履歴5 1301 0515h インフォメーション履歴6 1302 0516h インフォメーション履歴7 1303 0517h インフォメーション履歴8 1304 0518h インフォメーション履歴9 1305 0519h インフォメーション履歴10 1306 051Ah インフォメーション履歴11 1307 051Bh インフォメーション履歴12 1308 051Ch インフォメーション履歴12 1308 051Ch インフォメーション履歴13 1309 051Dh インフォメーション履歴14 1310 051Eh インフォメーション履歴15 1311 051Fh インフォメーション履歴16 もっとも古いインフォメーションが発生した時間の履歴です。	1297	0511h	インフォメーション履歴2					
1300 0514h インフォメーション履歴5 1301 0515h インフォメーション履歴6 1302 0516h インフォメーション履歴7 1303 0517h インフォメーション履歴8 1304 0518h インフォメーション履歴9 1305 0519h インフォメーション履歴10 1306 051Ah インフォメーション履歴11 1307 051Bh インフォメーション履歴12 1308 051Ch インフォメーション履歴13 1309 051Dh インフォメーション履歴14 1310 051Eh インフォメーション履歴15 1311 051Fh インフォメーション履歴16 もっとも古いインフォメーション履歴です。	1298	0512h	インフォメーション履歴3					
1301 0515h インフォメーション履歴6 1302 0516h インフォメーション履歴7 1303 0517h インフォメーション履歴8 1304 0518h インフォメーション履歴9 1305 0519h インフォメーション履歴10 1306 051Ah インフォメーション履歴11 1307 051Bh インフォメーション履歴12 1308 051Ch インフォメーション履歴13 1309 051Dh インフォメーション履歴14 1310 051Eh インフォメーション履歴15 1311 051Fh インフォメーション履歴16 もっとも古いインフォメーション履歴です。	1299	0513h	インフォメーション履歴4					
1302 0516h インフォメーション履歴7 1303 0517h インフォメーション履歴8 1304 0518h インフォメーション履歴9 1305 0519h インフォメーション履歴10 1306 051Ah インフォメーション履歴11 1307 051Bh インフォメーション履歴12 1308 051Ch インフォメーション履歴13 1309 051Dh インフォメーション履歴14 1310 051Eh インフォメーション履歴15 1311 051Fh インフォメーション履歴16 もっとも古いインフォメーション履歴です。	1300	0514h	インフォメーション履歴5					
1303 0517h インフォメーション履歴8 1304 0518h インフォメーション履歴9 1305 0519h インフォメーション履歴10 1306 051Ah インフォメーション履歴11 1307 051Bh インフォメーション履歴12 1308 051Ch インフォメーション履歴13 1309 051Dh インフォメーション履歴15 1311 051Fh インフォメーション履歴16 もっとも古いインフォメーション履歴です。	1301	0515h	インフォメーション履歴6					
1304 0518h インフォメーション履歴9 1305 0519h インフォメーション履歴10 1306 051Ah インフォメーション履歴11 1307 051Bh インフォメーション履歴12 1308 051Ch インフォメーション履歴13 1309 051Dh インフォメーション履歴14 1310 051Eh インフォメーション履歴15 1311 051Fh インフォメーション履歴16 もっとも古いインフォメーション履歴です。	1302	0516h	インフォメーション履歴7					
1304 0518h インフォメーション履歴9 1305 0519h インフォメーション履歴10 1306 051Ah インフォメーション履歴11 1307 051Bh インフォメーション履歴12 1308 051Ch インフォメーション履歴13 1310 051Eh インフォメーション履歴15 1311 051Fh インフォメーション履歴16 1312 0520h インフォメーション発生時間履歴1 (ms) もっとも苦いインフォメーションが発生した時間の履歴です。インフォメーションが発生しているときは、その発生時間が履歴1にも同時に表示されます。 1313 0521h インフォメーション発生時間履歴2 (ms) 1314 0522h インフォメーション発生時間履歴4 (ms) 1315 0523h インフォメーション発生時間履歴4 インフォメーションが発生した時間の履歴です。	1303	0517h	インフォメーション履歴8					
1306 051Ah インフォメーション履歴11 1307 051Bh インフォメーション履歴12 1308 051Ch インフォメーション履歴13 1309 051Dh インフォメーション履歴14 1310 051Eh インフォメーション履歴15 1311 051Fh インフォメーション履歴16 もっとも古いインフォメーション履歴です。 1312 0520h インフォメーション発生時間履歴1 (ms) もっとも新しいインフォメーションが発生した時間の履歴です。インフォメーションが発生しているときは、その発生時間が履歴1にも同時に表示されます。 1313 0521h インフォメーション発生時間履歴2 (ms) 1314 0522h インフォメーション発生時間履歴3 (ms) 1315 0523h インフォメーション発生時間履歴4	1304	0518h	インフォメーション履歴9	インフォメーション履歴です。 				
1307 051Bh インフォメーション履歴12 1308 051Ch インフォメーション履歴13 1309 051Dh インフォメーション履歴14 1310 051Eh インフォメーション履歴15 1311 051Fh インフォメーション履歴16 もっとも古いインフォメーション履歴です。 1312 0520h インフォメーション発生時間履歴1 (ms) もっとも新しいインフォメーションが発生した時間の履歴です。インフォメーションが発生しているときは、その発生時間が履歴1にも同時に表示されます。 1313 0521h インフォメーション発生時間履歴2 (ms) インフォメーションが発生した時間の履歴です。インフォメーション発生時間履歴3 (ms) 1315 0523h インフォメーション発生時間履歴4	1305	0519h	インフォメーション履歴10					
1308 051Ch インフォメーション履歴13 1309 051Dh インフォメーション履歴14 1310 051Eh インフォメーション履歴15 1311 051Fh インフォメーション履歴16 もっとも古いインフォメーション履歴です。 1312 0520h インフォメーション発生時間履歴1 (ms) もっとも新しいインフォメーションが発生した時間の履歴です。インフォメーションが発生しているときは、その発生時間が履歴1にも同時に表示されます。 1313 0521h インフォメーション発生時間履歴2 (ms) インフォメーション発生時間履歴3 (ms) 1315 0523h インフォメーション発生時間履歴4	1306	051Ah	インフォメーション履歴11					
1309 051Dh インフォメーション履歴14 1310 051Eh インフォメーション履歴15 1311 051Fh インフォメーション履歴16 もっとも古いインフォメーション履歴です。 1312 0520h インフォメーション発生時間履歴1 (ms) もっとも新しいインフォメーションが発生した時間の履歴です。インフォメーションが発生しているときは、その発生時間が履歴1にも同時に表示されます。 1313 0521h インフォメーション発生時間履歴2 (ms) 1314 0522h インフォメーション発生時間履歴3 (ms) 1315 0523h インフォメーション発生時間履歴4	1307	051Bh	インフォメーション履歴12					
1309 051Dh インフォメーション履歴14 1310 051Eh インフォメーション履歴15 1311 051Fh インフォメーション履歴16 もっとも古いインフォメーション履歴です。 1312 0520h インフォメーション発生時間履歴1 (ms) もっとも新しいインフォメーションが発生した時間の履歴です。インフォメーションが発生しているときは、その発生時間が履歴1にも同時に表示されます。 1313 0521h インフォメーション発生時間履歴2 (ms) 1314 0522h インフォメーション発生時間履歴3 (ms) 1315 0523h インフォメーション発生時間履歴4	1308	051Ch						
1311 051Fh インフォメーション履歴16 もっとも古いインフォメーション履歴です。 1312 0520h (ms) インフォメーション発生時間履歴1 (ms) もっとも新しいインフォメーションが発生した時間の履歴です。インフォメーションが発生しているときは、その発生時間が履歴1にも同時に表示されます。 1313 0521h インフォメーション発生時間履歴2 (ms) インフォメーション発生時間履歴3 (ms) 1315 0523h インフォメーション発生時間履歴4 インフォメーション発生時間履歴4	1309	051Dh	インフォメーション履歴14					
1312 0520h インフォメーション発生時間履歴1 (ms) もっとも新しいインフォメーションが発生した時間の履歴です。インフォメーションが発生しているときは、その発生時間が履歴1にも同時に表示されます。 1313 0521h インフォメーション発生時間履歴2 (ms) 1314 0522h インフォメーション発生時間履歴3 (ms) 1315 0523h インフォメーション発生時間履歴4	1310	051Eh	インフォメーション履歴15					
1312 0520h インフォメーション発生時間履歴1 (ms) インフォメーションが発生しているときは、その発生時間が履歴1にも同時に表示されます。 1313 0521h インフォメーション発生時間履歴2 (ms) 1314 0522h インフォメーション発生時間履歴3 (ms) 1315 0523h インフォメーション発生時間履歴4	1311	051Fh	インフォメーション履歴16					
1313 0521h (ms) (ms) (ms) インフォメーション発生時間履歴3 インフォメーションが発生した時間の履歴です。 1315 0523h インフォメーション発生時間履歴4	1312	0520h		インフォメーションが発生しているときは、その発生時間が履歴1に				
1314 0522h (ms) インフォメーション発生時間履歴4 1315 0523h インフォメーション発生時間履歴4	1313	0521h						
1315 0523h	1314	0522h		 インフォメーションが発生した時間の履歴です。 				
	1315	0523h						

パラメータID			da m		
Dec	Hex	- 名称	内容		
1316	0524h	インフォメーション発生時間履歴5 (ms)			
1317	0525h	インフォメーション発生時間履歴6 (ms)			
1318	0526h	インフォメーション発生時間履歴7 (ms)			
1319	0527h	インフォメーション発生時間履歴8 (ms)			
1320	0528h	インフォメーション発生時間履歴9 (ms)			
1321	0529h	インフォメーション発生時間履歴10 (ms)	インフォメーションが発生した時間の履歴です。		
1322	052Ah	インフォメーション発生時間履歴11 (ms)			
1323	052Bh	インフォメーション発生時間履歴12 (ms)			
1324	052Ch	インフォメーション発生時間履歴13 (ms)			
1325	052Dh	インフォメーション発生時間履歴14 (ms)			
1326	052Eh	インフォメーション発生時間履歴15 (ms)			
1327	052Fh	インフォメーション発生時間履歴16 (ms)	もっとも古いインフォメーションが発生した時間の履歴です。		
1472	05C0h	ラッチモニタ 状態(NEXT)			
1473	05C1h	ラッチモニタ 指令位置(NEXT)			
1474	05C2h	ラッチモニタ 検出位置(NEXT)			
1475	05C3h	ラッチモニタ 目標位置(NEXT)			
1476	05C4h	ラッチモニタ 運転番号(NEXT)			
1477	05C5h	ラッチモニタ ループ回数(NEXT)			
1480	05C8h	ラッチモニタ 状態(I/Oイベント-弱 イベント)			
1481	05C9h	ラッチモニタ 指令位置 (I/Oイベント -弱イベント)			
1482	05CAh	ラッチモニタ 検出位置 (I/Oイベント -弱イベント)			
1483	05CBh	ラッチモニタ 目標位置(I/Oイベント -弱イベント)			
1484	05CCh	ラッチモニタ 運転番号(I/Oイベント -弱イベント)	()内のイベントが発生した最初の情報をラッチします。 ラッチをクリアするまで、情報は保持されます。		
1485	05CDh	ラッチモニタ ループ回数(I/Oイベントー弱イベント)			
1488	05D0h	ラッチモニタ 状態(I/Oイベント-強 イベント)			
1489	05D1h	ラッチモニタ 指令位置(I/Oイベント -強イベント)			
1490	05D2h	ラッチモニタ 検出位置(I/Oイベント -強イベント)			
1491	05D3h	ラッチモニタ 目標位置 (I/Oイベント -強イベント)			
1492	05D4h	ラッチモニタ 運転番号 (I/Oイベント -強イベント)			
1493	05D5h	ラッチモニタ ループ回数(I/Oイベントー強イベント)			
1496	05D8h	ラッチモニタ 状態(運転停止)			

パラメ	ータID	- 名称	内容				
Dec	Hex	一	ry a 				
1497	05D9h	ラッチモニタ 指令位置(運転停止)					
1498	05DAh	ラッチモニタ 検出位置(運転停止)					
1499	05DBh	ラッチモニタ 目標位置(運転停止)	()内のイベントが発生した最初の情報をラッチします。 ラッチをクリアするまで、情報は保持されます。				
1500	05DCh	ラッチモニタ 運転番号(運転停止)	777 2797 9 3 5 C (IBHXIO M) 1 C 1 C 5 9 0				
1501	05DDh	ラッチモニタ ループ回数(運転停止)					
1504	05E0h	FFT Value (1st peak)					
1505	05E1h	FFT Frequency (1st peak)					
1506	05E2h	FFT Value (2nd peak)					
1507	05E3h	FFT Frequency (2nd peak)	「FFT対象」パラメータで設定した対象の、高速フーリエ変換(FFT)の				
1508	05E4h	FFT Value (3rd peak)	解析結果です。				
1509	05E5h	FFT Frequency (3rd peak)					
1510	05E6h	FFT Value (4th peak)					
1511	05E7h	FFT Frequency (4th peak)					

■ ダイレクトI/O

ダイレクトI/Oのbitの配置を示します。

パラメータID					, th				
Dec	Hex		内容 ····································						
		Bit 31	Bit 30	Bit 29	Bit 28	Bit 27	Bit 26	Bit 25	Bit 24
	006Ah	BSG	ASG	_	_	_	_	_	-
		Bit 23	Bit 22	Bit 21	Bit 20	Bit 19	Bit 18	Bit 17	Bit 16
106		_	_	DOUT5	DOUT4	DOUT3	DOUT2	DOUT1	DOUT0
100	UUOAII	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
		VIR-IN3	VIR-IN2	VIR-IN1	VIR-IN0	-	EXT-IN	-	_
		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
		_	_	DIN5	DIN4	DIN3	DIN2	DIN1	DIN0

■ I/Oステータス

内部I/Oのbitの配置を示します。

● 入力信号

パラメ	パラメータID				内	泰					
Dec	Hex		r3 								
		Bit 31	Bit 30	Bit 29	Bit 28	Bit 27	Bit 26	Bit 25	Bit 24		
		SLIT	HOMES	RV-LS	FW-LS	RV-BLK	FW-BLK	_	_		
	00B8h	Bit 23	Bit 22	Bit 21	Bit 20	Bit 19	Bit 18	Bit 17	Bit 16		
		SPD-LMT	TRQ-LMT	-	-	_	-	-	HMI		
184		Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8		
104		_	INFO- CLR	LAT-CLR	ETO-CLR	_	EL-PRST	P-PRESET	ALM-RST		
		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
		BREAK- ATSQ	_	STOP	STOP- SOFF	CLR	S-ON	FREE	未使用		

パラメ	パラメータID		内容								
Dec	Hex				kJ.	台					
		Bit 31	Bit 30	Bit 29	Bit 28	Bit 27	Bit 26	Bit 25	Bit 24		
		-	-	-	-	-	-	RV-POS	FW-POS		
		Bit 23	Bit 22	Bit 21	Bit 20	Bit 19	Bit 18	Bit 17	Bit 16		
185	00B9h	RV- JOG-C	FW- JOG-C	RV- JOG-P	FW- JOG-P	RV- JOG-H	FW- JOG-H	RV-JOG	FW-JOG		
		Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8		
		D-SEL7	D-SEL6	D-SEL5	D-SEL4	D-SEL3	D-SEL2	D-SEL1	D-SEL0		
		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
		-	-	ZHOME	HOME	NEXT	-	SSTART	START		
		Bit 31	Bit 30	Bit 29	Bit 28	Bit 27	Bit 26	Bit 25	Bit 24		
		R15	R14	R13	R12	R11	R10	R9	R8		
		Bit 23	Bit 22	Bit 21	Bit 20	Bit 19	Bit 18	Bit 17	Bit 16		
		R7	R6	R5	R4	R3	R2	R1	R0		
186	00BAh	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8		
		PLSM- REQ	MON- CLK	MON- REQ1	MON- REQ0	TEACH	_	_	_		
		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
		M7	M6	M5	M4	M3	M2	M1	MO		
		Bit 31	Bit 30	Bit 29	Bit 28	Bit 27	Bit 26	Bit 25	Bit 24		
		-	-	-	-	-	-	-	_		
		Bit 23	Bit 22	Bit 21	Bit 20	Bit 19	Bit 18	Bit 17	Bit 16		
107	OODDA	-	-	-	-	-	-	-	_		
187	00BBh	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8		
		_	_	_	_	_	_	_	-		
		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
		_	_	_	-	_	_	_	-		

● 出力信号

パラメータID		内容									
Dec	Hex				Мi	합					
		Bit 31	Bit 30	Bit 29	Bit 28	Bit 27	Bit 26	Bit 25	Bit 24		
188		MAREA	_	_	RND- ZERO	ZSG	RV-SLS	FW-SLS	RND- OVF		
		Bit 23	Bit 22	Bit 21	Bit 20	Bit 19	Bit 18	Bit 17	Bit 16		
	00BCh	ORGN- STLD	PRST- STLD	PRST-DIS	-	-	ELPRST- MON	ABSPEN	HOME- END		
	OOBCII	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8		
		_	SON- MON	VA	TLC	ZV	IN-POS	ETO- MON	SYS-BSY		
		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
		INFO	MOVE	_	READY	SYS-RDY	ALM-B	ALM-A	CONST- OFF		
		Bit 31	Bit 30	Bit 29	Bit 28	Bit 27	Bit 26	Bit 25	Bit 24		
		-	_	_	-	-	ı	_	-		
		Bit 23	Bit 22	Bit 21	Bit 20	Bit 19	Bit 18	Bit 17	Bit 16		
189	00BDh	_	_	USR- OUT1	USR- OUT0	_	_	PLS- OUTR	MON- OUT		
109	UUBDII	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8		
		-	_	HWTOIN- MON	EDM- MON	_	RG	MBC	MPS		
		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
		AREA7	AREA6	AREA5	AREA4	AREA3	AREA2	AREA1	AREA0		

パラメ	ニータID								
Dec	Hex				内名	学			
		Bit 31	Bit 30	Bit 29	Bit 28	Bit 27	Bit 26	Bit 25	Bit 24
		D-END7	D-END6	D-END5	D-END4	D-END3	D-END2	D-END1	D-END0
		Bit 23	Bit 22	Bit 21	Bit 20	Bit 19	Bit 18	Bit 17	Bit 16
		M-ACT7	M-ACT6	M-ACT5	M-ACT4	M-ACT3	M-ACT2	M-ACT1	M-ACT0
190	00BEh	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
130		M-CHG	OL-DTCT	DCMD- FULL	DCMD- RDY	_	NEXT- LAT	JUMP1- LAT	JUMP0- LAT
		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
		DELAY- BSY	SEQ-BSY	_	OPE-BSY	_	-	SPD- LMTD	TRQ- LMTD
		Bit 31	Bit 30	Bit 29	Bit 28	Bit 27	Bit 26	Bit 25	Bit 24
		INFO- RBT	INFO- CFG	INFO- IOTEST	INFO- DSLMTD	_	-	_	INFO- STLTIME
		Bit 23	Bit 22	Bit 21	Bit 20	Bit 19	Bit 18	Bit 17	Bit 16
101	00BFh	INFO- TRQ	_	INFO- ODO	INFO- TRIP	INFO- CULD1	INFO- CULD0	INFO- RV-OT	INFO- FW-OT
191	UUBFN	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
		-	INFO- RND-E	INFO- EGR-E	-	INFO-PR- REQ	INFO- ZHOME	INFO- START	INFO- SPD
		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
		INFO- LOAD	INFO- TLCTIME	INFO- UVOLT	INFO- OVOLT	INFO- MTRTMP	INFO- DRVTMP	INFO- POSERR	INFO- USRIO

4 運転データR/Wコマンド

基準となる運転データNo.のパラメータID(基準アドレス)を指定して入力する方法です。 基準アドレスの使い方は、211ページ[4-3 設定例]をご覧ください。

4-1 運転データNo.の基準アドレス

基準ア	/ドレス	運転	基準ア	ドレス	運転	基準ア	ドレス	運転	基準ア	ドレス	運転
Dec	Hex	データ No.	Dec	Hex	データ No.	Dec	Hex	データ No.	Dec	Hex	データ No.
3072	0C00h	No.0	4384	1120h	No.41	5696	1640h	No.82	7008	1B60h	No.123
3104	0C20h	No.1	4416	1140h	No.42	5728	1660h	No.83	7040	1B80h	No.124
3136	0C40h	No.2	4448	1160h	No.43	5760	1680h	No.84	7072	1BA0h	No.125
3168	0C60h	No.3	4480	1180h	No.44	5792	16A0h	No.85	7104	1BC0h	No.126
3200	0C80h	No.4	4512	11A0h	No.45	5824	16C0h	No.86	7136	1BE0h	No.127
3232	0CA0h	No.5	4544	11C0h	No.46	5856	16E0h	No.87	7168	1C00h	No.128
3264	0CC0h	No.6	4576	11E0h	No.47	5888	1700h	No.88	7200	1C20h	No.129
3296	0CE0h	No.7	4608	1200h	No.48	5920	1720h	No.89	7232	1C40h	No.130
3328	0D00h	No.8	4640	1220h	No.49	5952	1740h	No.90	7264	1C60h	No.131
3360	0D20h	No.9	4672	1240h	No.50	5984	1760h	No.91	7296	1C80h	No.132
3392	0D40h	No.10	4704	1260h	No.51	6016	1780h	No.92	7328	1CA0h	No.133
3424	0D60h	No.11	4736	1280h	No.52	6048	17A0h	No.93	7360	1CC0h	No.134
3456	0D80h	No.12	4768	12A0h	No.53	6080	17C0h	No.94	7392	1CE0h	No.135
3488	0DA0h	No.13	4800	12C0h	No.54	6112	17E0h	No.95	7424	1D00h	No.136
3520	0DC0h	No.14	4832	12E0h	No.55	6144	1800h	No.96	7456	1D20h	No.137
3552	0DE0h	No.15	4864	1300h	No.56	6176	1820h	No.97	7488	1D40h	No.138
3584	0E00h	No.16	4896	1320h	No.57	6208	1840h	No.98	7520	1D60h	No.139
3616	0E20h	No.17	4928	1340h	No.58	6240	1860h	No.99	7552	1D80h	No.140
3648	0E40h	No.18	4960	1360h	No.59	6272	1880h	No.100	7584	1DA0h	No.141
3680	0E60h	No.19	4992	1380h	No.60	6304	18A0h	No.101	7616	1DC0h	No.142
3712	0E80h	No.20	5024	13A0h	No.61	6336	18C0h	No.102	7648	1DE0h	No.143
3744	0EA0h	No.21	5056	13C0h	No.62	6368	18E0h	No.103	7680	1E00h	No.144
3776	0EC0h	No.22	5088	13E0h	No.63	6400	1900h	No.104	7712	1E20h	No.145
3808	0EE0h	No.23	5120	1400h	No.64	6432	1920h	No.105	7744	1E40h	No.146
3840	0F00h	No.24	5152	1420h	No.65	6464	1940h	No.106	7776	1E60h	No.147
3872	0F20h	No.25	5184	1440h	No.66	6496	1960h	No.107	7808	1E80h	No.148
3904	0F40h	No.26	5216	1460h	No.67	6528	1980h	No.108	7840	1EA0h	No.149
3936	0F60h	No.27	5248	1480h	No.68	6560	19A0h	No.109	7872	1EC0h	No.150
3968	0F80h	No.28	5280	14A0h	No.69	6592	19C0h	No.110	7904	1EE0h	No.151
4000	0FA0h	No.29	5312	14C0h	No.70	6624	19E0h	No.111	7936	1F00h	No.152
4032	0FC0h	No.30	5344	14E0h	No.71	6656	1A00h	No.112	7968	1F20h	No.153
4064	0FE0h	No.31	5376	1500h	No.72	6688	1A20h	No.113	8000	1F40h	No.154
4096	1000h	No.32	5408	1520h	No.73	6720	1A40h	No.114	8032	1F60h	No.155
4128	1020h	No.33	5440	1540h	No.74	6752	1A60h	No.115	8064	1F80h	No.156
4160	1040h	No.34	5472	1560h	No.75	6784	1A80h	No.116	8096	1FA0h	No.157
4192	1060h	No.35	5504	1580h	No.76	6816	1AA0h	No.117	8128	1FC0h	No.158
4224	1080h	No.36	5536	15A0h	No.77	6848	1AC0h	No.118	8160	1FE0h	No.159
4256	10A0h	No.37	5568	15C0h	No.78	6880	1AE0h	No.119	8192	2000h	No.160
4288	10C0h	No.38	5600	15E0h	No.79	6912	1B00h	No.120	8224	2020h	No.161
4320	10E0h	No.39	5632	1600h	No.80	6944	1B20h	No.121	8256	2040h	No.162
4352	1100h	No.40	5664	1620h	No.81	6976	1B40h	No.122	8288	2060h	No.163

