Oriental motor

ステッピングモーター *Q***STEP** ARシリーズ/ ARシリーズ搭載 電動アクチュエータ AC電源入力/DC電源入力 <u>GLED</u> 位置決め機能内蔵タイプ

ユーザーズマニュアル

はじめに	
AC電源入力タイプ	
DC電源入力タイプ	
AC電源入力タイプ/	
DC電源入力タイプ 共通	
運転の種類と設定	
 Modbus RTU制御	
(RS-485通信)	
FAネットワーク制御	

お買い上げいただきありがとうございます。

このマニュアルには、製品の取り扱いかたや安全上の注意事項を示しています。

•マニュアルをよくお読みになり、製品を安全にお使いください。

•お読みになった後は、いつでも見られるところに必ず保管してください。

1 はじめに

1	お使い	になる前に	12
2	製品の	概要	13
3	安全上	のご注意	15
	3-1	安全上のご注意	. 15
	3-2	バッテリの取り扱い注意事項	. 17
	3-3	ドライバフロントパネルの図記号について	. 18
	3-4	警告表記	. 18
4	使用上	のお願い	19

2 AC電源入力タイプ

1	システ	ム構成	
2	準備		25
	2-1	製品の確認	25
	2-2	品名の見方	
	2-3	銘板の情報	27
	2-4	モーターとドライバの組み合わせ	
	2-5	入出力定格	
	2-6	各部の名称と機能	29
3	設置		32
	3-1	設置場所	
	3-2	モーターの設置	
	3-3	負荷の取り付け	
	3-4	許容ラジアル荷重と許容アキシアル荷重	
	3-5	ドライバの設置	
	3-6	回生抵抗の取り付け	
	3-7	バッテリの取り付け	
4	接続		
	4-1	接続例	
	4-1 4-2	接続例 モーター、ドライバの接地	
	4-1 4-2 4-3	接続例 モーター、ドライバの接地 主電源の接続	
	4-1 4-2 4-3 4-4	接続例 モーター、ドライバの接地 主電源の接続 DC24 V電源・回生抵抗・電磁ブレーキの接続	
	4-1 4-2 4-3 4-4 4-5	接続例 モーター、ドライバの接地 主電源の接続 DC24 V電源・回生抵抗・電磁ブレーキの接続 入出力信号の接続	
	4-1 4-2 4-3 4-4 4-5 4-6	接続例 モーター、ドライバの接地 主電源の接続 DC24 V電源・回生抵抗・電磁ブレーキの接続 入出力信号の接続 データ設定器の接続	
	4-1 4-2 4-3 4-4 4-5 4-6 4-7	接続例 モーター、ドライバの接地 主電源の接続 DC24 V電源・回生抵抗・電磁ブレーキの接続 入出力信号の接続 データ設定器の接続 RS-485通信ケーブルの接続	38 39 40 41 41 43 46 46
	4-1 4-2 4-3 4-4 4-5 4-6 4-7 4-8	接続例 モーター、ドライバの接地 主電源の接続 DC24 V電源・回生抵抗・電磁ブレーキの接続 入出力信号の接続 データ設定器の接続 RS-485通信ケーブルの接続 バッテリの接続と充電	
	4-1 4-2 4-3 4-4 4-5 4-6 4-7 4-8 4-9	接続例 モーター、ドライバの接地 主電源の接続 DC24 V電源・回生抵抗・電磁ブレーキの接続 入出力信号の接続 データ設定器の接続 RS-485通信ケーブルの接続 バッテリの接続と充電 ノイズ対策	38 39 40 41 41 43 46 46 46 47 47
	4-1 4-2 4-3 4-4 4-5 4-6 4-7 4-8 4-9 4-10	接続例 モーター、ドライバの接地 主電源の接続 DC24 V電源・回生抵抗・電磁ブレーキの接続 入出力信号の接続 データ設定器の接続 RS-485通信ケーブルの接続 バッテリの接続と充電 ノイズ対策 EMC指令への適合	38 39 40 41 43 46 46 46 47 47 47 48
5	4-1 4-2 4-3 4-4 4-5 4-6 4-7 4-8 4-9 4-10 ケーブル	接続例 モーター、ドライバの接地 主電源の接続 DC24 V電源・回生抵抗・電磁ブレーキの接続 入出力信号の接続 S-485通信ケーブルの接続 バッテリの接続と充電 ノイズ対策 EMC指令への適合	
5	4-1 4-2 4-3 4-4 4-5 4-6 4-7 4-8 4-9 4-10 ケーブル 5-1	接続例 モーター、ドライバの接地 主電源の接続 DC24 V電源・回生抵抗・電磁ブレーキの接続 入出力信号の接続 ズータ設定器の接続 RS-485通信ケーブルの接続 バッテリの接続と充電 ノイズ対策 EMC指令への適合 接続ケーブルセット	
5	4-1 4-2 4-3 4-4 4-5 4-6 4-7 4-8 4-9 4-10 5 -1 5-2	接続例 モーター、ドライバの接地 主電源の接続 DC24 V電源・回生抵抗・電磁ブレーキの接続 入出力信号の接続 ズリク設定器の接続 RS-485通信ケーブルの接続 バッテリの接続と充電 ノイズ対策 EMC指令への適合 按続ケーブルセット	
5	4-1 4-2 4-3 4-5 4-5 4-6 4-7 4-8 4-9 4-10 5 -1 5-2 5-3	接続例 モーター、ドライバの接地 主電源の接続 DC24 V電源・回生抵抗・電磁ブレーキの接続 入出力信号の接続 データ設定器の接続 RS-485通信ケーブルの接続 バッテリの接続と充電 ノイズ対策 EMC指令への適合 接続ケーブルセット 中継ケーブルセット	