基準ア	ドレス	運転	基準ア	ドレス	運転	基準ア	ドレス	運転	基準ア	ドレス	運転
Dec	Hex	データ No.	Dec	Hex	データ No.	Dec	Hex	データ No.	Dec	Hex	データ No.
8320	2080h	No.164	9056	2360h	No.187	9792	2640h	No.210	10528	2920h	No.233
8352	20A0h	No.165	9088	2380h	No.188	9824	2660h	No.211	10560	2940h	No.234
8384	20C0h	No.166	9120	23A0h	No.189	9856	2680h	No.212	10592	2960h	No.235
8416	20E0h	No.167	9152	23C0h	No.190	9888	26A0h	No.213	10624	2980h	No.236
8448	2100h	No.168	9184	23E0h	No.191	9920	26C0h	No.214	10656	29A0h	No.237
8480	2120h	No.169	9216	2400h	No.192	9952	26E0h	No.215	10688	29C0h	No.238
8512	2140h	No.170	9248	2420h	No.193	9984	2700h	No.216	10720	29E0h	No.239
8544	2160h	No.171	9280	2440h	No.194	10016	2720h	No.217	10752	2A00h	No.240
8576	2180h	No.172	9312	2460h	No.195	10048	2740h	No.218	10784	2A20h	No.241
8608	21A0h	No.173	9344	2480h	No.196	10080	2760h	No.219	10816	2A40h	No.242
8640	21C0h	No.174	9376	24A0h	No.197	10112	2780h	No.220	10848	2A60h	No.243
8672	21E0h	No.175	9408	24C0h	No.198	10144	27A0h	No.221	10880	2A80h	No.244
8704	2200h	No.176	9440	24E0h	No.199	10176	27C0h	No.222	10912	2AA0h	No.245
8736	2220h	No.177	9472	2500h	No.200	10208	27E0h	No.223	10944	2AC0h	No.246
8768	2240h	No.178	9504	2520h	No.201	10240	2800h	No.224	10976	2AE0h	No.247
8800	2260h	No.179	9536	2540h	No.202	10272	2820h	No.225	11008	2B00h	No.248
8832	2280h	No.180	9568	2560h	No.203	10304	2840h	No.226	11040	2B20h	No.249
8864	22A0h	No.181	9600	2580h	No.204	10336	2860h	No.227	11072	2B40h	No.250
8896	22C0h	No.182	9632	25A0h	No.205	10368	2880h	No.228	11104	2B60h	No.251
8928	22E0h	No.183	9664	25C0h	No.206	10400	28A0h	No.229	11136	2B80h	No.252
8960	2300h	No.184	9696	25E0h	No.207	10432	28C0h	No.230	11168	2BA0h	No.253
8992	2320h	No.185	9728	2600h	No.208	10464	28E0h	No.231	11200	2BC0h	No.254
9024	2340h	No.186	9760	2620h	No.209	10496	2900h	No.232	11232	2BE0h	No.255

4-2 パラメータID

運転データの設定項目は、運転データR/Wコマンドで設定します。 設定項目のパラメータIDは、運転データNo.の基準アドレスをもとに配置されています。(基準アドレス → 208ページ) たとえば「位置」という設定項目の場合、基準アドレスに1を加えます。

パラメータID	名称	設定範囲※1	初期値	反映
基準アドレス+0	方式	1:絶対位置決め 2:相対位置決め(指令位置基準) 3:相対位置決め(検出位置基準) 7:連続運転(位置制御) 8:ラウンド絶対位置決め 9:ラウンド近回り位置決め 10:ラウンドFWD方向絶対位置決め 11:ラウンドRVS方向絶対位置決め	2	В
<u>基準アドレス+1</u>	位置	-2,147,483,648~2,147,483,647 step	0	В
基準アドレス+2	速度	−4,000,000~4,000,000 Hz	1,000	В
<u>基準アドレス+3</u>	起動・変速レート	1~1.000.000.000(1=0.001) %2	1.000.000	В
基準アドレス+4	停止レート	1 1,000,000,000 (1 0,001) #2	1,000,000	
基準アドレス+5 	トルク制限値	0~10,000 (1=0.1 %)	1,000	В
基準アドレス+6	運転終了遅延	0~65,535(1=0.001 s)	0	В
基準アドレス+7	結合	0:結合無 1:手動順送 2:自動順送 3:形状接続	0	В
基準アドレス+8	結合先	-256:結合しない[Stop] -2:2つ先の運転データNo.[↓↓(+2)] -1:次の運転データNo.[↓(+1)] 0~255:運転データNo.	-1	В
基準アドレス+9	オフセット(エリア)	-2,147,483,648~2,147,483,647 step	0	В
基準アドレス+10	幅(エリア)	−1:無効 0~4,194,303 step	-1	В
基準アドレス+11	カウント(Loop)	0:ループしない[-] 2~255:ループ回数[loop 2{~loop 255{]	0	В
基準アドレス+12	位置オフセット(Loop)	-4,194,304~4,194,303 step	0	В
基準アドレス+13	終了(Loop)	0:ループ終了点ではない[-] 1:ループ終了点[}L-End]	0	В
基準アドレス+14 基準アドレス+15	弱イベント 強イベント	-1:無効[-] 0~31:運転I/Oイベント番号	-1	В

^{※1 []}内はMEXE02の画面表記です。

^{※2} 設定単位は「加減速単位」パラメータに従います。

4-3 設定例

例として、次の運転データをデータNo.0~No.2に設定する方法を説明します。

設定項目	運転No.0	運転No.1	運転No.2
方式	絶対位置決め	相対位置決め(指令位置基準)	相対位置決め(検出位置基準)
位置[step]	1,000	1,000	1,000
速度[Hz]	1,000	1,000	1,000

■ 運転データNo.0の設定

208ページの表から、運転データNo.0の基準アドレスは「3072 (0C00h)」であることがわかります。 この基準アドレスを元に、210ページの表から、設定項目のパラメータIDを算出していきます。

基準アドレス	
3072 (0C00h)	

設定項目			設定値	
	計算方法	Dec	Hex	放化但
方式	基準アドレス+0	3072 + 0 = 3072	0C00h	1
位置	基準アドレス+1	3072 + 1 = 3073	0C01h	1,000
速度	基準アドレス+2	3072 + 2 = 3074	0C02h	1,000

■ 運転データNo.1の設定

208ページの表から、運転データNo.1の基準アドレスは「3104(0C20h)」であることがわかります。 この基準アドレスを元に、210ページの表から、設定項目のパラメータIDを算出していきます。

基準アドレス
3104 (0C20h)

設定項目			設定値		
	計算方法	Dec	Hex		
方式	基準アドレス+0	3104 + 0 = 3104	0C20h	2	
位置	基準アドレス+1	3104 + 1 = 3105	0C21h	1,000	
速度	基準アドレス+2	3104 + 2 = 3106	0C22h	1,000	

■ 運転データNo.2の設定

208ページの表から、運転データNo.2の基準アドレスは「3136(0C40h)」であることがわかります。 この基準アドレスを元に、210ページの表から、設定項目のパラメータIDを算出していきます。

基準アドレス
3136 (0C40h)

設定項目		設定値		
設定項目	計算方法	Dec	Hex	改化
方式	基準アドレス+0	3136 + 0 = 3136	0C40h	3
 位置	基準アドレス+1	3136 + 1 = 3137	0C41h	1,000
速度	基準アドレス+2	3136 + 2 = 3138	0C42h	1,000

5 運転I/OイベントR/Wコマンド

モーターの運転中、指定したイベント (I/OのON/OFF) が発生すると、別の運転を起動させることができます。これを運転 I/Oイベントといいます。ここでは、運転I/Oイベントを行なうためのアドレスについて説明します。

5-1 運転I/Oイベントの基準アドレス

基準アドレス		運転I/O
Dec	Hex	イベントNo.
2560	0A00h	0
2568	0A08h	1
2576	0A10h	2
2584	0A18h	3
2592	0A20h	4
2600	0A28h	5
2608	0A30h	6
2616	0A38h	7
2624	0A40h	8
2632	0A48h	9
2640	0A50h	10

基準アドレス		運転I/O
Dec	Hex	イベントNo.
2648	0A58h	11
2656	0A60h	12
2664	0A68h	13
2672	0A70h	14
2680	0A78h	15
2688	0A80h	16
2696	0A88h	17
2704	0A90h	18
2712	0A98h	19
2720	0AA0h	20
2728	0AA8h	21

基準ア	ドレス	運転I/O
Dec	Hex	イベントNo.
2736	0AB0h	22
2744	0AB8h	23
2752	0AC0h	24
2760	0AC8h	25
2768	0AD0h	26
2776	0AD8h	27
2784	0AE0h	28
2792	0AE8h	29
2800	0AF0h	30
2808	0AF8h	31

5-2 運転I/OイベントR/WコマンドのパラメータID

運転I/Oイベントの設定項目は、運転I/OイベントR/Wコマンドで設定します。 設定項目のパラメータIDは、運転I/Oイベントの基準アドレスをもとに配置されています。 たとえば「Dwell」という設定項目の場合、基準アドレスに2を加えます。

パラメータID	名称	設定範囲※	初期値	反映
基準アドレス+0	結合	0:結合無 1:手動順送 2:自動順送 3:形状接続	0	В
基準アドレス+1	結合先	-256:結合しない[Stop] -2:2つ先の運転データNo.[↓↓(+2)] -1:次の運転データNo.[↓(+1)] 0~255:運転データNo.	-256	В
基準アドレス+2	Dwell	0~65,535(1=0.001 s)	0	В
基準アドレス+3	イベントトリガI/O	入力信号一覧 → 232ページ 出力信号一覧 → 233ページ	0:未使用	В
基準アドレス+4	イベントトリガタイプ	0:設定なし[non] 1:ON(加減算累積msec) 2:ON(msec) 3:OFF(加減算累積msec) 4:OFF(msec) 5:ONエッジ 6:OFFエッジ 7:ON(単純累積msec) 8:OFF(単純累積msec)	0	В
基準アドレス+5	イベントトリガカウント	0~65,535(1=1 msまたは1=1回)	0	В

^{※ []}内はMEXE02の画面表記です。

6 プロテクト解除コマンド

データをバックアップ領域に読み出し/書き込みするためのキーコード、およびHMI入力による機能制限を解除するキーコードを設定します。

パラメ	パラメータID タギ		ータID A称 内容		キーコード	初期値
Dec	Hex	1070 126		キーコード	粉熟恒	
32	0020h	バックアップDATA アクセスキー	バックアップ領域にアクセスするための キーコードを入力します。データの書き 込みと読み出しが可能です。	20519253 (01391955h)	0	
33	0021h	バックアップDATA ライトキー	バックアップ領域にデータを書き込むた めのキーコードを入力します。	1977326743 (75DB9C97h)	0	
34	0022h	HMI解除キー	HMI入力による制限を解除するための キーコードを入力します。	864617234 (33890312h)	0	

フ 運転データ拡張用設定R/Wコマンド

運転データの拡張用設定のパラメータを設定できます。

パラメ	ータID	名称	内容	設定範囲	初期値	反映
Dec	Hex		<u> </u>		が別知恒	及吹
320	0140h	共通起動・変速	共通設定における起動・変速レート、または起動・変速時間を設定 します。	1~1,000,000,000 (1=0.001) **	1,000,000	A
321	0141h	共通停止レート	共通設定における停止レート、ま たは停止時間を設定します。	(1-0.001) %		
326	0146h	使用レート選択	共通加減速または運転データの 加減速のどちらを使用するか設 定します。	0:共通レートを使用 (共通設定) 1:各運転データのレート を使用(独立設定)	1	Α
2048	0800h	繰り返し開始運 転番号	拡張ループ運転を開始する運転 データNo.を設定します。	_1:無効	-1	А
2049	0801h	繰り返し終了運 転番号	拡張ループ運転を終了する運転 データNo.を設定します。	0~255:運転データNo.	_ _ I	Α
2050	0802h	繰り返し回数	拡張ループ運転の繰り返し回数 を設定します。	_1:無効 0~100,000,000回	-1	А

[※] 設定単位は「加減速単位」パラメータに従います。

運転データ拡張用設定R/Wコマンドのパラメータは、運転が停止しているときに書き換えてください。

8 パラメータR/Wコマンド

パラメータの読み出しや書き込みを行ないます。

8-1 (p4)基本設定パラメータ

パラメータIDが[-]のパラメータは、EtherNet/IPでは設定できません。MEXEO2で設定してください。

パラメ Dec	ータID Hex	名称	内容	設定範囲	初期値	反映
272	0110h	ダイレクトデー タ運転 ゼロ速度 動作	ダイレクトデータ運転で、「速度」に0が書き込まれたときの 指令を設定します。	0:減速停止指令 1:速度ゼロ指令	0	В
322	0142h	起動速度	ストアードデータ運転、連続マクロ運転、またはダイレクトデータ運転の起動速度を設定します。	0∼4,000,000 Hz	500	В
327	0147h	加減速単位	加減速の単位を設定します。	0:kHz/s 1:s 2:ms/kHz	0	С
328	0148h	座標未確定時絶 対位置決め運転 許可	座標が確定していない状態で の絶対位置決め運転を許可し ます。	0:不許可 1:許可	0	В
330	014Ah	停止時運転トル ク制限設定	停止時の運転トルクを制限する方法を選択します。「0:選択番号に従う」を選択すると、停止時に選択されている運転データのトルク制限値が適用されます。「1:直前の運転トルク制限を維持」を選択すると、停止する前に実行していた運転データのトルク制限値が適用されます。モーターが無励磁状態になると、選択されている運転データのトルク制限値になります。	0:選択番号に従う 1:直前の運転トルク制限 を維持(無励磁にて リセット)	1	А
451	01C3h	ソフトウェア オーバートラベ ル	ソフトウェアオーバートラベ ル検出時の動作を設定しま す。	-1:無効 0:即停止 1:減速停止 2:即停止(アラーム発生) 3:減速停止(アラーム発生)	3	А
452	01C4h	+ソフトウェア リミット	FWD方向のソフトウェアリ ミットを設定します。		2,147,483,647	А
453	01C5h	ーソフトウェア リミット	RVS方向のソフトウェアリ ミットを設定します。	2,147,483,647 step	-2,147,483,648	Α
454	01C6h	プリセット位置	プリセット位置を設定します。	-2,147,483,648~ 2,147,483,647 step	0	А
511	01FFh	ドライバ動作 モード	モーターを接続しなくても、 仮想のモーターを使って座 標やI/Oの様子をシミュレー ションできます。	0:実際にモーターを使用する 1:仮想モーターを使用する (ABZO未接続時:ABZO センサの情報なし) 2:仮想モーターを使用する (ABZO未接続時:1,800 回転までのラウンド機能が 有効) 3:仮想モーターを使用する (ABZO未接続時:900回転までのラウンド機能が有効)	0	D

パラメ	ータID	名称	内容	設定範囲	初期値	反映
Dec	Hex		P C	以上判例 	初知但	
24852	6114h	ダイレクトデー タ運転 トリガ設 定	ダイレクトデータ運転を実行するトリガを設定します。トリガ設定は、TRIG-MODEを「1:ONレベルで起動」に設定したときだけ有効です。	-6:方式 -5:位置 -4:速度 -3:起動・変速レート -2:停止レート -1:トルク制限値 0:無効 1:全データ反映	1	А
-	_	モーターユー ザー名称	使用しているモーターに任意 の名称を付けられます。		0	А
-	-	ドライバユー ザー名称	使用しているドライバに任意 の名称を付けられます。	_	0	А

8-2 (p5)モーター・機構(座標/JOG/原点復帰)設定パラメータ

パラメ Dec	ータID Hex	名称	内容	設定範囲	初期値	反映
336	0150h	(JOG)移動量	インチング運転の移動量を設定 します。	1~8,388,607 step	1	В
337	0151h	(JOG)運転速度	JOG運転、インチング運転の運 転速度を設定します。	1~4,000,000 Hz	1,000	В
338	0152h	(JOG)加減速	JOGマクロ運転の加減速レート または加減速時間を設定します。	1~1,000,000,000 (1=0.001) %1	1,000,000	В
339	0153h	(JOG)起動速度	JOGマクロ運転の起動速度を設 定します。	0~4,000,000 Hz	500	В
340	0154h	(JOG)運転速度(高)	高速JOG運転の運転速度を設定 します。	1- 4 000 000 Hz	5,000	В
344	0158h	(ZHOME)運転速度	高速原点復帰運転の運転速度を 設定します。	1~4,000,000 Hz	5,000	В
345	0159h	(ZHOME)加減速	高速原点復帰運転の加減速レー トまたは加減速時間を設定しま す。	1~1,000,000,000 (1=0.001) %1	1,000,000	В
346	015Ah	(ZHOME)起動速度	高速原点復帰運転の起動速度を 設定します。	0~4,000,000 Hz	500	В
350	015Eh	JOG/HOME/ZHOME 運転 指令フィルタ時定数	指令フィルタの時定数を設定し ます。	1~200 ms	1	В
351	015Fh	JOG/HOME/ZHOME 運転 トルク制限値	トルク制限値を設定します。	0~10,000 (1=0.1 %)	1,000	В
352	0160h	(HOME)原点復帰方法	原点復帰方法を設定します。	0:2センサ 1:3センサ 2:1方向回転	1	В
353	0161h	(HOME)原点復帰開始方向	原点検出の開始方向を設定しま す。	0:-側 1:+側	1	В
354	0162h	(HOME)原点復帰加減速	原点復帰運転の加減速レートま たは加減速時間を設定します。	1~1,000,000,000 (1=0.001) %1	1,000,000	В
355	0163h	(HOME)原点復帰起動速度	原点復帰運転の起動速度を設定 します。	1. 4.000.000.11	500	В
356	0164h	(HOME)原点復帰運転速度	原点復帰運転の運転速度を設定 します。	1∼4,000,000 Hz	1,000	В
357	0165h	(HOME)原点復帰原点検 出速度	最終的に原点と位置合わせをす るときの運転速度を設定します。	1~10,000 Hz	500	В
358	0166h	(HOME)原点復帰SLITセンサ検出	原点復帰時にSLIT入力を併用す るかを設定します。	0:無効 1:有効	0	В
359	0167h	(HOME)原点復帰ZSG 信号検出	原点復帰時にZSG出力を併用す るかを設定します。	0:無効 2:ZSG出力	0	В

	ータID		内容	設定範囲	初期値	反映
360	0168h	(HOME)原点復帰オフ	原点からのオフセット量を設定	-2,147,483,648~	0	В
360	010011	セット	します。	2,147,483,647 step	0	Ь
361	0169h	(HOME) 2センサ原点復 帰戻り量	2センサ原点復帰運転後の戻り量 を設定します。	0~8,388,607 step	500	В
362	016Ah	(HOME) 1方向回転原点 復帰動作量	1方向回転方式の原点復帰運転後 の動作量を設定します。	0 0,300,007 step	500	В
448	01C0h	電子ギヤA	電子ギヤの分母を設定します。	1~65.535	1	С
449	01C1h	電子ギヤB	電子ギヤの分子を設定します。	11-03,333	1	С
450	01C2h	モーター回転方向	出力軸の回転方向を設定します。	0:+側=CCW 1:+側=CW 2:+側=CCW(ドライバ パラメータを採用)※2 3:+側=CW(ドライバ パラメータを採用)※2	1	С
455	01C7h	ラウンド (RND) 設定	ラウンド機能を設定します。	0:無効 1:有効	1	С
457	01C9h	初期座標生成・ラウンド 設定範囲	ラウンド範囲を設定します。	次表をご覧ください。 (1=0.1 rev)	10	С
459	01CBh	初期座標生成・ラウンド オフセット比率設定	ラウンド範囲のオフセット比率 を設定します。	0~10,000 (1=0.01 %)	5,000	С
460	01CCh	初期座標生成・ラウンド オフセット値設定	ラウンド範囲のオフセット量を 設定します。	−536,870,912∼ 536,870,911 step	0	С
461	01CDh	RND-ZERO出力用RND 分割数	ラウンド範囲内で、RND-ZERO 出力をONにする回数を設定しま す。	1~536,870,911分割	1	С
2017	07E1h	機構リード	ボールねじのリードを設定しま す。	1~32,767	1	С
2032	07F0h	機構諸元設定	機構諸元パラメータを変更する ときは、マニュアル設定を選択 してください。	0:ABZO設定を優先 1:マニュアル設定	0	D
2033	07F1h	ギヤ比設定	ギヤードモーターのギヤ比を設定します。「0:ギヤ比設定無効」にすると、ギヤ比は「1」とみなされます。	0:ギヤ比設定無効 1〜32,767:減速比 (1=0.01)	0	С
2034	07F2h	初期座標生成・ラウンド 座標設定	初期座標生成・ラウンド座標パラ メータを変更するときは、マニュ アル設定を選択してください。	0:ABZO設定を優先 1:マニュアル設定	0	D
2035	07F3h	機構リミットパラメータ 設定	機構リミットパラメータの ABZO設定を無効にします。	0:ABZO設定に従う 1:無効化する	0	D
2036	07F4h	機構保護パラメータ設定	機構保護パラメータのABZO設 定を無効にします。	0:ABZO設定に従う 1:無効化する	0	D
2037	07F5h	JOG/HOME/ZHOME 運転 運転情報設定	JOG運転、原点復帰運転、および 高速原点復帰運転のパラメータ を変更するときは、マニュアル 設定を選択してください。	0:ABZO設定を優先 1:マニュアル設定	0	D
2553	09F9h	機構リード小数点以下桁数	ボールねじのリードを小数点で 表わす場合の小数点桁数を設定 します。	0:×1 mm 1:×0.1 mm 2:×0.01 mm 3:×0.001 mm	0	С

^{※1} 設定単位は「加減速単位」パラメータに従います。

^{**2} [2:+側=CCW(ドライバパラメータを採用)]または[3:+側=CW(ドライバパラメータを採用)]を選択すると、「モーター回転方向]以外のパラメータはABZOセンサの固定値が優先されます。

● 「初期座標生成・ラウンド設定範囲」パラメータに設定できる値

	ラウンド設定範囲[rev]								
0.5	1.8	4.8	12.0	25.0	72.0	200.0			
0.6	2.0	5.0	12.5	30.0	75.0	225.0			
0.8	2.4	6.0	14.4	36.0	90.0	300.0			
0.9	2.5	7.2	15.0	37.5	100.0	360.0			
1.0	3.0	7.5	18.0	40.0	112.5	450.0			
1.2	3.6	8.0	20.0	45.0	120.0	600.0			
1.5	4.0	9.0	22.5	50.0	150.0	900.0			
1.6	4.5	10.0	24.0	60.0	180.0	1,800.0			

(memo) 表は、MEXE02で設定するときの数値です。EtherNet/IPで設定するときは、表の値を10倍してください。

(p6) Alarm・Info設定パラメータ 8-3

パラメ	ータID	名称	内容	設定範囲	初期値	反映
Dec	Hex		130			/ L ux
385	0181h	位置偏差過大アラーム	アラームの発生条件を設定します。	1~30,000 (1=0.01 rev)	300	А
400	0190h	HWTO動作	HWTO1入力またはHWTO2入力を OFFにしたときにアラームを発生さ せます。	0:アラーム発生なし 1:アラーム発生あり	0	A
401	0191h	HWTO-2重系異常検出 遅延時間	HWTO1入力またはHWTO2入力の 片方がOFFになってから、もう片方 の入力がOFFになるまでの閾値を設 定します。この閾値を過ぎても、もう 片方の入力がOFFにならない場合は アラームが発生します。	0~10 (無効) 、 11~100 ms	0	А
408	0198h	ETO解除無効時間	HWTO1入力とHWTO2入力をONにした後に、ETO-CLR入力でモーターを励磁させる場合、ETO-CLR入力が無効になる時間を設定します。ここで設定した時間を過ぎるまでは、ETO-CLR入力をONにしてもモーターを励磁できません。	0~100 ms	0	А
409	0199h	ETO解除動作(ETO- CLR入力)	ETO-CLR入力でモーターを励磁させる場合の、信号の判定基準を設定します。	1:ONエッジ 2:ONレベル	1	А
410	019Ah	ETO解除動作(ALM-RST入力)	HWTO1入力とHWTO2入力をON にした後に、ALM-RST入力でモー ターを励磁させます。		0	А
411	019Bh	ETO解除動作(S-ON入 力)	HWTO1入力とHWTO2入力をON にした後に、S-ON入力でモーターを 励磁させます。	 0:無効 1:ONエッジで励磁 	1	А
412	019Ch	ETO解除動作(STOP入力)	HWTO1入力とHWTO2入力をON にした後に、STOP入力でモーター を励磁させます。		1	А
416	01A0h	ドライバ温度インフォ メーション (INFO- DRVTMP)		40~85 °C	85	А
417	01A1h	トルク制限時間イン フォメーション (INFO- TLCTIME)	インフォメーションの発生条件を設定します。	0:無効 1~10,000 ms	0	А
418	01A2h	速度インフォメーショ ン(INFO-SPD)		0:無効 1~12,000 r/min	0	А

パラメ Dec	ータID Hex	- 名称	内容	設定範囲	初期値	反映
421	01A5h	位置偏差インフォメー ション (INFO-POSERR)		1~30,000 (1=0.01 rev)	300	А
422	01A6h	負荷率インフォメー ション (INFO-LOAD)		0:無効 1~10,000(1=0.1 %)	0	А
423	01A7h	トルクインフォメー ション (INFO-TRQ)		0:無効 1~10,000(1=0.1 %)	0	А
424	01A8h	モーター温度インフォ メーション (INFO- MTRTMP)		40~120 °C	85	А
425	01A9h	過電圧インフォメー ション(INFO-OVOLT)	 インフォメーションの発生条件を設	120~450 V	400	Α
426	01AAh	不足電圧インフォメー ション (INFO-UVOLT)	インフォスーションの光王来片を設 定します。	120~280 V	120	А
431	01AFh	TRIPメーターインフォ メーション (INFO- TRIP)		0:無効 1~2,147,483,647	0	А
432	01B0h	ODOメーターイン フォメーション(INFO- ODO)		(1=0.1 kRev)	0	А
433	01B1h	積算負荷0インフォメー ション(INFO-CULD0)		0. 2 1 47 492 6 47	0	А
434	01B2h	積算負荷1インフォメー ション(INFO-CULD1)		0~2,147,483,647	0	А
435	01B3h	積算負荷自動クリア	運転開始時に(MOVE出力のONエッジ)、積算負荷をクリアします。	0:クリアしない 1:クリアする	1	А
436	01B4h	積算負荷除数	積算負荷の除数を設定します。 1~32,767		1	Α
437	01B5h	整定時間インフォ メーション (INFO- STLTIME)	整定時間インフォメーション (INFO- STLTIME) の発生条件を設定します。	0:無効 1~10,000 ms	0	А
444	01BCh	INFO-USRIO出力選択	INFO-USRIO出力で確認する出力信 号を選択します。	出力信号一覧 ➡ 233ページ	128: CONST- OFF	А
445	01BDh	INFO-USRIO出力反転	INFO-USRIO出力の出力論理を設定 します。	0:反転しない 1:反転する	0	Α
446	01BEh	INFO LED表示	インフォメーションが発生したとき のLEDの状態を設定します。	0:LEDを点滅させない 1:LEDを点滅させる	1	А
447	01BFh	INFO自動クリア	インフォメーションの原因が取り除かれたときに、INFO出力や対応するインフォメーションのビット出力を自動でOFFにします。	0:無効(自動でOFFに ならない) 1:有効(自動でOFFに なる)	1	A
1952	07A0h	指定I/Oステータス (INFO-USRIO)のINFO 反映			1	А
1953	07A1h	位置偏差 (INFO- POSERR) のINFO反映			1	А
1954	07A2h	ドライバ温度 (INFO- DRVTMP) のINFO反映			1	А
1955	07A3h	モーター温度 (INFO- MTRTMP) のINFO反映	インフォメーションが発生したとき の、ビット出力、INFO出力、および	0:ビット出力だけがON 1:ビット出力とINFO出	1	А
1956	07A4h	過電圧(INFO-OVOLT) のINFO反映		力が ON、LEDが点滅	1	А
1957	07A5h	不足電圧 (INFO- UVOLT) のINFO反映			1	А
1958	07A6h	トルク制限時間 (INFO- TLCTIME) のINFO反映			1	А
1959	07A7h	負荷率(INFO-LOAD)の INFO反映			1	А

パラメ	ータID	A7.Th	th the	=A	÷π₩⊓/±	
Dec	Hex	- 名称	内容	設定範囲	初期値	反映
1960	07A8h	速度(INFO-SPD)の INFO反映			1	А
1961	07A9h	運転起動失敗(INFO- START)のINFO反映			1	Α
1962	07AAh	ZHOME起動失敗 (INFO-ZHOME)の INFO反映			1	А
1963	07ABh	PRESET要求中(INFO- PR-REQ)のINFO反映			1	А
1965	07ADh	電子ギヤ設定異常 (INFO-EGR-E)のINFO 反映			1	А
1966	07AEh	ラウンド設定異常 (INFO-RND-E)のINFO 反映			1	А
1968	07B0h	正転方向運転禁止状 態 (INFO-FW-OT) の INFO反映			1	А
1969	07B1h	逆転方向運転禁止状態 (INFO-RV-OT)のINFO 反映	」 - - - インフォメーションが発生したとき	 	1	А
1970	07B2h	積算負荷0 (INFO- CULD0) のINFO反映	の、ビット出力、INFO出力、および LEDの状態を設定します。	1:ビット出力とINFO出 力が ON、LEDが点滅	1	А
1971	07B3h	積算負荷1 (INFO- CULD1) のINFO反映			1	А
1972	07B4h	TRIPメーター(INFO-TRIP)のINFO反映			1	А
1973	07B5h	ODOメーター(INFO- ODO)のINFO反映			1	А
1975	07B7h	トルク (INFO-TRQ) の INFO反映			1	А
1976	07B8h	整定時間 (INFO- STLTIME) のINFO反映			1	А
1980	07BCh	運転起動制限モード (INFO-DSLMTD)の INFO反映			1	А
1981	07BDh	I/Oテストモード (INFO-IOTEST)の INFO反映			1	А
1982	07BEh	コンフィグ要求(INFO- CFG)のINFO反映			1	А
1983	07BFh	再起動要求 (INFO-RBT) のINFO反映			1	А
24968	6188h	ネットワークバス異常 アラーム	アラームの発生条件を設定します。	0:無効 1:有効	1	А

8-4 (p7)I/O動作・機能パラメータ

パラメ	ータID	خرر ¥ارد در الم	中卒	沙中华田	初期値	三帅
Dec	Hex	名称	内容	設定範囲	初期恒	反映
1792	0700h	STOP・STOP- SOFF入力停止方 法	STOP入力またはSTOP-SOFF入力がONになったときの、モーターの停止方法を設定します。	0:STOP入力、STOP-SOFF入力 ともに即停止 1:STOP入力は減速停止、 STOP-SOFF入力は即停止 2:STOP入力は即停止、 STOP-SOFF入力は減速停止 3:STOP入力、STOP-SOFF 入力ともに減速停止	3	A
1793	0701h	FW-LS・RV-LS入 力動作	FW-LS入力またはRV-LS入力がONになったときの、モーターの停止方法を設定します。	-1:原点復帰センサとして使う 0:即停止 1:減速停止 2:即停止(アラーム発生) 3:減速停止(アラーム発生)	2	A
1794	0702h	FW-BLK·RV- BLK入力停止方 法	FW-BLK入力またはRV-BLK入力が ONになったときの、モーターの停 止方法を設定します。	0:即停止 1:減速停止	1	А
1795	0703h	IN-POS出力判定 距離	目標位置を中心に、IN-POS出力の 出力範囲(ローターが収束する角度 範囲)を設定します。	0~180(1=0.1°)	18	А
1796	0704h	IN-POS出力オフ セット	目標位置からのオフセット量を設定 します。	-18~18(1=0.1°)	0	А
1797	0705h	D-SEL運転起動	D-SEL入力がONになったときに運 転を起動させるかを設定します。	0:運転データNo.選択のみ 1:運転データNo.選択+START 機能	1	А
1798	0706h	TEACH運転方式 設定	ティーチングで「位置」を設定したと きの運転方式を選択します。	-1:運転方式を設定しない 1:絶対位置決め 8:ラウンド絶対位置決め	1	А
1799	0707h	ZSG幅	ZSG出力の出力幅を設定します。	1~1,800(1=0.1°)	18	Α
1800	0708h	RND-ZERO幅	RND-ZERO出力の出力幅を設定し ます。	1~10,000 step	10	А
1801	0709h	RND-ZERO対象 設定	RND-ZERO出力の基準を設定します。	0:検出位置基準 1:指令位置基準	0	А
1802	070Ah	MOVE出力最小 ON時間	MOVE出力の最小ON時間を設定し ます。	0~255 ms	0	А
1806	070Eh	SPD-LMT速度制 限方法	速度制限値の設定方法を選択しま す。	0:割合 1:値	0	А
1807	070Fh	SPD-LMT速度割 合	運転データの「速度」を 100%として、制限する速度の割合 を設定します。「SPD-LMT速度制限 方法」パラメータを「0:割合」に設定 したときに有効です。	1~100 %	50	A
1808	0710h	SPD-LMT速度上 限値	速度制限値を「値」で設定します。 「SPD-LMT速度制限方法」パラメー タを「1:値」に設定したときに有効で す。	1~4,000,000 Hz	1,000	А
1809	0711h	JOG-C連続運転 移行時間	複合JOG運転で、インチング運転からJOG運転に遷移するタイミングを設定します。	1~5,000 (1=0.001 s)	500	В
1810	0712h	JOG-C高速連続 運転移行時間	複合JOG運転で、JOG運転から高 速JOG運転に遷移するタイミングを 設定します。	7,000(1-0.0013)	1,000	В

パラメ Dec	ータID Hex	- 名称	内容	設定範囲	初期値	反映
1812	0714h	MON-REQ0対 象設定	MON-REQ入力をONにしたとき に、I/O位置出力機能で出力される	1:検出位置(32 bit) 2:検出位置32 bitカウンタ (32 bit) 3:指令位置(32 bit) 4:指令位置32 bitカウンタ (32 bit) 8:アラームコード(8 bit) 9:検出位置(32 bit) &アラーム コード(8 bit)	1	В
1813	0715h	MON-REQ1対 象設定	情報を選択します。	10:検出位置32 bitカウンタ (32 bit) & アラームコード (8 bit) 11:指令位置(32 bit) & アラーム コード(8 bit) 12:指令位置32 bitカウンタ (32 bit) & アラームコード (8 bit)	8	В
1814	0716h	PLSOUT対象設 定	パルスリクエスト機能で出力される 情報を選択します。	0:指令位置(32 bit) 1:指令位置32 bitカウンタ (32 bit) 2:検出位置(32 bit) 3:検出位置32 bitカウンタ (32 bit)	0	В
1815	0717h	PLSOUT最大周 波数	パルスリクエスト機能で使用する出 カパルスの周波数を設定します。	1~10,000 (1=0.1 kHz)	100	В
1816	0718h	VA判定対象	VA出力の判定基準を選択します。	0:検出速度到達(検出位置基準) 1:プロファイル指令速度到達 (指令位置基準) 2:速度到達(検出速度&プロファ イル指令速度)	0	В
1817	0719h	VA検出幅	「VA判定対象」パラメータを「0:検 出速度到達(検出位置基準)」または 「2:速度到達(検出速度&プロファイ ル指令速度)」に設定した場合におけ る、検出速度の判定許容範囲を設定 します。	1~200 r/min	30	В
1818	071Ah	MAREA出力設定	MAREA出力をONにする基準、およ び運転後のMAREA出力の状態を設 定します。	0:検出位置基準(運転後も判定維持) 1:指令位置基準(運転後も判定維持) 2:検出位置基準(運転完了時OFF) 3:指令位置基準(運転完了時OFF)	0	А
1821	071Dh	ZV出力判定距離	運転速度の0 r/minを中心に、ZV出 力の出力範囲(片幅)を設定します。	0~200 r/min	15	А
1841	0731h	STOP停止動作時 トルク制限	STOP入力がONになったときの、トルク制限値を設定します。「0:プロファイルトルク制限を継続使用」を設定すると、実行中の運転データのトルク制限値が適用されます。	0:プロファイルトルク制限を 継続使用 1~10,000 (1=0.1 %)	0	А
1856	0740h	AREA0+位置/ オフセット	AREA+位置/オフセット AREA出力の+方向位置、または目		0	Α
1857	0741h	AREAO - 位置/ 判定距離	標位置からのオフセットを設定し ます。	-2,147,483,648~	0	А
1858	0742h	AREA1+位置/ オフセット	● AREA-位置/判定距離 AREA出力の-方向位置、またはオ	2,147,483,647 step	0	А
1859	0743h	AREA1-位置/ 判定距離	フセット位置からの距離を設定し ます。		0	А

パラメ Dec	ータID Hex	名称	内容	設定範囲	初期値	反映
1860	0744h	AREA2+位置/ オフセット			0	А
1861	0745h	AREA2-位置/ 判定距離			0	А
1862	0746h	AREA3+位置/ オフセット			0	А
1863	0747h	AREA3-位置/ 判定距離			0	А
1864	0748h	AREA4+位置/ オフセット	 • AREA+位置/オフセット AREA出力の+方向位置、または目		0	А
1865	0749h	AREA4-位置/ 判定距離	標位置からのオフセットを設定します。	-2,147,483,648~	0	А
1866	074Ah	AREA5+位置/ オフセット	AREA – 位置/判定距離 AREA出力の – 方向位置、またはオ	2,147,483,647 step	0	Α
1867	074Bh	AREA5-位置/ 判定距離	フセット位置からの距離を設定し ます。		0	А
1868	074Ch	AREA6+位置/ オフセット			0	Α
1869	074Dh	AREA6-位置/ 判定距離			0	А
1870	074Eh	AREA7+位置/ オフセット			0	А
1871	074Fh	AREA7-位置/ 判定距離			0	А
1872	0750h	AREAO範囲指定 方法			0	А
1873	0751h	AREA1範囲指定 方法			0	А
1874	0752h	AREA2範囲指定 方法		0:絶対値で範囲指定 1:目標位置からのオフセット・幅 を指定	0	Α
1875	0753h	AREA3範囲指定 方法	AREA出力の範囲指定方法を設定し		0	А
1876	0754h	AREA4範囲指定 方法	ます。		0	Α
1877	0755h	AREA5範囲指定 方法			0	А
1878	0756h	AREA6範囲指定 方法			0	А
1879	0757h	AREA7範囲指定 方法			0	А
1880	0758h	AREAO位置判定 基準			0	Α
1881	0759h	AREA1位置判定 基準			0	А
1882	075Ah	AREA2位置判定 基準			0	А
1883	075Bh	AREA3位置判定 基準	AREA出力の位置判定基準を設定し	0:検出位置基準	0	А
1884	075Ch	AREA4位置判定 基準	ます。	1:指令位置基準	0	Α
1885	075Dh	AREA5位置判定 基準			0	А
1886	075Eh	AREA6位置判定 基準			0	Α
1887	075Fh	AREA7位置判定基準			0	А

パラメ	ータID	- 名称	内容	設定範囲	初期値	反映
Dec	Hex				が飛	以吹
1888	0760h	D-SEL0 No.選択			0	Α
1889	0761h	D-SEL1 No.選択			1	Α
1890	0762h	D-SEL2 No.選択			2	Α
1891	0763h	D-SEL3 No.選択	D-SEL入力に対応させる運転データ No.を設定します。	│ │0~255:運転データNo.	3	Α
1892	0764h	D-SEL4 No.選択		Or ozoo. 建塩ケータNO.	4	Α
1893	0765h	D-SEL5 No.選択			5	Α
1894	0766h	D-SEL6 No.選択			6	Α
1895	0767h	D-SEL7 No.選択			7	Α
1896	0768h	D-END0 No.選 択			0	А
1897	0769h	D-END1 No.選 択			1	А
1898	076Ah	D-END2 No.選 択			2	А
1899	076Bh	D-END3 No.選 択	D-END出力に対応させる運転デー		3	А
1900	076Ch	D-END4 No.選 択	タNo.を設定します。	0~255:運転データNo. 	4	А
1901	076Dh	D-END5 No.選 択			5	А
1902	076Eh	D-END6 No.選 択			6	А
1903	076Fh	D-END7 No.選 択			7	А

8-5 (p8) Direct-IN機能選択(DIN) パラメータ

パラメ	ータID	- 名称	内容	設定範囲	初期値	反映
Dec	Hex		八台		10月月10日	汉昳
2112	0840h	DIN0入力機能			37:ZHOME	С
2113	0841h	DIN1入力機能			1:FREE	С
2114	0842h	DIN2入力機能	DINに割り付ける入力信号を	入力信号一覧	5:STOP	С
2115	0843h	DIN3入力機能	選択します。	⇒232ページ	8:ALM-RST	С
2116	0844h	DIN4入力機能			48:FW-JOG	С
2117	0845h	DIN5入力機能			49:RV-JOG	С
2128	0850h	DIN0接点設定(信号反転)			0	С
2129	0851h	DIN1接点設定(信号反転)		0:反転しない 1:反転する	0	С
2130	0852h	DIN2接点設定(信号反転)	DINの接点設定を変更しま		0	С
2131	0853h	DIN3接点設定(信号反転)	す。		0	С
2132	0854h	DIN4接点設定(信号反転)			0	С
2133	0855h	DIN5接点設定(信号反転)			0	С
2176	0880h	DIN0コンポジット入力機能			0:未使用	С
2177	0881h	DIN1コンポジット入力機能			0:未使用	С
2178	0882h	DIN2コンポジット入力機能	DINにコンポジット入力機能	入力信号一覧	0:未使用	С
2179	0883h	DIN3コンポジット入力機能	として割り付ける入力信号を 選択します。	⇒232ページ	0:未使用	С
2180	0884h	DIN4コンポジット入力機能			0:未使用	С
2181	0885h	DIN5コンポジット入力機能			0:未使用	С

パラメ	ータID	名称	内容	設定範囲	初期値	反映
Dec	Hex	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	N a			汉顷
2240	08C0h	DIN0 ON信号検出不感時間	DINのON信号検出不感時間 を設定します。		0	С
2241	08C1h	DIN1 ON信号検出不感時間			0	С
2242	08C2h	DIN2 ON信号検出不感時間		0~250 ms	0	С
2243	08C3h	DIN3 ON信号検出不感時間		0.9230 IIIS	0	С
2244	08C4h	DIN4 ON信号検出不感時間			0	С
2245	08C5h	DIN5 ON信号検出不感時間			0	С
2256	08D0h	DIN0強制1shot			0	С
2257	08D1h	DIN1強制1shot			0	С
2258	08D2h	DIN2強制1shot	DINの強制1shot機能を設定	0:1shot機能が無効	0	С
2259	08D3h	DIN3強制1shot	します。	1:1shot機能が有効	0	С
2260	08D4h	DIN4強制1shot			0	С
2261	08D5h	DIN5強制1shot			0	С

8-6 (p9) Direct-OUT機能選択(DOUT) パラメータ

パラメ	ータID	名称	中央	小中午田	初期値	反映
Dec	Hex	一 例	内容	設定範囲	例别但	及昳
2144	0860h	DOUT0 (通常) 出力機能			144: HOME-END	С
2145	0861h	DOUT1 (通常) 出力機能		出力信号一覧 → 233ページ	138:IN-POS	С
2146	0862h	DOUT2(通常)出力機能	DOUTに割り付ける出 力信号を選択します。		0:未使用	С
2147	0863h	DOUT3(通常)出力機能	7月1日与で歴代しより。		132:READY	С
2148	0864h	DOUT4(通常)出力機能			134:MOVE	С
2149	0865h	DOUT5 (通常) 出力機能			130:ALM-B	С
2160	0870h	DOUT0接点設定(信号反転)			0	С
2161	0871h	DOUT1接点設定(信号反転)	DOUTの接点設定を変 更します。	0:反転しない 1:反転する	0	С
2162	0872h	DOUT2接点設定(信号反転)			0	С
2163	0873h	DOUT3接点設定(信号反転)			0	С
2164	0874h	DOUT4接点設定(信号反転)			0	С
2165	0875h	DOUT5接点設定(信号反転)			0	С
2192	0890h	DOUT0コンポジット出力機能		出力信号一覧 ➡ 233ページ	128:CONST-OFF	С
2193	0891h	DOUT1コンポジット出力機能			128:CONST-OFF	С
2194	0892h	DOUT2コンポジット出力機能	DOUTの信号と論理演 算を行なう出力信号を		128:CONST-OFF	С
2195	0893h	DOUT3コンポジット出力機能	」 鼻で1) は フ山ノ) 信与で 」 選択します。		128:CONST-OFF	С
2196	0894h	DOUT4コンポジット出力機能			128:CONST-OFF	С
2197	0895h	DOUT5コンポジット出力機能			128:CONST-OFF	С
2208	08A0h	DOUT0コンポジット接点設定 (信号反転)			0	С
2209	08A1h	DOUT1コンポジット接点設定 (信号反転)			0	С
2210	08A2h	DOUT2コンポジット接点設定 (信号反転)	DOUTのコンポジット	0:反転しない	0	С
2211	08A3h	DOUT3コンポジット接点設定 (信号反転)	・出力機能の接点設定を 変更します。 ・	1:反転する	0	С
2212	08A4h	DOUT4コンポジット接点設定 (信号反転)			0	С
2213	08A5h	DOUT5コンポジット接点設定 (信号反転)			0	С