	5-5	入出力信号用ケーブル	. 52
6	周辺機器	告	. 53
	6-1	設定機器	. 53
	6-2	配線サポート機器	. 53
	6-3	その他	. 53

3 DC電源入力タイプ

1	システ	ム構成	56
2	準備		57
	2-1	製品の確認	57
	2-2	品名の見方	58
	2-3	銘板の情報	59
	2-4	モーターとドライバの組み合わせ	60
	2-5	入出力定格	61
	2-6	各部の名称と機能	61
3	設置		64
	3-1	設置場所	64
	3-2	モーターの設置	64
	3-3	負荷の取り付け	65
	3-4	許容ラジアル荷重と許容アキシアル荷重	66
	3-5	ドライバの設置	68
	3-6	バッテリの取り付け	69
4	接続…		70
	4-1	接続例	70
	4-2	モーター、ドライバの接地	71
	4-3	電源と電磁ブレーキの接続	72
	4-4	入出力信号の接続	73
	4-5	データ設定器の接続	76
	4-6	RS-485通信ケーブルの接続	76
	4-7	バッテリの接続と充電	77
	4-8	ノイズ対策	77
	4-9	EMC指令への適合	78
5	ケーブ	۱ <i>レ</i>	80
	5-1	接続ケーブルセット	80
	5-2	中継ケーブルセット	81
	5-3	サポートソフト用通信ケーブル	82
	5-4	RS-485通信ケーブル	82
	5-5	入出力信号用ケーブル	82
6	周辺機	99 60	83
	6-1	設定機器	83
	6-2	配線サポート機器	83
	6-3	その他	83

4 AC電源入力タイプ/DC電源入力タイプ 共通

1	入出力	信号の説明	
	1-1	ダイレクトI/Oの割り付け	
	1-2	リモートI/Oの割り付け	
	1-3	入力信号	
	1-4	出力信号	
	1-5	センサ入力	105
	1-6	汎用信号(R0~R15)	
2	I/O制	卸	
	2-1	ガイダンス	
	2-2	運転データ	111
	2-3	パラメータ	112
3	OPX-2	Aの操作方法	
	3-1	OPX-2A の概要	
	3-2	各部の名称と機能	
	3-3	表示部の見方	
	3-4	OPX-2A のエラー表示	124
	3-5	画面遷移	126
	3-6	モニタモード	132
	3-7	データモード	134
	3-8	パラメータモード	136
	3-9	テストモード	142
	3-10	コピーモード	144
4	点検・	呆守	
	4-1	点検	146
	4-2	保証	146
	4-3	廃棄	146
5	アラー	ムとワーニング	
	5-1	アラーム	147
	5-2	ワーニング	154
	5-3	通信エラー	155
6	故障の	診断と処置	

5 運転の種類と設定

1	ガイダ	ンス	158
2	設定と	調整	162
	2-1	分解能	
	2-2	運転電流	
	2-3	停止電流	
	2-4	加減速レートと加減速時間	
	2-5	スムースドライブ	
	2-6	速度フィルタ	
	2-7	移動平均フィルタ	