パラメ	ータID	名称	内容	設定範囲	初期値	反映
Dec	Hex	一	八台			汉昳
2224	08B0h	DOUT0コンポジット論理結合			1	С
2225	08B1h	DOUT1コンポジット論理結合			1	С
2226	08B2h	DOUT2コンポジット論理結合	DOUTのコンポジット	0:AND	1	С
2227	08B3h	DOUT3コンポジット論理結合	論理結合を設定します。	1:OR	1	С
2228	08B4h	DOUT4コンポジット論理結合			1	С
2229	08B5h	DOUT5コンポジット論理結合			1	С
2272	08E0h	DOUTO OFF出力遅延時間			0	С
2273	08E1h	DOUT1 OFF出力遅延時間			0	С
2274	08E2h	DOUT2 OFF出力遅延時間	DOUTのOFF出力遅延	0~250 ms	0	С
2275	08E3h	DOUT3 OFF出力遅延時間	時間を設定します。	0~250 IIIS	0	С
2276	08E4h	DOUT4 OFF出力遅延時間			0	С
2277	08E5h	DOUT5 OFF出力遅延時間			0	С

8-7 (p10)Remote-I/O機能選択(R-I/O)パラメータ

パラメ	ータID	AT IIT	фØ	-0-245-00	÷π₩₽/:≠	
Dec	Hex	- 名称 - 名称	内容	設定範囲	初期値	反映
2304	0900h	R-IN0入力機能			0:未使用	С
2305	0901h	R-IN1入力機能			0:未使用	С
2306	0902h	R-IN2入力機能			0:未使用	С
2307	0903h	R-IN3入力機能			0:未使用	С
2308	0904h	R-IN4入力機能			0:未使用	С
2309	0905h	R-IN5入力機能			0:未使用	С
2310	0906h	R-IN6入力機能			0:未使用	С
2311	0907h	R-IN7入力機能	R-INに割り付ける入力信	入力信号一覧	0:未使用	С
2312	0908h	R-IN8入力機能	号を選択します。	➡232ページ	0:未使用	С
2313	0909h	R-IN9入力機能			0:未使用	С
2314	090Ah	R-IN10入力機能			0:未使用	С
2315	090Bh	R-IN11入力機能			0:未使用	С
2316	090Ch	R-IN12入力機能			0:未使用	С
2317	090Dh	R-IN13入力機能			0:未使用	С
2318	090Eh	R-IN14入力機能			0:未使用	С
2319	090Fh	R-IN15入力機能			0:未使用	С
2320	0910h	R-OUT0出力機能			64:M0_R	С
2321	0911h	R-OUT1出力機能			65:M1_R	С
2322	0912h	R-OUT2出力機能			66:M2_R	С
2323	0913h	R-OUT3出力機能			32:START_R	С
2324	0914h	R-OUT4出力機能			144:HOME-END	С
2325	0915h	R-OUT5出力機能			132:READY	С
2326	0916h	R-OUT6出力機能			135:INFO	С
2327	0917h	R-OUT7出力機能	R-OUTに割り付ける出力	出力信号一覧	129:ALM-A	С
2328	0918h	R-OUT8出力機能	信号を選択します。	⇒233ページ	136:SYS-BSY	С
2329	0919h	R-OUT9出力機能			160:AREA0	С
2330	091Ah	R-OUT10出力機能			161:AREA1	С
2331	091Bh	R-OUT11出力機能			162:AREA2	С
2332	091Ch	R-OUT12出力機能			155:ZSG	С
2333	091Dh	R-OUT13出力機能			134:MOVE	С
2334	091Eh	R-OUT14出力機能			138:IN-POS	С
2335	091Fh	R-OUT15出力機能			140:TLC	С

パラメ	ータID		内容	設定範囲	初期値	反映
Dec	Hex	一 个小	竹台			人员
2352	0930h	R-OUTO OFF出力遅延時間			0	С
2353	0931h	R-OUT1 OFF出力遅延時間			0	С
2354	0932h	R-OUT2 OFF出力遅延時間			0	С
2355	0933h	R-OUT3 OFF出力遅延時間			0	С
2356	0934h	R-OUT4 OFF出力遅延時間			0	С
2357	0935h	R-OUT5 OFF出力遅延時間			0	С
2358	0936h	R-OUT6 OFF出力遅延時間			0	С
2359	0937h	R-OUT7 OFF出力遅延時間	R-OUTのOFF出力遅延	0~250 ms	0	С
2360	0938h	R-OUT8 OFF出力遅延時間	時間を設定します。	0. 230 1115	0	С
2361	0939h	R-OUT9 OFF出力遅延時間			0	С
2362	093Ah	R-OUT10 OFF出力遅延時間			0	С
2363	093Bh	R-OUT11 OFF出力遅延時間			0	С
2364	093Ch	R-OUT12 OFF出力遅延時間			0	С
2365	093Dh	R-OUT13 OFF出力遅延時間			0	С
2366	093Eh	R-OUT14 OFF出力遅延時間			0	С
2367	093Fh	R-OUT15 OFF出力遅延時間			0	С

8-8 (p11)EXT-IN・VIR-IN・USR-OUT機能選択(拡張)パラメータ

パラメ	-タID	名称	内容	設定範囲	初期値	反映
Dec	Hex	石 例	内谷		初期恒	汉昳
2368	0940h	仮想入力(VIR-INO)機能			0:未使用	С
2369	0941h	仮想入力(VIR-IN1)機能	VIR-INに割り付ける入力信	入力信号一覧	0:未使用	С
2370	0942h	仮想入力(VIR-IN2)機能	号を選択します。	⇒232ページ	0:未使用	С
2371	0943h	仮想入力(VIR-IN3)機能			0:未使用	С
2372	0944h	仮想入力(VIR-INO)源選択			128: CONST-OFF	С
2373	0945h	仮想入力(VIR-IN1)源選択	VIR-INのトリガにする出力	出力信号一覧	128: CONST-OFF	С
2374	0946h	仮想入力(VIR-IN2)源選択	信号を選択します。	⇒233ページ	128: CONST-OFF	С
2375	0947h	仮想入力(VIR-IN3)源選択			128: CONST-OFF	С
2376	0948h	仮想入力(VIR-INO)接点設定 (信号反転)		0:反転しない 1:反転する	0	С
2377	0949h	仮想入力(VIR-IN1)接点設定 (信号反転)	・ VIR-INの接点設定を変更し		0	С
2378	094Ah	仮想入力(VIR-IN2)接点設定 (信号反転)	ます。		0	С
2379	094Bh	仮想入力(VIR-IN3)接点設定 (信号反転)			0	С
2380	094Ch	仮想入力(VIR-INO)ON信号 検出不感時間			0	С
2381	094Dh	仮想入力(VIR-IN1)ON信号 検出不感時間	VIR-INのON信号検出不感	0~250 ms	0	С
2382	094Eh	仮想入力(VIR-IN2)ON信号 検出不感時間	時間を設定します。	U~250 ms	0	С
2383	094Fh	仮想入力(VIR-IN3)ON信号 検出不感時間			0	С

パラメ	ータID	名称	内容	設定範囲	初期値	反映
Dec	Hex		r 1 -11	□ □ X X C ¥ C Z Z		XIX
2384	0950h	仮想入力(VIR-INO)強制 1shot			0	С
2385	0951h	仮想入力(VIR-IN1)強制 1shot	VIR-INの強制1shot機能を 0:1shot機能が無効		0	С
2386	0952h	仮想入力(VIR-IN2)強制 1shot	有効にします。	1:1shot機能が有効	0	С
2387	0953h	仮想入力(VIR-IN3)強制 1shot			0	С
2400	0960h	ユーザー出力(USR-OUT0) 源A-機能	USR-OUTの出力源Aを設定	出力信号一覧	128: CONST-OFF	С
2401	0961h	ユーザー出力(USR-OUT1) 源A-機能	します。	⇒233ページ	128: CONST-OFF	С
2402	0962h	ユーザー出力 (USR-OUT0) 源A-接点設定 (信号反転)	USR-OUTの出力源Aの接点	0:反転しない	0	С
2403	0963h	ユーザー出力(USR-OUT1) 源A-接点設定(信号反転)	を変更します。	1:反転する	0	С
2404	0964h	ユーザー出力(USR-OUT0) 源B-機能	USR-OUTの出力源Bを設定	出力信号一覧	128: CONST-OFF	С
2405	0965h	ユーザー出力(USR-OUT1) 源B-機能	します。	⇒233ページ	128: CONST-OFF	С
2406	0966h	ユーザー出力(USR-OUT0) 源B-接点設定(信号反転)	USR-OUTの出力源Bの接点	0:反転しない	0	С
2407	0967h	ユーザー出力(USR-OUT1) 源B-接点設定(信号反転)	を変更します。	1:反転する	0	С
2408	0968h	ユーザー出力(USR-OUT0) 論理結合選択	USR-OUTのユーザー出力源	0:AND	1	С
2409	0969h	ユーザー出力(USR-OUT1) 論理結合選択	Aとユーザー出力源Bの論理 結合を設定します。	1:OR	1	С
2416	0970h	拡張入力 (EXT-IN) 機能	HOME PRESETスイッチに 割り付ける入力信号を選択 します。	入力信号一覧 ➡ 232ページ	9:P-PRESET	С
2417	0971h	拡張入力(EXT-IN)接点設定 (信号反転)	HOME PRESETスイッチに 割り付ける入力信号の接点 設定を変更します。	0:反転しない 1:反転する	0	С
2418	0972h	拡張入力 (EXT-IN) インター ロック解除長押時間	通常、HOME PRESETスイッチはインターロックがかかっています。スイッチを一定の時間押し続けることで、インターロックが解除され、割り当てた機能が有効になります。このパラメータでは、インターロックを解除するためにスイッチを押し続ける時間を設定します。	0:インターロック 無効 1~50(1=0.1 s)	10	Α
2419	0973h	拡張入力(EXT-IN)インター ロック解除継続時間	インターロックが解除され た状態を継続する時間を設 定します。	0~50(1=0.1 s)	30	А
2420	0974h	拡張入力(EXT-IN) ON確認表示時間	スイッチに割り当てた信号 が入力されると、LEDが点 灯します。このパラメータで は、LEDの点灯時間を設定 します。	0~50(1=0.1 s)	10	А
2424	0978h	差動出力機能選択	差動出力から出力される信 号の種類を選択します。	-1:出力しない 0:A相/B相出力 8:I/Oステータス 出力	0	С

パラメ	ータID	名称	内容	沙宁新田	初期値	反映
Dec	Hex	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	内容 設定範囲 			
2426	097Ah	差動出力(EXT-OUTA)-I/O ステータス出力選択時機能選 択	 「差動出力機能選択」パラ メータを[8:1/Oステータス 出力]に設定したときに有効	出力信号一覧	128: CONST-OFF	С
2427	097Bh	差動出力(EXT-OUTB)-I/O ステータス出力選択時機能選 択	です。差動出力に割り付ける出力信号を選択します。	➡233ページ	128: CONST-OFF	С
2428	097Ch	差動出力(EXT-OUTA)-I/O ステータス出力選択時接点設 定(信号反転)	「差動出力機能選択」パラ メータを[8:1/Oステータス 出力」に設定したときに有効	0:反転しない 1:反転する	0	С
2429	097Dh	差動出力(EXT-OUTB)-I/O ステータス出力選択時接点設 定(信号反転)	です。差動出力の接点設定を変更します。		0	С
2430	097Eh	差動出力(EXT-OUTA)-I/O ステータス出力選択時OFF 出力遅延時間	「差動出力機能選択」パラ メータを[8:I/Oステータス - 出力」に設定したときに有効 0~250 ms	0	С	
2431	097Fh	差動出力(EXT-OUTB)-I/O ステータス出力選択時OFF 出力遅延時間	です。出力信号のOFF出力 遅延時間を設定します。	0230 1115	0	С

8-9 (p12)通信・I/F機能パラメータ

パラメータIDが[-]のパラメータは、**MEXE02**で設定してください。Implicit通信では読み出し、書き込みができません。

	ータID	 名称	内容	設定範囲	初期値	反映
Dec	Hex					
498	01F2h	USB-ID有効	COMポートを固定できま す。	0:無効 1:有効	1	D
499	01F3h	USB-ID	「USB-ID有効」パラメータが 「1:有効」のときに設定でき ます。COMポートにIDを設 定します	0~999,999,999	0	D
2555	09FBh	USB-PID	COMポートに表示させる製 品IDを設定します。	0~31	0	D
25600	6400h	任意モニタアドレス0			124:ドライバ温度	Α
25601	6401h	任意モニタアドレス1	任意モニタに表示するパラ	「7 パラメータ一覧」 の中から設定してく	125:モーター温度	Α
25602	6402h	任意モニタアドレス2	メータのIDを設定します。	ださい。	109:積算負荷モニタ	Α
25603	6403h	任意モニタアドレス3		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	127:TRIPメーター	Α
-	_	Configuration Control	IPアドレスの取得方法を設定します。	0:パラメータ 2:DHCPサーバ	2	D
-	-	IP Address 1			192	D
_	-	IP Address 2	リロスドレスを記令します	0~255	168	D
-	-	IP Address 3	- IPアドレスを設定します。 	0~255	1	D
_	-	IP Address 4			1	D
_	-	Network Mask 1			255	D
-	_	Network Mask 2	サブネットマスクを設定しま	0~255	255	D
-	-	Network Mask 3	す。	0.5255	255	D
_	-	Network Mask 4			0	D
_	-	Gateway Address 1			0	D
_	-	Gateway Address 2	デフォルトゲートウェイを設	0~255	0	D
-	-	Gateway Address 3	定します。	0.5255	0	D
_	_	Gateway Address 4			0	D

8-10 (p13)調整・機能パラメータ

パラメ	ータID					
Dec	Hex	名称	内容	設定範囲	初期値	反映
288	0120h	負荷慣性設定方法選択	負荷慣性モーメントの設定方法を選択し ます。	0: 「負荷慣性設定」 パラメータを使用 1:自動	1	А
289	0121h	負荷慣性設定	モーターのローター慣性モーメントに対する負荷慣性モーメントの割合を設定します。ローター慣性モーメントと負荷慣性モーメントが等しいときは100 %になります。	0~10,000 %	0	А
292	0124h	機械剛性選択	装置の剛性を設定します。設定値が高くなるほど、モーターの応答性が高くなります。値が高すぎると、振動や異音が発生する原因になります。	0~15	6	А
297	0129h	指令フィルタ選択	モーターの応答性を調整するフィルタを 設定します。	1:LPF (速度フィル タ) を選択 2:移動平均フィルタ を選択	1	В
298	012Ah	指令フィルタ時定数	モーターの応答性を調整します。	0~200 ms	1	В
302	012Eh	応答性選択	指令に対するモーターの追従性の設定方 法を選択します。	応答性の設定 ➡ 254ページ	6	Α
303	012Fh	位置ループゲイン	位置偏差に対する追従性を調整します。 値を大きくすると、指令位置と実位置の 偏差が小さくなります。値が大きすぎる と、モーターのオーバーシュートが大き くなったり、モーターが発振する原因に なります。	1∼50 Hz	8	А
304	0130h	速度ループゲイン	速度偏差に対する追従性を調整します。 値を大きくすると、指令速度と実速度の 偏差が小さくなります。値が大きすぎる と、モーターのオーバーシュートが大き くなったり、モーターが発振する原因に なります。	1∼500 Hz	82	А
305	0131h	速度ループ積分時定数	速度ループゲインでは調整できない偏差を小さくします。値が長すぎると、モーターの動きが緩やかになります。逆に短すぎると、モーターが発振する原因になります。	1~10,000 (1=0.01 ms)	1,940	Α
310	0136h	電子ダンパ	振動抑制機能を設定します。	0:無効 1:有効	1	А
314	013Ah	トルクフィルタ(LPF)	高い周波数での応答性を変化させます。	0~4,700 Hz	820	А
315	013Bh	速度フィードフォワード	速度が一定のとき、指令位置と実位置の偏差を小さくして、整定時間を短くできます。100%に設定すると偏差はほぼ0になりますが、値が高すぎると、モーターのオーバーシュートが大きくなったり、モーターが発振する原因になります。	0~100 %	80	А
2064	0810h	制振制御周波数	抑制したい振動の周波数を設定します。	700~20,000 (1=0.01 Hz)	10,000	А
2065	0811h	制振制御ゲイン	制振制御のゲインを設定します。	0~100 %	0	Α
2067	0813h	共振抑制A周波数	抑制したい振動の周波数を設定します。	100∼3,200 Hz	1,000	Α
2068	0814h	共振抑制Aゲイン	振動抑制のゲインを設定します。値を大きくすると、偏差に対する応答性が低くなります。	0~100 %	0	А
2069	0815h	共振抑制A幅	抑制したい振動の幅を設定します。	30~120	30	Α
2070	0816h	共振抑制B周波数	抑制したい振動の周波数を設定します。	100∼3,200 Hz	1,000	Α

パラメ	ータID	- 名称	内容	設定範囲	初期値	反映
Dec	Hex	1	N o		粉熟恒	汉昳
2071	0817h	共振抑制Bゲイン	振動抑制のゲインを設定します。値を大きくすると、偏差に対する応答性が低くなります。	0~100 %	0	А
2072	0818h	共振抑制B幅	抑制したい振動の幅を設定します。	30~120	30	Α
2073	0819h	共振抑制C周波数	抑制したい振動の周波数を設定します。	100∼3,200 Hz	1,000	Α
2074	081Ah	共振抑制Cゲイン	振動抑制のゲインを設定します。値を大きくすると、偏差に対する応答性が低くなります。	0~100 %	0	А
2075	081Bh	共振抑制C幅	抑制したい振動の幅を設定します。	30~120	30	Α
2076	081Ch	共振抑制D周波数	抑制したい振動の周波数を設定します。	100~3,200 Hz	1,000	Α
2077	081Dh	共振抑制Dゲイン	振動抑制のゲインを設定します。値を大きくすると、偏差に対する応答性が低くなります。	0~100 %	0	А
2078	081Eh	共振抑制D幅	抑制したい振動の幅を設定します。	30~120	30	Α
2530	09E2h	FFT対象	高速フーリエ変換(FFT)で解析する対象 を選択します。	0:トルク 1:速度	0	А

9 入出力信号 割り付け一覧

9-1 入力信号

ネットワークで信号を割り付けるときは、信号名ではなく表の「割付No.」を使用してください。

割付No.	信号名
0	未使用
1	FREE
2	S-ON
3	CLR
4	STOP-SOFF
5	STOP
7	BREAK-ATSQ
8	ALM-RST
9	P-PRESET
10	EL-PRST
12	ETO-CLR
13	LAT-CLR
14	INFO-CLR
16	HMI
22	TRQ-LMT
23	SPD-LMT
26	FW-BLK
27	RV-BLK
28	FW-LS
29	RV-LS
30	HOMES
31	SLIT
32	START
33	SSTART
35	NEXT

割付No.	信号名
36	HOME
37	ZHOME
40	D-SEL0
41	D-SEL1
42	D-SEL2
43	D-SEL3
44	D-SEL4
45	D-SEL5
46	D-SEL6
47	D-SEL7
48	FW-JOG
49	RV-JOG
50	FW-JOG-H
51	RV-JOG-H
52	FW-JOG-P
53	RV-JOG-P
54	FW-JOG-C
55	RV-JOG-C
56	FW-POS
57	RV-POS
64	MO
65	M1
66	M2
67	M3
68	M4

割付No.	信号名
69	M5
70	M6
71	M7
75	TEACH
76	MON-REQ0
77	MON-REQ1
78	MON-CLK
79	PLSM-REQ
80	RO
81	R1
82	R2
83	R3
84	R4
85	R5
86	R6
87	R7
88	R8
89	R9
90	R10
91	R11
92	R12
93	R13
94	R14
95	R15

9-2 出力信号

ネットワークで信号を割り付けるときは、信号名ではなく表の「割付No.」を使用してください。

割付No.	信号名	割付No.	信号名	割付No.	信号名
0	未使用	67	M3_R	154	RV-SLS
1	FREE R	68	M4_R	155	ZSG
2	S-ON_R	69	M5_R	156	RND-ZERO
3	CLR R	70	M6_R	159	MAREA
4	STOP-SOFF_R	71	M7_R	160	AREA0
5	STOP_R	75	TEACH_R	161	AREA1
7	BREAK-ATSQ_R	76	MON-REQ0_R	162	AREA2
8	ALM-RST_R	77	MON-REQ1_R	163	AREA3
9	P-PRESET_R	78	MON-CLK_R	164	AREA4
10	EL-PRST_R	79	PLSM-REQ_R	165	AREA5
12	ETO-CLR_R	80	RO_R	166	AREA6
13	LAT-CLR_R	81	R1_R	167	AREA7
14	INFO-CLR_R	82	R2_R	168	MPS
16	HMI_R	83	R3_R	169	MBC
22	TRQ-LMT_R	84	R4_R	170	RG
23	SPD-LMT_R	85	R5_R	172	EDM-MON
26	FW-BLK_R	86	R6_R	173	HWTOIN-MON
27	RV-BLK_R	87	R7_R	176	MON-OUT
28	FW-LS_R	88	R8_R	177	PLS-OUTR
29	RV-LS_R	89	R9_R	180	USR-OUT0
30	HOMES_R	90	R10_R	181	USR-OUT1
31	SLIT_R	91	R11_R	192	TRQ-LMTD
32	START_R	92	R12_R	193	SPD-LMTD
33	SSTART_R	93	R13_R	196	OPE-BSY
35	NEXT_R	94	R14_R	198	SEQ-BSY
36	HOME_R	95	R15_R	199	DELAY-BSY
37	ZHOME_R	128	CONST-OFF	200	JUMP0-LAT
40	D-SELO_R	129	ALM-A	201	JUMP1-LAT
41	D-SEL1_R	130	ALM-B	202	NEXT-LAT
42	D-SEL2_R	131	SYS-RDY	204	DCMD-RDY
43	D-SEL3_R	132	READY	205	DCMD-FULL
44	D-SEL4_R	134	MOVE	206	OL-DTCT
45	D-SEL5_R	135	INFO	207	M-CHG
46	D-SEL6_R	136	SYS-BSY	208	M-ACT0
47	D-SEL7_R	137	ETO-MON	209	M-ACT1
48	FW-JOG_R	138	IN-POS	210	M-ACT2
49	RV-JOG_R	139	ZV	211	M-ACT3
50	FW-JOG-H_R	140	TLC	212	M-ACT4
51	RV-JOG-H_R	141	VA	213	M-ACT5
52	FW-JOG-P_R	142	SON-MON	214	M-ACT6
53	RV-JOG-P_R	144	HOME-END	215	M-ACT7
54	FW-JOG-C_R	145	ABSPEN	216	D-END0
55	RV-JOG-C_R	146	ELPRST-MON	217	D-END1
56	FW-POS_R	149	PRST-DIS	218	D-END2
57	RV-POS_R	150	PRST-STLD	219	D-END3
64	M0_R	151	ORGN-STLD	220	D-END4
65	M1_R	152	RND-OVF	221	D-END5
66	M2_R	153	FW-SLS	222	D-END6

割付No.	信号名
223	D-END7
224	INFO-USRIO
225	INFO-POSERR
226	INFO-DRVTMP
227	INFO-MTRTMP
228	INFO-MIRIMP
229	INFO-UVOLT
230	INFO-TLCTIME
231	INFO-LOAD
232	INFO-SPD
233	INFO-START
234	INFO-ZHOME
235	INFO-PR-REQ
237	INFO-EGR-E
238	INFO-RND-E
240	INFO-FW-OT
241	INFO-RV-OT
242	INFO-CULD0
243	INFO-CULD1
244	INFO-TRIP
245	INFO-ODO
247	INFO-TRQ
248	INFO-STLTIME
252	INFO-DSLMTD
253	INFO-IOTEST
254	INFO-CFG
255	INFO-RBT

8 トラブルシューティング

アラーム機能やインフォメーション機能について説明しています。

♦もくじ

1	通信	異常の検出	236
	1-1	通信タイムアウト	236
	1-2	IPアドレス競合	236
2	アラ	ラーム	237
	2-1	アラームの解除	237
	2-2	アラームの履歴	237
	2-3	アラームの発生条件	238
	2-4	アラーム一覧	239
	2-5	タイミングチャート	244
3	イン	ソフォメーション	246
	3-1	インフォメーションの履歴	248
	3-2	インフォメーション一覧	249
4	故障	節の診断と処置	252

1 通信異常の検出

EtherNet/IPに異常が発生したことを検出する機能について説明します。

1-1 通信タイムアウト

EtherNet/IPケーブルの断線などによってImplicit通信が中断されると、通信タイムアウトが検出されます。

通信タイムアウトが検出されると、ドライバのNS LEDが赤色に点滅します。

再びスキャナとの接続が確立されると、通信タイムアウトは自動で解除され、ドライバのNS LEDが緑色の点灯に戻ります。 通信タイムアウトが検出されたときは、次の内容を確認してください。

- EtherNet/IPケーブルが断線していないか。
- スキャナの電源が投入されているか。

1-2 IPアドレス競合

同一のシステム内でEtherNet/IP対応製品のIPアドレスが重複すると、IPアドレス競合が検出されます。

IPアドレス競合が検出されると、ドライバのNS LEDが赤色に点灯します。

IPアドレス競合が検出されたときは、EtherNet/IP対応製品のIPアドレスが重複しないよう変更してください。

IPアドレスが重複していないことが確認できたら、制御電源を再投入してください。

アラーム

ドライバには、温度上昇、接続不良、運転操作の誤りなどからドライバを保護するアラーム機能が備わっています。 アラームが発生するとALM-A出力がON、ALM-B出力がOFFになり、モーターが停止します。同時にPWR/ALM LEDが赤 色に点滅します。

EtherNet/IPまたはMEXE02で、発生中のアラームを確認できます。

2-1 アラームの解除

必ず、アラームが発生した原因を取り除き、安全を確保してから、次のどれかの方法でアラームを解除してください。

- ALM-RST入力をONにする。(ONエッジで有効です。)
- EtherNet/IPのメンテナンスコマンドでアラームのリセットを実行する。
- MEXEO2でアラームリセットを実行する。
- 制御電源を再投入する。

- 要) アラームの種類によっては、制御電源の再投入でしか解除できないものがあります。239ページ「2-4 アラーム一覧」で確認してください。
 - 絶対位置異常のアラームは、位置プリセットまたは原点復帰運転を行なうと解除できます。これらの方 法で解除できないときは、ABZOセンサが故障しているおそれがあります。

アラームの履歴 2-2

発生したアラームは、最新のものから順に10個までNVメモリに保存されます。次のどれかを行なうと、保存されているア ラーム履歴を取得・消去できます。

- EtherNet/IPのモニタコマンドでアラーム履歴を取得する。
- EtherNet/IPのメンテナンスコマンドでアラーム履歴を消去する。
- MEXEO2でアラーム履歴を取得・消去する。

■ アラーム履歴で確認できる項目

項目	内容
コード	アラームコードです。
アラームメッセージ	アラームの内容です。 アラームの内容はEtherNet/IPでは確認できません。 MEXE02 のアラームモニタで確認してください。
サブコード	当社の確認用コードです。 ただし、運転データ異常(アラームコード70h)が発生したときは、サブコードを使用すると、お客様側でアラームの原因を確認できます。(こ)次の項目をご覧ください。)
ドライバ温度	アラームが発生したときのドライバ温度です。
モーター温度	アラームが発生したときのモーター温度です。
インバータ電圧	アラームが発生したときのインバータ電圧です。
物理I/O入力	アラームが発生したときのダイレクトI/Oのステータスを16 bitで表示します。
R-I/O出力	アラームが発生したときのR-OUTのステータスを8 bitで表示します。
運転情報0	アラームが発生したときに実行していた運転データNo.です。(⇒ 238ページ)
運転情報1	アラームが発生したときに実行していた運転を数字で表示します。(🗘 238ページ)
検出位置	アラームが発生したときのモーターの検出位置です。
BOOTからの経過時間	制御電源を投入してから、アラームが発生するまでに経過した時間です。
運転開始からの経過時間	運転を始めてから、アラームが発生するまでに経過した時間です。
主電源通電時間	主電源を投入してから、アラームが発生するまでに経過した時間です。

(memo)R-I/O出力は、ネットワークを使用しない場合でも内部でモニタしています。モニタしたい出力信号を R-OUT出力に割り付けておくと、アラーム発生時のモニタ数を増やすことができます。

● 運転データ異常(アラームコード70h)のサブコード

サブコード	アラームの原因
01h	移動量が-2,147,483,647 step未満、または2,147,483,647 stepよりも大きい値を設定して、位置決め運転を実行した。
02h	ラウンド機能が無効の状態で、ラウンド機能を使用する運転を実行した。
03h	移動量が0 step以外で、速度が0 Hzのまま位置決め運転を実行した。
04h	「機構保護パラメータ設定」パラメータが「0:ABZO設定に従う」のとき、運転速度がABZOセンサに設定されている最大運転速度を超えた。
05h	「機構保護パラメータ設定」パラメータが「0:ABZO設定に従う」のとき、起動速度がABZOセンサに設定されている最大起動速度を超えた。
08h	「機構保護パラメータ設定」パラメータが「0:ABZO設定に従う」のとき、原点復帰に関するパラメータがABZOセンサに設定されている値を超えた。

関連するパラメータ

MEXE02分類	名称	内容	設定範囲	初期値
p5	機構保護パラメータ設定	機構保護パラメータのABZO設定を無効 にします。	0:ABZO設定に従う 1:無効化する	0

● 物理I/O入力のbit詳細

Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
VIR-IN3	VIR-IN2	VIR-IN1	VIR-IN0	_	EXT-IN	_	_
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
_	-	DIN5	DIN4	DIN3	DIN2	DIN1	DIN0

● R-I/O出力のbit詳細

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
R-OUT15	R-OUT14	R-OUT13	R-OUT12	R-OUT11	R-OUT10	R-OUT9	R-OUT8

● 「運転情報0」「運転情報1」で示される情報

運転情報0	-1:運転データ未使用(※1)、または制御電源を投入した直後 0∼255:運転中のデータNo.※2
運転情報1	 0:内部発振なし(停止中) 1:ストアードデータ運転 2:ダイレクトデータ運転 3:原点復帰運転 4:高速原点復帰運転 5:JOG運転 6:高速JOG運転 7:複合JOG運転 8:インチング運転 9:連続運転 13:ティーチングリモート運転

- ※1 ストアードデータ運転または連続マクロ運転以外の運転を実行中。
- ※2 停止中は、直前に運転していた運転データNo.が表示されます。

2-3 アラームの発生条件

表に示したアラームは、発生条件を超えるとアラームが発生します。

アラームコード	アラーム名	発生条件
21h	主回路過熱	85 °C
22h	過電圧	400 V
26h	モーター過熱	85 °C
31h	過速度	6,000 r/min
34h	指令パルス異常	15,000 r/min

2-4 アラーム一覧

アラーム発生時のモーター励磁は、次のようになります。

無励磁: アラームが発生するとモーターの電流が遮断されて、モーターの保持力がなくなります。

電磁ブレーキ付モーターの場合は、電磁ブレーキが保持状態になります。

励磁:アラームが発生してもモーターの電流は遮断されず、モーターの位置が保持されます。

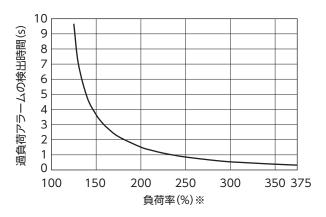
アラーム コード	LED点滅 回数	アラーム種類	原因	処置	解除方法	モーター 励磁
10h	4	位置偏差過大	モーター励磁状態で、指令位置と検出位置の偏差が、出力軸で「位置偏差過大アラーム」パラメータの設定値を超えた。 負荷が大きい、または負荷に対して加減速時間や加減速レートが短すぎる。	 負荷を軽くしてください。 加減速時間を長くする、または加減速レートを緩やかにしてください。 トルク制限値を見直してください。 運転データを見直してください。 	すべて可	無励磁
20h	5	過電流	モーター、ケーブル、および ドライバ出力回路が短絡し た。	主電源と制御電源を切り、モーター、ケーブル、およびドライバが破損していないか確認してください。その後、主電源と制御電源を再投入してください。それでもアラームが解除されないときは、モーター、ケーブル、またはドライバが破損しているおそれがあります。最寄りのお客様ご相談センターにお問い合わせください。	制御電源の再投入	無励磁
21h	2	主回路過熱	ドライバの内部温度が仕様値 の上限に達した。	換気条件を見直してください。	すべて可	無励磁
22h	3	過電圧	主電源の電圧が許容値を超えた。大きな慣性負荷を急停止した。昇降運転を行なった。	 主電源の入力電圧を確認してください。 負荷を軽くしてください。 加減速時間を長くする、または加減速レートを緩やかにしてください。 当社の回生抵抗RGB200を接続してください。 	制御電源の再投入	無励磁
23h	3	主電源オフ	運転中に主電源が遮断された。	主電源が正常に投入されている か確認してください。	すべて可	無励磁
25h	3	不足電圧	主電源が瞬間的に遮断され た、または電圧が不足した。	主電源の入力電圧を確認してください。	すべて可	無励磁
26h	8	モーター過熱	ABZOセンサの検出温度が仕 様値の上限に達した。	モーターの放熱状態を確認してください。換気条件を見直してください。	すべて可	無励磁
28h	8	センサ異常	運転中にABZOセンサの異常 が検出された。	主電源と制御電源を切り、モーターの接続を確認してください。 その後、主電源と制御電源を再投入してください。	制御電源 の再投入	無励磁
2Ah	8	ABZOセンサ通 信異常	ドライバとABZOセンサ間の 通信に異常が発生した。	主電源と制御電源を切り、 ABZOセンサの接続を確認して ください。その後、主電源と制御 電源を再投入してください。	制御電源 の再投入	無励磁
30h	2	過負荷	モーター出力が、過負荷のア ラームを検出する負荷率に到 達した。詳細は243ページ をご覧ください。	負荷を軽くしてください。加減速時間を長くする、または 加減速レートを緩やかにしてく ださい。モーター動力線が断線していな いか確認してください。	すべて可	無励磁

アラーム コード	LED点滅 回数	アラーム種類	原因	処置	解除方法	モーター 励磁
31h	2	過速度	出力軸の検出速度が仕様値を 超えた。	 「電子ギヤA」パラメータと「電子ギヤB」パラメータを見直して、出力軸の速度を仕様値未満にしてください。 加速時にオーバーシュートが発生しているときは、加速時間を長くする、または加速レートを緩やかにしてください。 	すべて可	無励磁
33h	7	絶対位置異常	ABZOセンサの原点情報が破損した。	位置プリセットを実行してから、 原点を再設定してください。	制御電源 の再投入	無励磁
34h	2	指令パルス異常	指令パルスの周波数が仕様値 を超えた。	指令パルスの周波数を低くして ください。	すべて可	無励磁
41h	9	EEPROM異常	ドライバの保存データが破損した。	すべてのパラメータを初期化し てください。	制御電源 の再投入	無励磁
42h	8	初期時センサ異常	制御電源の投入時、ABZOセンサの異常が検出された。	主電源と制御電源を切り、 ABZOセンサの接続を確認して ください。その後、主電源と制御 電源を再投入してください。	制御電源 の再投入	無励磁
43h	8	初期時回転異常	制御電源の投入時、モーターが回転していた。	制御電源の投入時に外力で出力 軸が回らないよう、負荷状態など を見直してください。	制御電源の再投入	無励磁
44h		エンコーダ EEPROM異常	ABZOセンサの保存データが 破損した。	次のどちらかを実行してください。それでも同じアラームが発生するときは、ABZOセンサが破損しています。お客様ご相談センターにお問い合せください。 ・メンテナンスコマンドの「ZSG-PRESET」で、Z相を再設定してください。 ・メンテナンスコマンドの「TRIPメーターのクリア」、またはMEXE02のステータスモニタで「TRIPメータークリア」を実行してください。	制御電源の再投入	無励磁
45h	8	モーター組合せ	ドライバに対応していない モーターを接続した。	ドライバ品名とモーター品名を 確認し、正しい組み合わせで接続 してください。	制御電源の再投入	無励磁
4Ah	7	原点復帰未完了	座標が確定していない状態で 絶対位置決め運転を開始し た。	位置プリセットまたは原点復帰 運転を実行してください。	すべて可	励磁
51h	2	回生抵抗器過熱	 回生抵抗RGB200が正しく接続されていない。 回生抵抗が異常に過熱した。 ドライバの放熱板が異常に過熱した。 	回生抵抗RGB200を使用しないときは、CN1のTH1端子とTH2端子を短絡してください。 回生抵抗RGB200を正しく接続してください。 回生抵抗の許容回生電力を超えています。負荷や運転の条件を見直してください。 制御電源を投入した状態で、ドライバからファンの動作音が聞こえるか確認してください。ファンの動作音が聞こえない場合、ファンが停止している可能性があります。お客様ご相談センターにお問い合わせください。	制御電源の再投入	無励磁

アラーム コード	LED点滅 回数	アラーム種類	原因	処置	解除方法	モーター 励磁
53h	2	HWTO入力回路 異常	 HWTO1入力または HWTO2入力の片方がOFF になってから、もう片方の 入力がOFFになるまでの時間が、「HWTO-2重系異常 検出遅延時間」パラメータ の設定値を超えた。 上記の現象に相当する回路 の故障が検出された。 	 「HWTO-2重系異常検出遅延 時間」パラメータを大きくして ください。 HWTO1入力とHWTO2入力 の配線を確認してください。 	制御電源の再投入	無励磁
60h	7	±LS同時入力	 「FW-LS・RV-LS入力動作」 パラメータが「2:即停止(ア ラーム発生)」または「3:減 速停止(アラーム発生)」の とき、FW-LS入力とRV-LS 入力の両方が検出された。 FW-LS入力とRV-LS入力の 両方が検出された状態で、 	設置したセンサの論理と、「接点 設定(信号反転)」パラメータを確 認してください。	すべて可	励磁
61h	7	±LS逆接続	原点復帰運転を実行した。 3センサ方式または2センサ 方式の原点復帰運転中、運転 方向とは逆のLS入力が検出さ れた。	センサの配線を確認してください。	すべて可	励磁
62h	7	原点復帰運転異常	原点復帰運転中に、想定外の負荷が加わった。 FW-LS、RV-LSセンサとHOMEセンサの設置位置が近接している。 原点復帰運転終了時の位置プリセット処理に失敗した。 1方向回転方式の原点復帰運転で、減速停止中にHOMEセンサを越えた。	 負荷を確認してください。 センサの設置位置とモーターの 運転開始方向を見直してください。 原点復帰終了時に、最大トルク を超える負荷が加わらないよう にしてください。 HOMEセンサの仕様と、 「(HOME)原点復帰加減速」パ ラメータを見直してください。 	すべて可	励磁
63h	7	HOMES未検出	3センサ方式の原点復帰運転 で、FW-LS入力とRV-LS入力 の間にHOMES入力が検出さ れなかった。	HOMEセンサはFW-LSセンサと RV-LSセンサの間に設置してくだ さい。	すべて可	励磁
64h	7	ZSG、SLIT信号 異常	原点復帰運転中に、ZSG出力、およびSLIT入力を検出できなかった。	 HOMES入力がONの間に、これらの信号がONになるよう、負荷の結合状態やHOMEセンサの位置を見直してください。 信号を使用しないときは、「(HOME)原点復帰ZSG信号検出」パラメータと「(HOME)原点復帰SLITセンサ検出」パラメータを「0:無効」に設定してください。 	すべて可	励磁
66h	7	ハードウェア オーバートラベ ル	「FW-LS・RV-LS入力動作」 パラメータが「2:即停止(ア ラーム発生)」または「3:減速 停止(アラーム発生)」のとき、 FW-LS入力またはRV-LS入力 が検出された。	アラームを解除してから、運転ま たは手動でセンサから脱出して ください。	すべて可	励磁
67h	7	ソフトウェア オーバートラベ ル	「ソフトウェアオーバート ラベル」パラメータが「2:即 停止(アラーム発生)」また は「3:減速停止(アラーム発 生)」のとき、ソフトウェアリ ミットに達した。	運転データを見直してください。アラームを解除してから、運転または手動でセンサから脱出してください。	すべて可	励磁

アラーム コード	LED点滅 回数	アラーム種類	原因	処置	解除方法	モーター 励磁
68h	1	HWTO入力検出	「HWTO動作」パラメータ が「1:アラーム発生あり」の とき、HWTO1入力または HWTO2入力がOFFになっ た。	HWTO1入力とHWTO2入力を ONにしてください。	すべて可	無励磁
6Ah	7	原点復帰運転オ フセット異常	原点復帰運転でオフセット移動しているときに、FW-LS入力またはRV-LS入力が検出された。	オフセット値を確認してください。	すべて可	励磁
6Dh	7	メカオーバート ラベル	原点設定済みの製品が、 ABZOセンサに保存されてい る機構リミットに到達した。	移動量 (位置) を確認してください。アラームを解除してから、運転または手動でセンサから脱出してください。	すべて可	励磁
70h	7	運転データ異常	 運転速度が0のデータで、ストアードデータ運転を行なった。 ラウンド設定が無効のときに、ラウンド運転を実行した。 機構保護パラメータの設定値を超える運転速度で運転した。 	 運転データを確認してください。 ラウンド設定を確認してください。 機構保護パラメータの設定値は、MEXEO2のユニット情報モニタで確認してください。 	すべて可	励磁
71h	7	電子ギヤ設定異常	「電子ギヤA」パラメータと 「電子ギヤB」パラメータで設 定した分解能が、仕様の範囲 外だった。	「電子ギヤA」パラメータと「電子ギヤB」パラメータを見直して、分解能を仕様の範囲内にしてください。	制御電源の再投入	無励磁
72h	7	ラウンド設定異常	分解能と「初期座標生成・ラウンド設定範囲」パラメータが 不整合な値で制御電源を投入 した。	「初期座標生成・ラウンド設定範囲」パラメータを正しく設定し、 制御電源を再投入してください。	制御電源 の再投入	無励磁
81h	7	ネットワークバ ス異常	運転中にExclusive Owner 接続のImplicit通信が切断さ れた。	スキャナとの接続やスキャナの 電源の状態を確認してください。	すべて可	励磁
82h	7	ネットワークモ ジュール異常	ネットワークモジュールに異 常が検出された。	制御電源を再投入してください。	制御電源 の再投入	無励磁
F0h	点灯	CPU異常	CPUが誤動作した	主電源と制御電源を再投入して ください。	_	_

関連するパラメータ

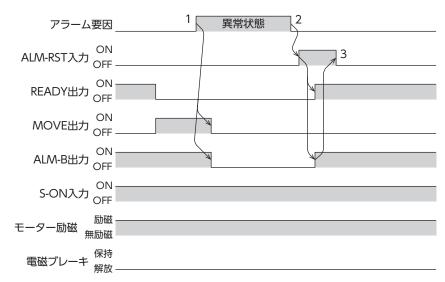

MEXE02分類	名称	内容	設定範囲	初期値
n6	位置偏差過大アラーム	位置偏差過大アラームの発生条件を 設定します。	1~30,000 (1=0.01 rev)	300
р6	ネットワークバス異常アラーム	ネットワークバス異常アラームの機 能を設定します。	0:無効 1:有効	1

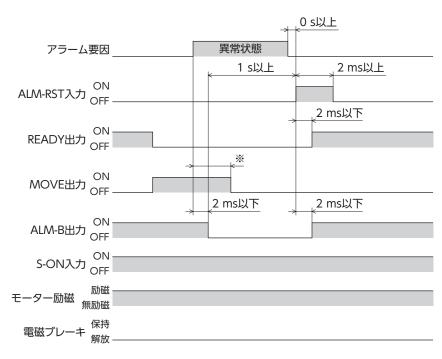
■ 過負荷アラームの特性

過負荷のアラームが検出される時間は、負荷率によって異なります。

負荷率(%)	過負荷アラームの検出時間
100	検出しない
125	約10 s
150	約4 s
250	約1 s
300	約0.5 s
375	約0.3 s

• 過負荷アラームの検出時間の目安

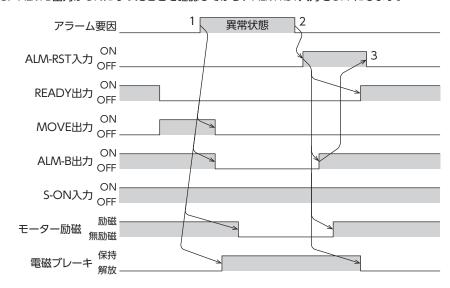


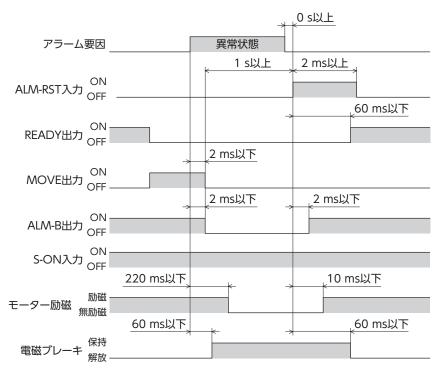

※ 現在のモーター出力を、連続運転領域の最大出力に対する割合 で示します。

2-5 タイミングチャート

■ アラームが発生してもモーターが励磁したままの場合

- 1. 異常が発生すると、ALM-B出力とMOVE出力がOFFになります。 同時にモーターが即停止します。
- 2. アラームの要因を取り除いてから、ALM-RST入力をONにします。 アラームが解除され、ALM-B出力とREADY出力がONになります。
- 3. ALM-B出力がONになったことを確認してから、ALM-RST入力をOFFにします。