	2-8	速度差ゲイン	
	2-9	制御モード	
	2-10	位置ループゲイン、速度ループゲイン、速度ループ積分時定数	167
	2-11	アブソリュートバックアップシステム	168
3	運転の	種類と機能一覧	
4	位置決	め運転	
	4-1	運転データ	
	4-2	位置決め運転の起動方法	172
	4-3	運転機能	
	4-4	押し当て運転	
5	原点復	帰運転	
	5-1	動作シーケンス	
	5-2	位置プリセット	190
6	連続運	転	
	6-1	連続運転の起動方法	
	6-2	変速運転	194
7	その他	の運転	
	7-1	JOG運転	
	7-2	テスト運転	
	7-3	自動復帰動作	198
	7-4	停止動作	199
8	座標管	理理	
	8-1	座標位置管理	
	8-2	ラウンド機能	

6 Modbus RTU制御(RS-485通信)

1	ガイダ	ンス	
2	通信仕	様	
3	スイッ	チの設定	
	3-1	AC電源ドライバの設定	215
	3-2	DC電源ドライバの設定	217
4	RS-485	5通信の設定	
5	通信方法	式と通信タイミング	
	5-1	通信方式	
	5-2	通信タイミング	
6	メッセ	ージ	
	6-1	クエリ	
	6-2	レスポンス	
7	ファン	クションコード	
	7-1	保持レジスタの読み出し(03h)	
	7-2	保持レジスタへの書き込み (06h)	
	7-3	診断(08h)	

	7-4	複数の保持レジスタへの書き込み(10h)	
8	レジス	タアドレス一覧	
	8-1	動作コマンド	
	8-2	メンテナンスコマンド	231
	8-3	モニタコマンド	232
	8-4	パラメータR/Wコマンド	234
9	グルー	プ送信	
10	運転の	設定例	
	10-1	位置決め運転	
	10-2	連続運転	
	10-3	原点復帰運転	248
11	通信異	常の検出	
	11-1	通信エラー	
	11-2	アラームとワーニング	250
12	タイミ	ングチャート	

7 FAネットワーク制御

1 スイッチの設定			
	1-1	AC電源ドライバの設定	
	1-2	DC電源ドライバの設定	256
2	CC-Li	nk通信で制御する場合	
	2-1	ガイダンス	
	2-2	命令選択方式の操作例	
	2-3	命令固定方式の操作例	270
3	Ether	CAT通信で制御する場合	
	3-1	ガイダンス	
	3-2	基本的な操作手順	
4	MECH	HATROLINK通信で制御する場合	
	4-1	ガイダンス	
	4-2	基本的な操作手順	
	4-3	NETC01-M2 のフィールドマップ	
	4-4	NETC01-M3 のフィールドマップ	
	4-5	通信フォーマット	295
5	リモー	- トI/Oの詳細	
	5-1	ドライバへの入力	
	5-2	ドライバからの出力	
6	命令日]ード-覧	
	6-1	グループ機能	
	6-2	メンテナンスコマンド	
	6-3	モニタコマンド	
	6-4	運転データ	
	6-5	ユーザーパラメータ	

8 資料

1	タイミン	ングチャート	.314
2	仕様		. 326
3	一般仕村	羕	.327
	3-1	AC電源ドライバ	327
	3-2	DC電源ドライバ	328
4	法令·規	格	. 329
	4-1	UL規格	329
	4-2	CEマーキング (AC電源ドライバ)	329
	4-3	CEマーキング (DC電源ドライバ)	330
	4-4	韓国電波法	330
	4-5	RoHS指令	330

ドライバの仕様変更について

本製品は、一部仕様を変更しました。変更前の製品と変更後の製品では、データの設定範囲などが異なります。 仕様変更前のドライバについては、お客様ご相談センター、または最寄の営業所にお問合せください。

> このマニュアルは、仕様変更後のドライバの内容を記載しています。 仕様変更前のドライバをお使いになる場合は、次の点にご注意ください。

1. 設定範囲が変更になりました

● サポートソフトMEXE02で設定するときは、ソフトウェアのバージョンが3.00以降のMEXE02をお 使いください

Ver.3.00よりも古いMEXE02では、仕様変更後の値を設定できません。

● 次のようなデータの受け渡しを行なったときは、最新の値が反映されません

1) 仕様変更後の値を設定したMEXE02のデータを、Ver.3.00よりも古いMEXE02で開いた場合 Ver.3.00よりも古いMEXE02でデータを開くと、初期値に変わってしまいます。