※ 駆動条件によって異なります。

■ アラーム発生時にモーターが無励磁になる場合

- 1. 異常が発生すると、ALM-B出力とMOVE出力がOFFになります。 同時にモーターが即停止します。
- 2. アラームの要因を取り除いてから、ALM-RST入力をONにします。 アラームが解除され、ALM-B出力とREADY出力がONになります。
- 3. ALM-B出力がONになったことを確認してから、ALM-RST入力をOFFにします。

3 インフォメーション

ドライバには、アラームが発生する前に出力されるインフォメーション機能が備わっています。

各インフォメーションのパラメータに適切な値を設定することで、装置の定期メンテナンスに役立てることができます。たとえば、「モーター温度インフォメーション」パラメータを利用して、モーター過熱による装置の故障や生産停止を予防できます。また、「TRIPメーターインフォメーション」パラメータを利用すると、一定の走行距離ごとにメンテナンスを行なう目安となります。

■ インフォメーション発生時の状態

● インフォメーションのビット出力

インフォメーションが発生すると、対応するインフォメーションのビット出力(INFO-**出力)がONになります。 ビット出力のうち、INFO-USRIO出力は、任意の出力信号を割り付けて使うことができます。割り付けた出力信号がONになると、INFO-USRIO出力もONになります。(ビット出力の詳細 ➡ 249ページ)

● INFO出力

インフォメーションが発生すると、INFO出力がONになります。

● LED表示

インフォメーションが発生すると、PWR/ALM LEDの赤色と緑色が同時に2回点滅します。(赤色と緑色が重なって、橙色に見えることがあります。)

● モーターの運転

インフォメーションはアラームと異なり、モーターの運転は継続します。

● パラメータ

各インフォメーションには、対応する[INFO反映]パラメータがあります。パラメータを[0:ビット出力だけがON]に設定すると、インフォメーションのビット出力だけがONになり、INFO出力やLEDは変化しません。

関連するパラメータ

MEXE02分類	名称	内容	設定範囲	初期値
	INFO自動クリア	インフォメーションの原因が取り除かれたときに、INFO出力や対応するインフォメーションのビット出力を自動でOFFにします。	0:無効(自動でOFFにな らない) 1:有効(自動でOFFにな る)	1
	INFO LED表示	インフォメーションが発生したとき のLEDの状態を設定します。	0:LEDを点滅させない 1:LEDを点滅させる	1
	INFO-USRIO出力選択	INFO-USRIO出力で確認する出力信 号を選択します。	出力信号一覧 ➡ 233ページ	128: CONST-OFF
	INFO-USRIO出力反転	INFO-USRIO出力の出力論理を設定 します。	0:反転しない 1:反転する	0
р6	位置偏差インフォメーション (INFO-POSERR)		1~30,000 (1=0.01 rev)	300
	ドライバ温度インフォメー ション (INFO-DRVTMP)		40~85 ℃	85
	モーター温度インフォメー ション (INFO-MTRTMP)	インフォメーションの発生条件を設 定します。	40~120 °C	85
	過電圧インフォメーション (INFO-OVOLT)		120~450 V	400
	不足電圧インフォメーション (INFO-UVOLT)		120~280 V	120
	トルク制限時間インフォメー ション (INFO-TLCTIME)		0:無効 1~10,000 ms	0

MEXE02分類	名称	内容	設定範囲	初期値
	速度インフォメーション (INFO-SPD)		0:無効 1~12,000 r/min	0
	負荷率インフォメーション (INFO-LOAD)		0:無効 1~10,000(1=0.1 %)	0
	トルクインフォメーション (INFO-TRQ)		0:無効 1~10,000(1=0.1 %)	0
	整定時間インフォメーション (INFO-STLTIME)	定します。	0:無効 1~10,000 ms	0
	積算負荷0インフォメーション (INFO-CULD0)		0~2,147,483,647	0
	積算負荷1インフォメーション(INFO-CULD1)		0 -2,147,403,047	0
	積算負荷自動クリア	運転開始時に (MOVE出力のONエッジ)、積算負荷をクリアします。	0:クリアしない 1:クリアする	1
	積算負荷除数	積算負荷の除数を設定します。	1~32,767	1
	TRIPメーターインフォメーション(INFO-TRIP)	 インフォメーションの発生条件を設 定します。	0:無効 1~2,147,483,647	0
	ODOメーターインフォメー ション(INFO-ODO)	EU& 9°	(1=0.1 kRev)	
	指定I/Oステータス (INFO- USRIO) のINFO反映			
	位置偏差 (INFO-POSERR) の INFO反映		0:ビット出力だけがON 1:ビット出力とINFO出 力が ON、LEDが点滅	
	ドライバ温度 (INFO- DRVTMP) のINFO反映			
	モーター温度 (INFO- MTRTMP) のINFO反映			
р6	負荷率(INFO-LOAD)の INFO反映			
	トルク (INFO-TRQ) のINFO 反映			
	過電圧(INFO-OVOLT)の INFO反映			
	不足電圧 (INFO-UVOLT) の INFO反映			
	トルク制限時間 (INFO- TLCTIME) のINFO反映	インフォメーションが発生したとき		
	速度(INFO-SPD)のINFO反映	の、ビット出力、INFO出力、および LEDの状態を設定します。		1
	運転起動失敗 (INFO- START) のINFO反映			
	ZHOME起動失敗 (INFO- ZHOME) のINFO反映			
	PRESET要求中(INFO-PR- REQ)のINFO反映			
	電子ギヤ設定異常(INFO- EGR-E)のINFO反映			
	ラウンド設定異常 (INFO-RND-E) のINFO反映			
	正転方向運転禁止状態 (INFO-FW-OT)のINFO反 映			
	逆転方向運転禁止状態 (INFO-RV-OT)のINFO反映			
	積算負荷0 (INFO-CULD0) のINFO反映			

MEXE02分類	名称	内容	設定範囲	初期値
	積算負荷1 (INFO-CULD1) のINFO反映			
	整定時間 (INFO-STLTIME) のINFO反映			
	TRIPメーター(INFO-TRIP) のINFO反映			
26	ODOメーター(INFO- ODO)のINFO反映	インフォメーションが発生したとき の、ビット出力、INFO出力、および		1
p6	運転起動制限モード (INFO- DSLMTD) のINFO反映	LEDの状態を設定します。		1
	I/Oテストモード (INFO- IOTEST) のINFO反映			
	コンフィグ要求(INFO- CFG)のINFO反映			
	再起動要求 (INFO-RBT) の INFO反映			

3-1 インフォメーションの履歴

発生したインフォメーションは、最新のものから順に16個までRAMに保存されます。インフォメーション履歴として残る 情報は、インフォメーションコード、発生時間、およびインフォメーション内容です。

次のどれかを行なうと、保存されているインフォメーション履歴を取得・消去できます。

- EtherNet/IPのモニタコマンドでインフォメーション履歴を取得する。
- EtherNet/IPのメンテナンスコマンドでインフォメーション履歴を消去する。
- MEXE02でインフォメーション履歴を取得・消去する。

(memo) インフォメーション履歴はRAMに保存されるため、ドライバの制御電源を切ると消去されます。

■ インフォメーションコード

インフォメーションコードは8桁の16進数で表示されます。32 bitでも読み出すことが可能です。 複数のインフォメーションが発生しているときは、インフォメーションコードの論理和(OR)で表示されます。

例:位置偏差とドライバ温度のインフォメーションが発生している場合

位置偏差のインフォメーションコード:0000 0002h ドライバ温度のインフォメーションコード:0000 0004h 2つのインフォメーションコードの論理和(OR):0000 0006h

インフォメーションコード	32 bit表示	インフォメーション名
0000001h	0000 0000 0000 0000 0000 0000 0000 0001	I/O(ユーザ設定)
0000002h	0000 0000 0000 0000 0000 0000 0000 0010	位置偏差
0000004h	0000 0000 0000 0000 0000 0000 0000 0100	ドライバ温度
00000008h	0000 0000 0000 0000 0000 0000 0000 1000	モーター温度
0000010h	0000 0000 0000 0000 0000 0000 0001 0000	過電圧
00000020h	0000 0000 0000 0000 0000 0000 0010 0000	不足電圧
00000040h	0000 0000 0000 0000 0000 0000 0100 0000	トルク制限時間
00000080h	0000 0000 0000 0000 0000 0000 1000 0000	負荷率
00000100h	0000 0000 0000 0000 0000 0001 0000 0000	速度
00000200h	0000 0000 0000 0000 0000 0010 0000 0000	運転起動失敗
00000400h	0000 0000 0000 0000 0000 0100 0000 0000	ZHOME起動失敗
00000800h	0000 0000 0000 0000 0000 1000 0000 0000	プリセット要求中
00002000h	0000 0000 0000 0000 0010 0000 0000 0000	電子ギヤ設定異常
00004000h	0000 0000 0000 0000 0100 0000 0000 0000	ラウンド設定異常
00010000h	0000 0000 0000 0001 0000 0000 0000 0000	正転方向運転禁止状態
00020000h	0000 0000 0000 0010 0000 0000 0000 0000	逆転方向運転禁止状態

インフォメーションコード	32 bit表示	インフォメーション名
00040000h	0000 0000 0000 0100 0000 0000 0000 0000	積算負荷0
00080000h	0000 0000 0000 1000 0000 0000 0000 0000	積算負荷1
00100000h	0000 0000 0001 0000 0000 0000 0000 0000	TRIPメーター
00200000h	0000 0000 0010 0000 0000 0000 0000 0000	ODOメーター
00800000h	0000 0000 1000 0000 0000 0000 0000 0000	トルク
01000000h	0000 0001 0000 0000 0000 0000 0000 0000	整定時間
10000000h	0001 0000 0000 0000 0000 0000 0000 0000	運転起動制限モード
2000000h	0010 0000 0000 0000 0000 0000 0000 0000	I/Oテストモード
4000000h	0100 0000 0000 0000 0000 0000 0000 0000	コンフィグ要求
8000000h	1000 0000 0000 0000 0000 0000 0000 0000	再起動要求

3-2 インフォメーション一覧

内容	ビット出力信号	原因	解除条件
指定I/Oステータス	INFO-USRIO	「INFO-USRIO出力選択」パラメータで設定した出力信号がONになった。	「INFO-USRIO出力選択」パラメータで設定した出力信号がOFFになった。
位置偏差	INFO-POSERR	指令位置と検出位置の偏差が、出力軸で「位置偏差インフォメーション」パラメータの設定値を超えた。	指令位置と検出位置の偏差が、出力軸で「位置偏差インフォメーション」パラメータの設定値を下回った。
ドライバ温度	INFO-DRVTMP	ドライバの内部温度が「ドライバ温度イン フォメーション」パラメータの設定値を超え た。	ドライバの内部温度が「ドライバ温度インフォメーション」パラメータの設定値 を下回った。
モーター温度	INFO-MTRTMP	エンコーダの検出温度が「モーター温度イン フォメーション」パラメータの設定値を超え た。	エンコーダの検出温度が「モーター温度 インフォメーション」パラメータの設定 値を下回った。
過電圧	INFO-OVOLT	主電源の電圧が「過電圧インフォメーション」パラメータの設定値を超えた。大きな慣性負荷を急停止した。昇降運転を行なった。	主電源の電圧が「過電圧インフォメー ション」パラメータの設定値を下回った。
不足電圧	INFO-UVOLT	主電源の電圧が、「不足電圧インフォメーション」パラメータの設定値を下回った。主電源が瞬間的に遮断された、または電圧が不足した。	主電源の電圧が、「不足電圧インフォメーション」パラメータの設定値を超えた。
トルク制限時間	INFO-TLCTIME	TLC出力のON時間が「トルク制限時間インフォメーション」パラメータの設定値を超えた。	TLC出力がOFFになった。
負荷率	INFO-LOAD	モーターの負荷率が「負荷率インフォメー ション」パラメータの設定値を超えた。	モーターの負荷率が「負荷率インフォメーション」パラメータの設定値を下回った。
速度	INFO-SPD	モーターの検出速度が「速度インフォメー ション」パラメータの設定値を超えた。	モーターの検出速度が「速度インフォメーション」パラメータの設定値を下回った。
運転起動失敗	INFO-START	 FW-BLK入力またはRV-BLK入力で停止している方向の運転起動信号がONになった。 FW-LS入力またはRV-LS入力で停止している方向の運転起動信号がONになった。 ソフトウェアリミットで停止している方向の運転起動信号がONになった。 運転が実行できない状態(例:READY出力がOFF)のときに、運転起動信号がONになった。 	運転が正常に起動した。

	ビット出力信号	原因	解除条件
		• 座標が確定していないときに(ABSPEN出	
ZHOME起動失敗	INFO-ZHOME	力がOFF)、ZHOME入力をONにした。	 運転が正常に起動した。
ZIIOME起勤大敗	INFO-ZITOME	• 電気原点座標系で使用しているときに(EL- PRST入力がON)、原点復帰運転を行なっ	度物が正常に応勤した。
		た。	
プリセット要求中	INFO-PR-REQ	位置プリセットまたは原点復帰運転で、プリ セットを実行した。	プリセットが完了した。
		「電子ギヤA」パラメータと「電子ギヤB」パラ	
電子ギヤ設定異常	INFO-EGR-E	メータで設定した分解能が仕様の範囲外だっ	分解能を仕様の範囲内に設定した。
		た。 分解能と「初期座標生成・ラウンド設定範囲」	 「初期座標生成・ラウンド設定範囲」パラ
ラウンド設定異常 	INFO-RND-E	パラメータが不整合だった。	メータを仕様の範囲内に設定した。
正転方向運転禁止状	INIEO EVALOT	• +側ソフトウェアリミットを超えた。	+側ソフトウェアリミットの範囲内、お
態	INFO-FW-OT	● FW-LS入力かFW-BLK入力のどちらかが ONになった。	│よびFW-LS入力とFW-BLK入力の両方が │OFFになった。
`````;		<ul><li>● 一側ソフトウェアリミットを超えた。</li></ul>	│ │ -側ソフトウェアリミットの範囲内、お
逆転方向運転禁止状 態	INFO-RV-OT	• RV-LS入力かRV-BLK入力のどちらかがON	よびRV-LS入力とRV-BLK入力の両方が OFFになった。
		になった。   積算負荷が「積算負荷Oインフォメーション」	OFFICなった。   積算負荷が「積算負荷0インフォメーショ
積算負荷0 	INFO-CULD0	パラメータの設定値を超えた。	ン」パラメータの設定値を下回った。
積算負荷1	INFO-CULD1	積算負荷が「積算負荷1インフォメーション」 パラメータの設定値を超えた。	積算負荷が「積算負荷1インフォメーション」パラメータの設定値を下回った。
		ハングークの設定値で超えた。	次の操作を行なって、モーターの走行距
	INFO-TRIP	モーターの走行距離が「TRIPメーターイン フォメーション」パラメータの設定値を超え た。	離(TRIPメーター)が「TRIPメーターイン
			フォメーション] パラメータの設定値を   下回った。
TRIPメーター			• [TRIPメーターインフォメーション]パ
			ラメータを再設定した。 ・メンテナンスコマンドの「TRIPメーター
			のクリア」を実行した。
			次の操作を行なって、モーターの積算
0004 5	INIEO ODO	モーターの積算走行距離が「ODOメーターイ	走行距離(ODOメーター)が「ODOメーターインフォメーション」パラメータの
ODOX-9-	INFO-ODO	ンフォメーション」パラメータの設定値を超 えた。	設定値を下回った。
			●「ODOメーターインフォメーション」パ ラメータを再設定した。
		     モーターの検出トルクが「トルクインフォ	モーターの検出トルクが「トルクイン
トルク	INFO-TRQ	メーション」パラメータの設定値を超えた。	フォメーション」パラメータの設定値を 下回った。
			●運転を起動した。
整定時間	INFO-STLTIME	整定時間が「整定時間インフォメーション」パラメータの設定値を超えた。	<ul><li>整定時間が「整定時間インフォメーショ</li></ul>
		• MEXE02で「ティーチング・リモート運転」を	ン」パラメータの設定値を下回った。
		実行した。	● ティーチング・リモート運転を解除し
\P±=+7-£L+-U02	INIEC DOLLATE	• Configurationを実行した。	た。 Configurationが完了した
運転起動制限モード	INFO-DSLMTD	• MEXE02からドライバにデータを書き込ん だ。	<ul><li>Configurationが完了した。</li><li>データの書き込みが完了した。</li></ul>
		・ MEXE02で「工場出荷時設定に戻す」を実行	●工場出荷時の設定に戻った。
		した。	1/0=717 1/4 2750/
1/0テストモード	INFO-IOTEST	<ul><li>MEXE02で[I/Oテスト]を実行した。</li><li>Configurationを実行した。</li></ul>	<ul><li>I/Oテストモードを解除した。</li><li>Configurationが完了した。</li></ul>
	INIFO CEC	Configurationの実行が必要なパラメータを	
コンフィグ要求	INFO-CFG	変更した。	Configurationを実行した。
再起動要求	INFO-RBT	再起動が必要なパラメータを変更した。	再起動を行なった。



(memo) [INFO自動クリア]パラメータを[0:無効(自動で無効にならない)]に設定している状態で、「プリセット 要求中Jインフォメーションが100 ms以上発生したときは、プリセットに失敗している場合があります。 プリセットに失敗した原因は、次の2つが考えられます。

- ABZOセンサがドライバに接続されていない。
- 指令位置と検出位置の偏差が1.8°以上ある状態で、プリセットを実行した。

# 4 故障の診断と処置

モーターの運転時、設定や接続の誤りなどで、モーター、ドライバが正常に動作しないことがあります。 モーターの運転操作を正常に行なえないときは、この章をご覧になり、適切な処置を行なってください。 それでも正常に運転できないときは、お客様ご相談センターにお問い合わせください。

現象	予想される原因	処置
<ul><li>モーターが励磁しない。</li></ul>	モーターケーブルの接続不良	モーターの接続を確認してください。
<ul><li>● 手で出力軸を回せる。</li></ul>	S-ON入力がOFFになっている。	S-ON入力をONにしてください。
● 子で山力軸を回せる。	FREE入力がONになっている。	FREE入力をOFFにしてください。
	電磁ブレーキ付モーターの場合、電 磁ブレーキが保持状態になっている。	電磁ブレーキの接続状態を確認してください。
	STOP入力がONになっている。	STOP入力をOFFにしてください。
モーターが回転しない。	位置決め運転のとき、運転データに 位置(移動量)が設定されていない。	運転データを確認してください。
	JOG運転、高速JOG運転、および連続マクロ運転のとき、FWD方向の入力とRVS方向の入力が同時にONになっている。	FWD方向の入力とRVS方向の入力を両方ともOFFにしてから、片方だけをONにしてください。
モーターが指定した方向とは逆 へ回転する。	「モーター回転方向」パラメータの設 定が間違っている。	「モーター回転方向」パラメータの設定を確認 してください。
モーターの動作が不安定	モーターケーブルや電源ケーブルの 接続不良	モーターや主電源の接続を確認してください。
電磁ブレーキが解放状態にならない。	電磁ブレーキに電源が供給されていない。	電磁ブレーキの接続状態を確認してください。

memo

アラームが発生しているときは、EtherNet/IPまたは**MEXE02**でアラームの内容を確認してください。

# 9 拡張機能

	_		
▲	土、	_	18
$\overline{}$		•	

1 ゲー	インチューニング	254	6	НО	ME PRESETスイッチの機能を	
1-1	負荷慣性の設定	254		変更	ēする	.266
1-2	応答性の設定	254	7	A框	/B相出力の割り付けを変更する	.267
2 振動	动抑制	257	8	ドラ	・ ライバの動作をシミュレーションする	.268
2-1	指令フィルタ	257	0		ドライバシミュレーションモードの	
2-2	共振抑制	258	0-	I	準備と操作手順	269
2-3	制振制御	259	8_	2	坐標	
2-4	電子ダンパ	259	_	_	モニタ	
3 積算	章負荷	260	8-		運転	
, <del>,</del>	± <del></del>	262	8-	5	入出力信号	. 273
4 負荷	<b>苛率モニタ</b>	262	8-	6	アラーム	. 273
5 ラッ	ッチ機能	263	9		:  信号を使う	

# 1 ゲインチューニング

負荷慣性や機械剛性に合わせて、指令に対するモーターの追従性を調整できます。

### 1-1 負荷慣性の設定

装置の負荷慣性に合わせて、負荷慣性の設定を行ないます。

#### 関連するパラメータ

MEXE02分類	名称	内容	設定範囲	初期値
p13	負荷慣性設定方法選択	負荷慣性モーメントの設定方法を選択しま す。	0: 「負荷慣性設定」 パラメータを使用 1:自動	1
	負荷慣性設定	モーターのローター慣性モーメントに対する負荷慣性モーメントの割合を設定します。 ローター慣性モーメントと負荷慣性モーメントが等しいときは100%になります。	0~10,000 %	0

### 1-2 応答性の設定

指令に対するモーターの追従性を設定します。

### 関連するパラメータ

MEXE02分類	名称	内容	設定範囲	初期値
p13	応答性選択	ドライバの指令に対するモーターの追従性の設定方 法を選択します。	-1:マニュアル設定 0~15	6

### ■「応答性選択」パラメータが「-1:マニュアル設定」のとき

[応答性選択]パラメータを[-1:マニュアル設定]に設定したときだけ、関連するパラメータが有効になります。

### 関連するパラメータ

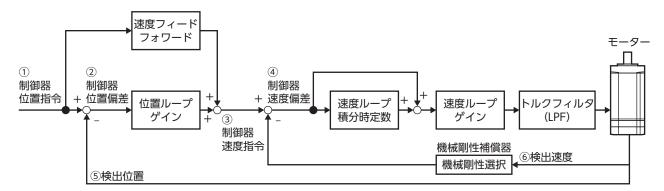
MEXE02分類	名称	内容	設定範囲	初期値
p13	位置ループゲイン	位置偏差に対する追従性を調整します。値を 大きくすると、指令位置と実位置の偏差が小 さくなります。値が大きすぎると、モーター のオーバーシュートが大きくなったり、モー ターが発振する原因になります。	1∼50 Hz	8
	速度ループゲイン	速度偏差に対する追従性を調整します。値を 大きくすると、指令速度と実速度の偏差が小 さくなります。値が大きすぎると、モーター のオーバーシュートが大きくなったり、モー ターが発振する原因になります。	1∼500 Hz	82
	速度ループ積分時定数	速度ループゲインでは調整できない偏差を調整します。値が長すぎると、モーターの動きが緩やかになります。値が短すぎると、モーターが発振する原因になります。	1~10,000 (1=0.01 ms)	1,940
	トルクフィルタ(LPF)	高い周波数での応答性を調整します。	0∼4,700 Hz	820
	速度フィードフォワード	速度が一定のとき、指令位置と実位置の偏差を小さくして、整定時間を短くできます。 100%に設定すると偏差はほぼ0になりますが、値が高すぎると、モーターのオーバーシュートが大きくなったり、モーターが発振する原因になります。	0~100 %	80

MEXE02分類	名称	内容	設定範囲	初期値
p13	機械剛性選択	装置の剛性を設定します。値が高くなるほど モーターの応答性が高くなりますが、値が高 すぎると、振動や異音が発生する原因になり ます。	0~15	6

memo

一般的に、次の順で剛性が高いといわれています。

ベルトプーリー<ラック&ピニオン<ボールねじ<剛体(インデックステーブル、ギヤなど)


### ■「応答性選択」パラメータが「0~15」のとき

「応答性選択」パラメータを「0~15」に設定したとき、関連するパラメータの設定値は表の値として扱われます。

応答性 選択	位置ループゲイン [Hz]	速度ループゲイン [Hz]	速度ループ積分 時定数[ms]	速度フィード フォワード[%]	トルクフィルタ [Hz]	機械剛性選択
0	1	14	51.00	80	300	0
1	2	22	51.00	80	300	1
2	3	32	48.20	80	320	2
3	5	46	33.80	80	460	3
4	6	56	28.40	80	560	4
5	7	68	23.40	80	680	5
6	8	82	19.40	80	820	6
7	10	100	15.80	80	1,000	7
8	12	120	13.20	80	1,200	8
9	15	150	10.60	80	1,500	9
10	18	180	8.80	80	1,800	10
11	20	220	7.20	80	2,200	11
12	20	270	5.80	80	2,700	12
13	20	330	4.80	80	3,300	13
14	20	390	4.00	80	3,900	14
15	20	470	3.40	80	4,700	15

### ■ 制御器ブロック図(位置制御)

図の「+」は加算、「-」は減算を示します。 ロで囲った内容はパラメータの名称です。



	名称	内容
1	制御器位置指令	制御器(指令フィルタ後)の指令位置です。
2	制御器位置偏差	制御器(指令フィルタ後)の位置偏差です。
3	制御器速度指令	制御器(指令フィルタ後)の指令速度です。
4	制御器速度偏差	制御器(指令フィルタ後)の速度偏差です。
5	検出位置	検出位置です。
6	検出速度	検出速度です。

# 2 振動抑制

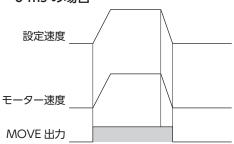
### 2-1 指令フィルタ

モーターの応答性を調整する指令フィルタを利用すると、モーターの振動を抑えることができるようになります。 指令フィルタには、LPF(速度フィルタ)と移動平均フィルタの2種類があります。

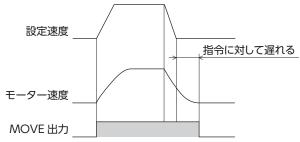
#### 関連するパラメータ

MEXE02分類	名称	内容	設定範囲	初期値
P13	指令フィルタ選択	モーターの応答性を調整する フィルタを設定します。	1:LPF (速度フィルタ) を 選択 2:移動平均フィルタを 選択	1
	指令フィルタ時定数	モーターの応答性を調整します。	0~200 ms	1

memo


装置や運転条件によって最適な値が異なります。実際にお使いになる条件で確認してください。

### ■ LPF(速度フィルタ)

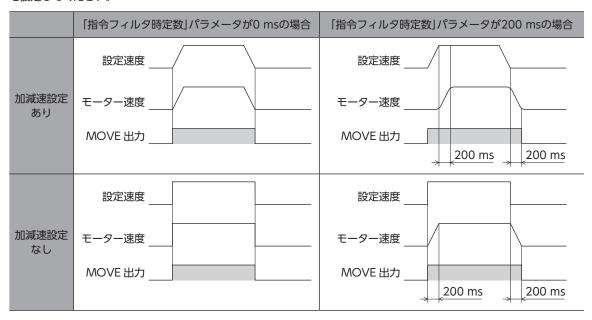

[指令フィルタ選択] パラメータで [1:LPF (速度フィルタ) を選択] を選択し、 [指令フィルタ時定数] パラメータを設定してください。

「指令フィルタ時定数」パラメータの設定値を高くすると、低速運転時の振動を抑えたり、起動・停止時のモーターの動きが滑らかになります。 ただし、値を高くしすぎると、指令に対する同期性が低下します。 負荷や用途に合わせて、適切な値を設定してください。

# ● 「指令フィルタ時定数」パラメータが0 ms の場合



### ● 「指令フィルタ時定数」パラメータが 200 ms の場合




### ■ 移動平均フィルタ

「指令フィルタ選択」パラメータで「2:移動平均フィルタを選択」を選択し、「指令フィルタ時定数」パラメータを設定してく ださい。

モーターの応答性を調整できます。また、位置決め運転時の残留振動を抑制して、位置決め時間を短縮できます。

「指令フィルタ時定数」パラメータは、負荷や運転条件によって最適値が異なります。負荷や運転条件に合わせて、適切な値 を設定してください。



#### 2-2 共振抑制

共振を抑制するためのフィルタを設定します。

### 関連するパラメータ

MEXE02分類	名称	内容	設定範囲	初期値
	共振抑制A周波数	抑制したい振動の周波数を設定します。	100~3,200 Hz	1,000
	共振抑制Aゲイン	振動抑制のゲインを設定します。値を大きくすると、 偏差に対する応答性が低くなります。	0~100 %	0
	共振抑制A幅	抑制したい振動の幅を設定します。	30~120	30
	共振抑制B周波数	抑制したい振動の周波数を設定します。	100~3,200 Hz	1,000
	共振抑制Bゲイン	振動抑制のゲインを設定します。値を大きくすると、 偏差に対する応答性が低くなります。	0~100 %	0
n12	共振抑制B幅	抑制したい振動の幅を設定します。	30~120	30
p13	共振抑制C周波数	抑制したい振動の周波数を設定します。	100~3,200 Hz	1,000
	共振抑制Cゲイン	振動抑制のゲインを設定します。値を大きくすると、 偏差に対する応答性が低くなります。	0~100 %	0
	共振抑制C幅	抑制したい振動の幅を設定します。	30~120	30
	共振抑制D周波数	抑制したい振動の周波数を設定します。	100~3,200 Hz	1,000
	共振抑制Dゲイン	振動抑制のゲインを設定します。値を大きくすると、 偏差に対する応答性が低くなります。	0~100 %	0
	共振抑制D幅	抑制したい振動の幅を設定します。	30~120	30

(memo) 装置や運転条件によって最適な値が異なります。実際にお使いになる条件で確認してください。

#### 2-3 制振制御

剛性の低い機械に組み込んだときでも、位置決め時の残留振動を抑制して、位置決め時間を短縮できます。

### 関連するパラメータ

MEXE02分類	名称	内容	設定範囲	初期値
p13	制振制御周波数	抑制したい振動の周波数を設定します。	700~20,000 (1=0.01 Hz)	10,000
	制振制御ゲイン	制振制御のゲインを設定します。	0~100 %	0

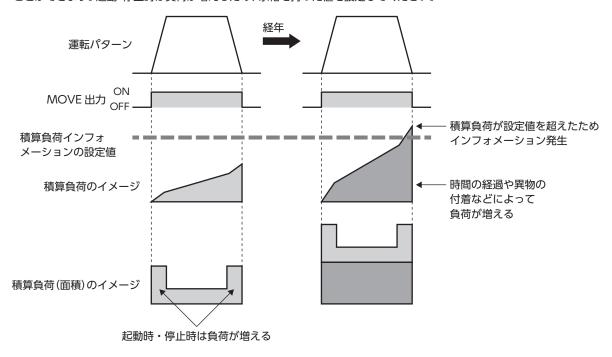
(memo) 装置や運転条件によって最適な値が異なります。実際にお使いになる条件で確認してください。

### 電子ダンパ

モーターに設定されている振動抑制機能(電子ダンパ)の有効/無効を設定できます。

#### 関連するパラメータ

MEXE02分類	名称	内容	設定範囲	初期値
p13	電子ダンパ	振動抑制機能を設定します。	0:無効 1:有効	1


(memo) カップリングや負荷によっては、「0:無効」に設定したほうが振動抑制に効果的な場合があります。

# 3 積算負荷

モーターの運転パターンにおける負荷率を面積で把握し、積算された面積(負荷)が一定の値を超えるとインフォメーションで知らせることができます。モーターの寿命や装置の経年劣化の目安になる便利な機能です。

### ■ 積算負荷の考え方

装置は稼動が進むとともに、サビや異物が付着したり、グリースの劣化などによって、摩擦や負荷が増えていきます。 このような負荷の増加(積算負荷)を予想し、インフォメーションに設定することで、経年トラブルによる装置の停止を防ぐ ことができます。起動・停止時は負荷が増えるため、余裕を持った値を設定してください。



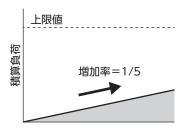
### ■ 利用方法

- 1. 運転中にMEXE02のステータスモニタ画面を開き、通常の運転パターンにおける積算負荷を確認します。 この値に余裕を持たせて、積算負荷の最大値を予想します。
- 2. 手順1で決定した最大値を「積算負荷インフォメーション」パラメータに設定します。
- 3. 装置の稼動が始まり、モーターの積算負荷が手順2で設定した値に達すると、インフォメーションが発生します。 装置のメンテナンスを行なってください。



積算負荷はRAMに保存されるため、ドライバの主電源を切ると消去されます。

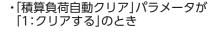
### ■「積算負荷除数|パラメータについて

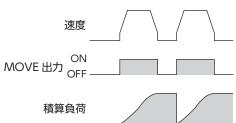

積算負荷のカウント上限値は、2,147,483,647です。

運転時間が長いと積算負荷が増えてしまい、管理しにくくなったり、カウント上限値を超えてしまうことがあります。 このようなときは「積算負荷除数」パラメータを使用してください。 「積算負荷除数」パラメータは、積算負荷のカウント値を 割るための除数です。 積算負荷除数で割ることで、カウント値を管理しやすくなります。

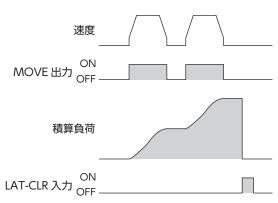
- 「積算負荷除数」パラメータが「1」のとき
- 「積算負荷除数」パラメータが「5」のとき




運転を続けていると上限値に達して しまい積算負荷をカウントできない



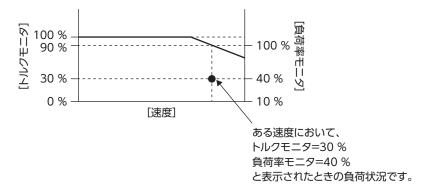

積算負荷のカウント値を「5」で 割っているため増加が緩やかになる


### ■ 「積算負荷自動クリア」パラメータについて

- 「積算負荷自動クリア」パラメータを「1:クリアする」(初期値:クリアする)に設定すると、MOVE出力がONになるたびに積算負荷が0にクリアされます。1回の運転ごとに、積算負荷をリセットすることができます。
- 「積算負荷自動クリア」パラメータを「0:クリアしない」に設定すると、MOVE出力がONになっても積算負荷はリセットされず、積算が続きます。一定時間や一定条件での積算負荷をモニタできます。なお、このパラメータを「0:クリアしない」に設定したときは、LAT-CLR入力で積算負荷をリセットしてください。






#### ・「積算負荷自動クリア」パラメータが 「0:クリアしない」のとき



# 4 負荷率モニタ

モーターの負荷率のモニタには、次の2種類があります。

- トルクモニタ:現在の出力トルクを、定格トルクに対する割合で示します。
- 負荷率モニタ:現在のモーター出力を、連続運転領域の最大出力に対する割合で示します。



### ラッチ機能 5

ラッチ機能は、イベントジャンプによって運転が切り替わったり、運転が停止したときの瞬間的な運転情報をドライバに保 存する機能です。たとえば、連続運転中にNEXT入力で次の運転に切り替えた場合、切り替えた瞬間の運転情報がラッチさ れます。イベントジャンプやNEXT入力など、ラッチを発生させるトリガを「ラッチトリガ」といいます。ラッチ機能で保存 された運転情報は、クリアするまで保持されます。ラッチされた運転情報は、装置の保守や運転状況の確認などに役立てる ことができます。

### ■ ラッチされる情報

- 指令位置:ラッチトリガが発生したときの指令位置
- 検出位置:ラッチトリガが発生したときの検出位置
- 目標位置: イベントジャンプ、NEXT入力によってラッチされたときは、遷移先の運転の目標位置 運転停止によってラッチされたときは、停止した運転の目標位置
- 運転データNo:ラッチした時点の運転データNo.
- ループ回数:ループ運転の実行中にラッチされたときは、ラッチした時点のループ回数を保存します。

(memo) 制御電源を再投入すると、ラッチされたすべての情報はクリアされます。

### ■ ラッチトリガの種類

- イベントジャンプ(弱イベント、強イベント)、NEXT入力
  - ストアードデータ運転中、イベントジャンプ(弱イベント、強イベント)が発生して運転が切り替わったとき。
  - ストアードデータ運転中、NEXT入力が入力されて運転が切り替わったとき。

#### ● 運転の停止

- S-ON入力、FREE入力、CLR入力、STOP-SOFF入力、STOP入力によって運転が停止したとき。
- ソフトウェアオーバートラベルまたはハードウェアオーバートラベルによって運転が停止したとき。
- アラームが発生して運転が停止したとき。
- FWD方向の運転を実行中、FW-BLK入力によって運転が停止したとき。
- RVS方向の運転を実行中、RV-BLK入力によって運転が停止したとき。

### ■ 関連する入出力信号

#### LAT-CLR入力

LAT-CLR入力をONにすると、ラッチ状態が解除されます。

ラッチ状態が解除されると次の信号がOFFになります。

- NEXT-LAT出力
- JUMP0-LAT出力
- JUMP1-LAT出力

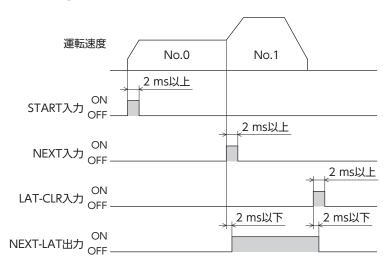
また、次のモニタコマンドの値が0にクリアされます。

- ラッチモニタ 状態(NEXT、I/Oイベントー弱イベント、I/Oイベントー強イベント、運転停止)
- イベントモニタ指令位置(NEXT、JUMP0-弱イベント、JUMP1-強イベント、運転停止)
- イベントモニタ検出位置(NEXT、JUMP0-弱イベント、JUMP1-強イベント、運転停止)
- 積算負荷モニタ(「積算負荷自動クリア」パラメータが「0:クリアしない」のとき)

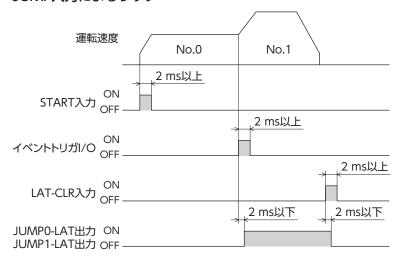
「ラッチモニタ 状態」コマンドの値が0にクリアされると、ラッチモニタに保存された次の運転情報が上書き可能になりま す。

- 指令位置
- 桳出位置
- 目標位置
- 運転データ番号
- ループ回数

### ● JUMP0-LAT出力、JUMP1-LAT出力


弱イベントトリガが検出されるとJUMP0-LAT出力がONになります。強イベントトリガが検出されるとJUMP1-LAT出力がONになります。LAT-CLR入力をOFFからONにすると、JUMP0-LAT出力とJUMP1-LAT出力がOFFになります。

#### ● NEXT-LAT出力


NEXT入力がOFFからONになると、NEXT-LAT出力がONになります。LAT-CLR入力をOFFからONにすると、NEXT-LAT出力がOFFになります。

### ■ ラッチ機能の例

### ● NEXT入力によるラッチ



### ● JUMP入力によるラッチ



### ■ 運転情報のモニタ

保存された運転情報のモニタには、イベントモニタとラッチモニタの2種類があります。 モニタ値はMEXE02では確認できません。EtherNet/IPで確認してください。

### ● イベントモニタ

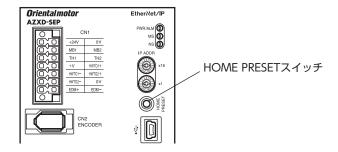
イベントモニタには、指令位置と検出位置が保存されます。イベントトリガが発生するたびに上書きされます。 LAT-CLR入力をONにすると、値が0にクリアされます。

### ● ラッチモニタ

ラッチモニタには、次の運転情報が保存されます。初回にラッチされた値を保持し続けます。 LAT-CLR入力をOFFからONにすると、運転情報が上書き可能になります。

- 状態(ラッチ状態になると[1]が格納されます。)
- 指令位置
- 検出位置
- 目標位置
- 運転番号
- ループ回数



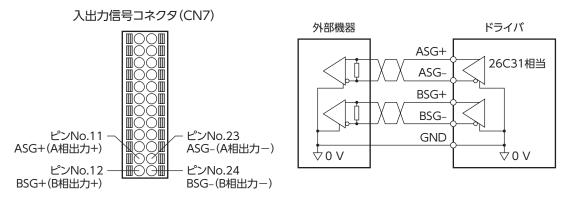

(memo) ラッチモニタの「状態」が1のとき(ラッチ状態のとき)は、ラッチトリガが発生しても運転情報を上書きし ません。

# 6 HOME PRESETスイッチの機能を 変更する

AZXシリーズは、P-PRESET入力の機能をHOME PRESETスイッチに割り付けています。そのため、HOME PRESETスイッチを押すだけで、現在位置を原点に設定することができます。

しかし、いったん原点を設定した後は、誤ってHOME PRESETスイッチを押しても、原点がプリセットされないよう、 HOME PRESETスイッチの機能を無効にすることができます。

また、P-PRESET入力の代わりにSTART入力を割り付けて、HOME PRESETスイッチを押すだけで運転を始めるといった 使い方もできます。




### 関連するパラメータ

MEXE02分類	名称	内容	設定範囲	初期値
	拡張入力(EXT-IN)機能	HOME PRESETスイッチに割り付け る入力信号を選択します。	入力信号一覧	9:P-PRESET
	拡張入力(EXT-IN)接点 設定(信号反転)	HOME PRESETスイッチに割り付け る入力信号の接点設定を変更します。	0:反転しない 1:反転する	0
p11	拡張入力 (EXT-IN) イン ターロック解除長押時間	通常、HOME PRESETスイッチはインターロックがかかっています。スイッチを一定の時間押し続けることで、インターロックが解除され、割り当てた機能が有効になります。このパラメータでは、インターロックを解除するためにスイッチを押し続ける時間を設定します。	0:インターロック 無効 1~50(1=0.1 s)	10
	拡張入力(EXT-IN)イン ターロック解除継続時間	インターロックが解除された状態を 継続する時間を設定します。	0~50 (1=0.1 s)	30
	拡張入力(EXT-IN) ON確認表示時間	スイッチに割り当てた信号が入力されると、LEDが点灯します。このパラメータでは、LEDの点灯時間を設定します。	0~50 (1=0.1 s)	10

# 7 A相/B相出力の割り付けを変更する

ドライバのI/Oコネクタは、出荷時にA相(ASG)出力とB相(BSG)出力が割り付けられています。A相出力とB相出力は、ABZOセンサから出力されるパルス信号です。A相/B相出力はモーターの運転に対応してパルスを出力するため、パルス数をカウントすると、モーターの現在位置や回転方向を検出することができます。また、パラメータで、A相/B相出力を他の出力信号に変更することもできます。





A相/B相出力は差動出力です。外部機器の入力回路は、差動出力に対応するものを接続してください。

#### 関連するパラメータ

MEXE02分類	名称	内容	設定範囲	初期値
	差動出力機能選択	差動出力から出力される信号の 種類を選択します。	-1:出力しない 0:A相/B相出力 8:I/Oステータス出力	0
	差動出力 (EXT-OUTA) -I/O ステータス出力選択時機能 選択	  「差動出力機能選択」パラメータ  を[8:1/0ステータス出力]に設   定したときに有効です。差動出	出力信号一覧 → 233ページ	128: CONST-OFF
	差動出力 (EXT-OUTB) -I/O ステータス出力選択時機能 選択	一たしたときに有効です。左動は 一力に割り付ける出力信号を選択します。		128: CONST-OFF
p11	差動出力(EXT-OUTA)-I/O ステータス出力選択時接点 設定(信号反転)	「差動出力機能選択」パラメータを[8:1/〇ステータス出力」に設定したときに有効です。差動出力の接点設定を変更します。	0:反転しない 1:反転する	0
	差動出力(EXT-OUTB)-I/O ステータス出力選択時接点 設定(信号反転)			0
	差動出力(EXT-OUTA)-I/O ステータス出力選択時OFF 出力遅延時間		0. 350	0
	差動出力(EXT-OUTB)-I/O ステータス出力選択時OFF 出力遅延時間	一定したときに有効です。出力信 号のOFF出力遅延時間を設定し ます。	0~250 ms	0

memo

「差動出力機能選択」パラメータで「0:A相/B相出力」を選択すると、現在の検出位置が位相差形式で出力されます。A相出力とB相出力のパルスの分解能は、制御電源を投入したときのモーター分解能と同じです。モーター分解能を変更すると、A相/B相出力の分解能も変わります。

### ドライバの動作をシミュレーション 8 する

ドライバシミュレーションモードでは、モーターを接続しなくても、座標やI/Oの様子をシミュレーションできます。 モーターを接続すると、ABZOセンサの情報を使って、より実際の動作に近いシミュレーションができます。



- 要)・ドライバシミュレーションモードでは、モーターの接続/未接続に関わらず、モーターは動作しません。
  - ドライバシミュレーションモードでは、ドライバの機能や入出力信号が通常時と異なる場合があります。
  - 電動アクチュエータのシミュレーションを行なうときは、必ずアクチュエータをドライバに接続し、製 品固有の情報を読み込ませてください。実際に動作させたときに、けが、装置破損の原因になります。



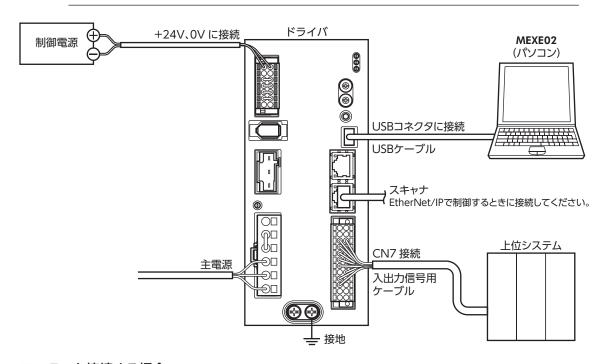
(memo) モーターとドライバが接続されていても、シミュレーション中はモーターが無励磁となっています。電磁 ブレーキ付では、電磁ブレーキによって出力軸が保持されます。

#### 関連するパラメータ

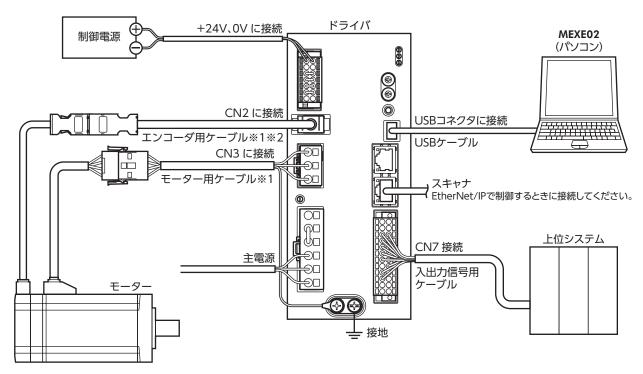
MEXE02分類	名称	内容	設定範囲	初期値
p4	ドライバ動作 モード	モーターを接続しなくても、仮想の モーターを使って座標やI/Oの様子 をシミュレーションできます。	<ul> <li>0:実際にモーターを使用する</li> <li>1:仮想モーターを使用する         <ul> <li>(ABZO未接続時:ABZOセンサの情報なし)</li> </ul> </li> <li>2:仮想モーターを使用する(ABZO未接続時:1,800回転までのラウンド機能が有効)</li> <li>3:仮想モーターを使用する(ABZO未接続時:900回転までのラウンド機能が有効)</li> </ul>	0

### **■** こんなときにお使いください

- ドライバの指令情報の確認
- 配線の確認
- 運転データやパラメータの確認
- 入出力信号の状態の確認
- システムに異常が発生したときの検証作業


### 8-1 ドライバシミュレーションモードの準備と操作手順

### ■ 準備


### ● モーターを接続しない場合



電動アクチュエータのシミュレーションを行なうときは、必ずアクチュエータをドライバに接続してください。



### ● モーターを接続する場合



- ※1 別途お買い求めください。
- ※2 エンコーダ用ケーブルは、長さが足りないときにお使いください。

### ■ 操作手順

MEXE02を使って、モーターを接続せずにドライバの動作をシミュレーションする方法を説明します。

- 1. ドライバの制御電源と主電源を投入します。
- 2. MEXE02のツリービューから、[パラメータ] [基本設定]をクリックします。
- 3. 「ドライバ動作モード」パラメータを「仮想モーターを使用する」に設定します。
- 4. ツールバーの[データの書き込み]アイコンをクリックして、データをドライバに書き込みます。
- 5. 書き込みが終了したら、ドライバの制御電源と主電源を再投入します。
- 6. 「ドライバ動作モード」パラメータが反映されたか確認します。ドライバのPWR/ALM LEDが、次の点滅を繰り返していることを確認してください。・緑点灯→赤点灯→緑と赤が同時に点灯(赤色と緑色が重なって、橙色に見えることがあります。)→消灯
- 7. **MEXE02**の「ティーチング・リモート運転」で、位置決め運転などを実行します。 モーターを接続していなくても、指令位置や検出位置が増減します。 I/Oモニタ、ステータスモニタ、および波形モニタでも、座標やI/Oの様子を確認できます。
- 8. ドライバシミュレーションモードを終了します。
  - 1) ツリービューから、[パラメータ] [基本設定]をクリックします。
  - 2) 「ドライバ動作モード」パラメータを「0:実際にモーターを使用する」に設定します。
  - 3) ツールバーの[データの書き込み]アイコンをクリックして、データをドライバに書き込みます。
  - 4) ドライバの制御電源と主電源を切ります。

### 8-2 座標

### ■ 原点

ドライバシミュレーションモードでは、モーターの接続/未接続に関わらず、制御電源を投入したときの位置を原点とします。

原点は、原点復帰運転または位置プリセットで再設定できます。ただし、ABZOセンサの原点情報は書き換えられません。

### ■ 座標生成(モーターを接続していない場合)

「初期座標生成・ラウンド座標設定」パラメータの設定によって、座標を生成する方法が異なります。

MEXE02	2分類	名称	設定	座標の生成方法
p5		初期座標生成・ラウンド	0:ABZO設定を優先	「ドライバ動作モード」パラメータに依存します。
þ5		座標設定	1:マニュアル設定	ユーザーパラメータを使用して、座標を生成します。

「初期座標生成・ラウンド座標設定」パラメータが「O:ABZO設定を優先」のとき、座標の生成方法は次のようになります。

MEXE02分類	名称	設定	座標の生成方法
		1:仮想モーターを使用する (ABZO未接続時:ABZO センサの情報なし)	ユーザーパラメータを使用して、座標を生成します。
p4	ドライバ動作 モード	2:仮想モーターを使用する (ABZO未接続時:1,800回転 までのラウンド機能が有効)	「初期座標生成・ラウンド座標設定」パラメータは、次のように設定されます。 ・初期座標生成・ラウンド設定範囲:1,800 ・初期座標生成・ラウンドオフセット比率設定:50 ・初期座標生成・ラウンドオフセット値設定:0 ・ラウンド (RND)設定:有効 ・RND-ZERO出力用RND分割数:1,800
		3:仮想モーターを使用する (ABZO未接続時:900回転 までのラウンド機能が有効)	「初期座標生成・ラウンド座標設定」パラメータは、次のように設定されます。 ・初期座標生成・ラウンド設定範囲:900 ・初期座標生成・ラウンドオフセット比率設定:50 ・初期座標生成・ラウンドオフセット値設定:0 ・ラウンド (RND) 設定:有効 ・RND-ZERO出力用RND分割数:900

### ■ 座標生成(モーターを接続している場合)

「機構諸元設定」パラメータと「初期座標生成・ラウンド座標設定」パラメータの設定によって、座標を生成する方法が異なります。

MEXE02分類	名称	設定	座標の生成方法
n.E.	p5 ● 初期座標生成・ラウンド	0:ABZO設定を優先	ABZOセンサの設定を使用します。
μ5		1:マニュアル設定	ユーザーパラメータを使用して、座標を生成します。

### 8-3 モニタ

シミュレーション中に、MEXEO2のステータスモニタで確認できる内容を説明します。 ここでは、表示される内容が通常時と異なる項目について説明します。

項目	内容
<ul><li>・検出位置32 bitカウンタ</li><li>・検出位置</li><li>・検出速度</li></ul>	ABZOセンサで検出している座標情報を表示します。 モーターの接続/未接続に関わらず、座標情報は指令に追従します。
<ul><li>・積算負荷</li><li>・トルク</li><li>・位置偏差</li><li>・モーター負荷率</li></ul>	ドライバの指令情報とモーターの検出情報から算出された値を表示します。 モーターの接続/未接続に関わらず不定になります。
• モーター温度	ABZOセンサで検出している温度情報を表示します。 モーターを接続していないときは不定になります。
• ODOメーター • TRIPメーター	ABZOセンサの情報を表示します。 モーターの接続/未接続に関わらず、シミュレーション中は更新されません。

### 8-4 運転

ドライバシミュレーションモードの運転について説明します。

### ■ ストアードデータ(SD)運転

運転方式	運転開始信号
絶対位置決め運転	
相対位置決め運転(指令位置基準)	
相対位置決め運転(検出位置基準)	
連続運転(位置制御)	START, SSTART, D-SFI 0~7
ラウンド絶対位置決め運転	START START D-SELO-97
ラウンド近回り位置決め運転	
ラウンドFWD方向絶対位置決め運転	
ラウンドRVS方向絶対位置決め運転	

### ■ マクロ運転

マクロ運転の運転開始信号をONにすると、信号に対応した運転のシミュレーションが始まります。 (マクロ運転の詳細→81ページ)

運転の種類	運転開始信号
連続運転	FW-POS、RV-POS
JOG運転	FW-JOG、RV-JOG
高速JOG運転	FW-JOG-H、RV-JOG-H
インチング運転	FW-JOG-P、RV-JOG-P
複合JOG運転	FW-JOG-C、RV-JOG-C

### ■ ダイレクトデータ運転

EtherNet/IPで、スキャナから入力されたデータを使用して運転します。(ダイレクトデータ運転の詳細⇒65ページ)

### ■ 原点復帰運転

#### ● 原点復帰運転

HOME入力をONにすると、原点復帰運転のシミュレーションが始まります。

ただし、ドライバシミュレーションモードではモーターが動作しないため、外部センサを検出できません。そのため、原点 復帰運転のシミュレーションをするときは、意図的にセンサ入力をONにする必要があります。

(原点復帰運転の詳細⇒71ページ)

(memo) 運転が完了しても、ABZOセンサの原点は書き換えられません。

#### 高速原点復帰運転

ZHOME入力をONにすると、高速原点復帰運転のシミュレーションが始まります。 (高速原点復帰運転の詳細→69ページ)

#### 8-5 入出力信号

ドライバシミュレーションモードで、通常時と仕様や動作が異なる入出力信号について説明します。



(memo) シミュレーション中と通常時では、次の内容が異なります。 そのため、入出力信号のON/OFF状態も通常 時と異なることがあります。

- ・入出力信号に関連するパラメータは、設定しても無効になります。
- ・入出力信号の状態に関わらず、モーターは無励磁、電磁ブレーキは保持状態となります。 例:FREE入力をONにした場合、信号上は無励磁(SON-MON出力がOFF)、電磁ブレーキ解放(MBC 出力がOFF)となりますが、モーターは無励磁、電磁ブレーキは保持状態のままです。

### ■ 入力信号

信号名	ドライバシミュレーションモード	通常時
TEACH	無効	ティーチングを行ないます。

### ■ 出力信号

信号名	ドライバシミュレーションモード	通常時
ABSPEN	常時ON	座標が確定されているときに出力されます。
PRST-STLD	常時OFF	機械原点が設定されているときに出力されます。
ORGN-STLD	常時OFF	工場出荷時に、製品に合わせた機械原点が設定されている場合に出力されます。

#### 8-6 アラーム

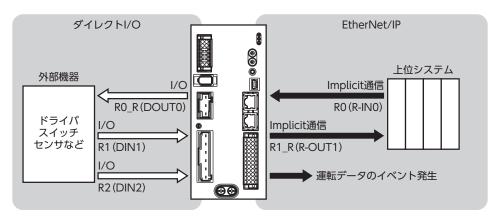
ドライバシミュレーションモードでは、初期時センサ異常のアラームは発生しません。

# 9 汎用信号を使う

R0~R15入力は汎用信号です。R0~R15入力を利用すると、ドライバを通して、上位システムから外部機器の入出力信号を制御できます。ドライバのダイレクトI/OをI/Oユニットのように使用できます。

### ■ 汎用信号の使用例

#### ● 上位システムから外部機器に出力する場合


RO入力をR-INOに、RO_R出力をDOUTOに割り付けます。 上位システムからR-INOを1にするとDOUTOがONになり、R-INOを0にするとDOUT0もOFFになります。

#### ● 外部機器の出力を上位システムに入力する場合

R1入力をDIN1に、R1_R出力をR-OUT1に割り付けます。 外部機器からDIN1をONにするとR-OUT1が1になり、DIN1をOFFにするとR-OUT1も0になります。DIN1の接点は、 「DIN1接点設定(信号反転)」パラメータで設定できます。

### ● 運転データのイベントを発生させるイベントトリガI/Oとして使用する場合

R2入力をDIN2に割り付けます。また、運転I/Oイベントの「イベントトリガI/O」を「R2」に設定します。 外部機器からDIN2をONにすると、運転データのイベントが発生し、運転を分岐させることができます。



#### 関連するパラメータ

MEXE02分類	名称	内容	設定範囲	初期値
	DIN0入力機能			37:ZHOME
	DIN1入力機能			1:FREE
	DIN2入力機能	DINに割り付ける入力信号を選	入力信号一覧	5:STOP
	DIN3入力機能	択します。	➡232ページ	8:ALM-RST
	DIN4入力機能			48:FW-JOG
p8	DIN5入力機能		0:反転しない	49:RV-JOG
ро	DINO接点設定(信号反転)		0:反転しない 1:反転する	0
	DIN1接点設定(信号反転)	- DINの接点設定を変更します。 -		0
	DIN2接点設定(信号反転)			0
	DIN3接点設定(信号反転)			0
	DIN4接点設定(信号反転)			0
	DIN5接点設定(信号反転)			0
	DOUTO(通常)出力機能			144:HOME-END
	DOUT1 (通常) 出力機能		出力信号一覧	138:IN-POS
nQ	DOUT2(通常)出力機能	DOUTに割り付ける出力信号を		0:未使用
p9	DOUT3(通常)出力機能	選択します。	⇒233ページ	132:READY
	DOUT4(通常)出力機能			134:MOVE
	DOUT5 (通常) 出力機能			130:ALM-B

MEXE02分類	名称	内容	設定範囲	初期値
	DOUT0接点設定(信号反転)			0
p9	DOUT1接点設定(信号反転)			0
	DOUT2接点設定(信号反転)	) ・DOUTの接点設定を変更します。	0:反転しない	0
	DOUT3接点設定(信号反転)	DOUTの接点設定を変更します。	1:反転する	0
	DOUT4接点設定(信号反転)			0
	DOUT5接点設定(信号反転)			0
	R-IN0入力機能			0:未使用
	R-IN1入力機能			0:未使用
	R-IN2入力機能			0:未使用
	R-IN3入力機能			0:未使用
	R-IN4入力機能			0:未使用
	R-IN5入力機能			0:未使用
	R-IN6入力機能			0:未使用
	R-IN7入力機能	R-INに割り付ける入力信号を選	入力信号一覧	0:未使用
	R-IN8入力機能	択します。	⇒232ページ	0:未使用
	R-IN9入力機能			0:未使用
	R-IN10入力機能			0:未使用
	R-IN11入力機能			0:未使用
	R-IN12入力機能			0:未使用
	R-IN13入力機能			0:未使用
	R-IN14入力機能			0:未使用
n10	R-IN15入力機能			0:未使用
p10	R-OUT0出力機能			64:M0_R
	R-OUT1出力機能			65:M1_R
	R-OUT2出力機能			66:M2_R
	R-OUT3出力機能			32:START_R
	R-OUT4出力機能			144:HOME-END
	R-OUT5出力機能			132:READY
	R-OUT6出力機能			135:INFO
	R-OUT7出力機能	R-OUTに割り付ける出力信号を	出力信号一覧	129:ALM-A
	R-OUT8出力機能	選択します。	⇒233ページ	136:SYS-BSY
	R-OUT9出力機能			160:AREA0
	R-OUT10出力機能			161:AREA1
	R-OUT11出力機能			162:AREA2
	R-OUT12出力機能			155:ZSG
	R-OUT13出力機能			134:MOVE
	R-OUT14出力機能			138:IN-POS
	R-OUT15出力機能			140:TLC

# 10 付録

	±.	/	I۷
•	+)	<	U

1	運転の種類と運転データ・パラメータの	
	関係	278
2	LFDの表示	280

# 10 付録

# 1 運転の種類と運転データ・パラメータの 関係

	名称		ダイレクトデータ運転	原点復帰運転		
MEXE02分類				2センサ方式	3センサ方式	1方向回転方式
p1	運転データ	0	-	-	-	-
p 2	運転I/Oイベント	0	-	_	-	_
р3	運転データ拡張用設定	0	-	-	-	-
	起動速度	0	0	_	-	_
p4	加減速単位	0	-	0	0	0
	座標未確定時絶対位置決め運転許可	0	0	_	-	_
	JOG/HOME/ZHOME運転 指令フィルタ時定数	-	-	-	-	-
	JOG/HOME/ZHOME運転 トルク制限値	_	_	_	-	_
	(JOG)移動量	-	_	-	-	-
	(JOG)運転速度	_	_	_	_	_
	(JOG)加減速	_	_	_	-	_
	(JOG)起動速度	_	_	_	-	_
	(JOG)運転速度(高)		_	_	-	_
	(ZHOME)運転速度	_	_	_	-	_
	(ZHOME)加減速	_	_	_	_	_
	(ZHOME)起動速度	_	_	_	-	_
p5	(HOME) 原点復帰方法	_	-	0	0	0
	(HOME)原点復帰開始方向	_	_	0	0	0
	(HOME)原点復帰加減速	_	-	0	0	0
	(HOME)原点復帰起動速度	-	_	0	0	0
	(HOME)原点復帰運転速度	_	-	0	0	0
	(HOME)原点復帰原点検出速度	_	_	0	0	0
	(HOME)原点復帰SLITセンサ検出	_	_	0	0	0
	(HOME)原点復帰ZSG信号検出	-	-	0	0	0
	(HOME) 原点復帰オフセット	-	-	0	0	0
	(HOME) 2センサ原点復帰戻り量	-	_	0	-	_
	(HOME) 1方向回転原点復帰動作量	-	-	-	-	0
-12	指令フィルタ選択	0	0	0	0	0
p13	指令フィルタ時定数	0	0	_	-	_

	名称		マクロ運転				
MEXEO2分類			JOG運転	高速JOG運転	インチング運転	複合JOG運転	連続運転
p1	運転データ	-	-	_	-	-	0
p 2	運転I/Oイベント	_	_	_	_	_	0
р3	運転データ拡張用設定	_	-	_	-	-	_
	起動速度	_	_	_	_	_	0
p4	加減速単位	0	0	0	0	0	0
	座標未確定時絶対位置決め運転許可	_	_	_	_	_	_
	JOG/HOME/ZHOME運転 指令フィルタ時定数	0	0	0	0	0	-
	JOG/HOME/ZHOME運転 トルク制限値	0	0	0	0	0	_
	(JOG)移動量	_	0	-	0	0	-
	(JOG)運転速度	_	0	0	0	0	_
	(JOG)加減速	_	0	0	0	0	-
	(JOG)起動速度	-	0	0	0	0	_
	(JOG)運転速度(高)	_	-	0	-	-	-
	(ZHOME)運転速度	0	-	_	_	-	_
	(ZHOME)加減速	0	-	-	-	-	-
	(ZHOME)起動速度	0	-	_	_	-	_
p5	(HOME) 原点復帰方法	_	-	_	-	-	-
	(HOME)原点復帰開始方向	_	-	_	_	-	_
	(HOME) 原点復帰加減速	_	-	_	-	-	-
	(HOME) 原点復帰起動速度	_	-	_	_	-	_
	(HOME) 原点復帰運転速度	_	-	_	-	-	-
	(HOME)原点復帰原点検出速度	_	_	_	_	-	_
	(HOME)原点復帰SLITセンサ検出	_	_	_	-	-	-
	(HOME)原点復帰ZSG信号検出	_	-	_	_	-	_
	(HOME) 原点復帰オフセット	_	-	_	-	-	_
	(HOME) 2センサ原点復帰戻り量	-	-	_	-	-	_
	(HOME) 1方向回転原点復帰動作量	_	-	-	-	-	-
-12	指令フィルタ選択	0	0	0	0	0	0
p13	指令フィルタ時定数	_	-	-	-	-	0

# 2 LEDの表示

### ■ PWR/ALM LED

ドライバの状態を表わします。

LEDの状態		th to	
緑色	赤色	·	
消灯	消灯	制御電源が投入されていません。	
点灯	消灯	制御電源が投入されています。	
消灯	点滅	アラームが発生しています。アラームの内容によって、LEDの点滅回数が異なります。アラームの詳細は、237ページをご覧ください。アラームを解除すると緑色が点灯します。	
点滅	点滅		
同時に2回点滅※		<ul><li>◆インフォメーションが発生しています。インフォメーションを解除すると緑色 が点灯します。インフォメーションの詳細は、246ページをご覧ください。</li></ul>	
		• MEXE02でティーチング・リモート運転の実行中です。 ティーチング・リモート 運転を終了すると、緑色が点灯します。	
同時に点滅※		HOME PRESETスイッチを長押ししてインターロックが解除されました。 「拡張入力(EXT-IN)インターロック解除長押時間」パラメータで設定した時間が 経過すると、緑色が点灯します。	
同時に点灯※		HOME PRESETスイッチに割り当てた入力信号が実行されています。終了すると 緑色が点灯します。	
緑→赤→同時※→消灯の繰り返し		ドライバシミュレーションモードです。	


[※] 緑色と赤色が重なって、橙色に見えることがあります。

### MS LED

ドライバの状態を表わします。

LEDの状態		内容	
緑色	赤色	기 <del>업</del>	
消灯	消灯	制御電源が投入されていません。	
点滅	消灯	● IPアドレスが未確定です。	
<b></b>	川川	• EtherNet/IPの通信設定が不正です。	
点灯	消灯	正常に動作中。	
消灯	点滅	• EtherNet/IPやMEXE02で解除できるアラームが発生しました。	
/H/J		● 同一システム内でIPアドレスの設定が重複しています。	
消灯	点灯	EtherNet/IPや <b>MEXE02</b> で解除できないアラームが発生しました。	
交互に点滅		電源投入時の自己診断を実行中。	

LEDの点滅タイミングは次のとおりです。



### NS LED

EtherNet/IPの通信状態を表わします。

LEDの状態		内容
緑色	赤色	
消灯	消灯	• オフラインです。
/H/\]	]   海灯	• ドライバの制御電源が投入されていません。
点滅	消灯	オンラインです。スキャナとのコネクションが確立されていません。
点灯	消灯	オンラインです。スキャナとのコネクションが確立されています。
消灯	点滅	スキャナとの接続がタイムアウトになりました。
消灯	点灯	同一システム内でIPアドレスの設定が重複しています。
交互に点滅		電源投入時の自己診断を実行中。

LEDの点滅タイミングは次のとおりです。



### ■ L/A LED

EtherNet/IPのLINK/ACT状態を表わします。

LEDの状態	内容
消灯	• オフラインです。
汨刈	• EtherNet/IPのフレームの送受信がありません。
 点滅	• オンラインです。
<b></b>	• EtherNet/IPのフレームの送受信があります。
点灯	• オンラインです。
LX)	• EtherNet/IPのフレームの送受信がありません。

- この取扱説明書の一部または全部を無断で転載、複製することは、禁止されています。 損傷や紛失などにより、取扱説明書が必要なときは、最寄りの支店または営業所に請求してください。
- 取扱説明書に記載されている情報、回路、機器、および装置の利用に関して産業財産権上の問題が生じても、当社は一切の責任を負い ません。
- 製品の性能、仕様および外観は改良のため予告なく変更することがありますのでご了承ください。
- 取扱説明書には正確な情報を記載するよう努めていますが、万一ご不審な点や誤り、記載もれなどにお気づきの点がありましたら、 最寄りのお客様ご相談センターまでご連絡ください。
- Oriental motor とABZOセンサは、日本その他の国におけるオリエンタルモーター株式会社の登録商標または商標です。 EtherNet/IP™は、ODVA (Open DeviceNet Vendor Association) の商標です。 その他の製品名、会社名は各社の登録商標または商標です。この取扱説明書に記載の他社製品名は推奨を目的としたもので、それら の製品の性能を保証するものではありません。オリエンタルモーター株式会社は、他社製品の性能につきましては一切の責任を負い ません。
- © Copyright ORIENTAL MOTOR CO., LTD. 2022

2023年5月制作

### オリエンタルモーター株式会社

### お問い合わせ窓口 (フリーコールです。携帯・PHSからもご利用いただけます。)

総合窓口

技術的なお問い合わせ・訪問・お見積・ご注文

お客様ご相談センター

受付時間 平日/9:00 ~ 19:00

TEL 0120-925-410 FAX 0120-925-601

CC-Link・MECHATROLINKなどのFAネットワークや Modbus RTUに関するお問い合わせ

ネットワーク対応製品専用ダイヤル

TEL 0120-914-271 _ 受付時間 平日/9:00 ~ 17:30

故障かな?と思ったときの検査修理窓口

アフターサービスセンター

受付時間 平日/9:00 ~ 17:30

TEL 0120-911-271 FAX 0120-984-815

WEBサイトでもお問い合わせやご注文を受け付けています。 https://www.orientalmotor.co.jp/