2) 仕様変更後の値を設定したOPX-2Aのデータを、仕様変更前のドライバにダウンロードした場合 仕様変更前のドライバには、仕様変更後の値が反映されず、現在設定されている値のままになります。

2. アラームの出力上限が変更になりました

押し当て運転時の最大速度が変更になりました。仕様変更前のドライバでは、30 r/minよりも大きい速度を設定して押し当 て運転を開始すると、運転データ異常のアラームが発生します。

■ 押し当て運転時の最大速度

1 はじめに

取扱説明書の構成、製品の概要、安全上のご注意などについて説明しています。

◆もくじ

1	お伎	もいになる前に	12
2	製品	8の概要	13
3	安全	≧上のご注意	15
3-	1	安全上のご注意	15
3-	2	バッテリの取り扱い注意事項	17
3-	3	ドライバフロントパネルの図記号につい	って18
3-	4	警告表記	18
4	使用	1上のお願い	19

1

お使いになる前に

製品の取り扱いは、電気・機械工学の専門知識を持つ有資格者が行なってください。

お使いになる前に、15ページ「4 安全上のご注意」をよくお読みのうえ、正しくお使いください。また、本文中の警告・注意・ 重要に記載されている内容は、必ずお守りください。

この製品は、一般的な産業機器への組み込み用として設計・製造されています。その他の用途には使用しないでください。 この警告を無視した結果生じた損害の補償については、当社は一切その責任を負いませんので、あらかじめご了承ください。

関連する取扱説明書

取扱説明書については、当社のWEBサイトからダウンロードしていただくか、支店・営業所にお問い合わせください。

• ARシリーズ/ARシリーズ搭載電動アクチュエータ ユーザーズマニュアル (本書)

電動アクチュエータについては、次の取扱説明書をお読みください。

- 取扱説明書 アクチュエータ編
- 電動アクチュエータ 機能設定編

■ 用語と単位について

モーターと電動アクチュエータでは使用する用語や単位が異なります。本書ではモーターの用語を使って説明しています。 電動アクチュエータを使用する場合は、用語を置き換えてお読みください。

	モーター	電動アクチュエータ		
	トルク	推力		
	慣性モーメント	質量		
	回転	移動		
用語	CW方向	FWD方向		
	CCW方向	RVS方向		
	回転速度	速度		
	分解能	最小移動量		
畄位	N∙m	N		
1111	kHz/s	m/s ²		

2 製品の概要

この製品は、位置決め機能を内蔵したドライバと、ローター位置センサを内蔵したステッピングモーターです。I/O制御、 Modbus RTU制御(RS-485通信)、およびネットワークコンバータを使用したFAネットワーク制御に対応しています。 運転データやパラメータは、当社のサポートソフトMEXE02やデータ設定器OPX-2A、およびRS-485通信のどれかで設定し ます。

■ 主な特徴

- クローズドループ制御 負荷が急激に変動したり、急加速したときも運転を継続します。モーターの運転中も回転速度と回転量を監視し、過負荷な
 - どの際はすぐにクローズドループ制御を行ない、モーターの最大トルクで運転を継続します。
- 3つの運転パターン 位置決め運転、原点復帰運転、および連続運転を実行できます。運転データは64点まで設定でき、多点位置決めも可能です。
- Modbus RTUに対応 (RS-485通信)
 上位システムから運転データやパラメータを設定したり、運転の実行・停止などを指令できます。
 マスタ1台に対して、最大31台のドライバを接続できます。

アブソリュートバックアップシステム

当社のバッテリBAT01Bを接続すると、アブソリュートバックアップシステムで使用できます。 停電時やドライバの電源を切った後も、モーターの位置情報を記憶させておくことができます。

● 省エネルギー

モーター、ドライバの損失を大幅に低減し、低発熱、省エネルギーを実現しました。 発熱が大幅に抑えられたことで、従来お使いいただけなかった高速域での長時間運転も可能になりました。

● シンク出力、ソース出力に対応

電流シンク出力回路、電流ソース出力回路のどちらにも対応しています。

● 電磁ブレーキの自動制御

ドライバが自動で電磁ブレーキを制御するため、制御信号の入力やラダー設計の手間を省けます。

● アラーム、ワーニング機能を搭載

過熱、接続不良、運転操作の誤りなどからドライバを保護するアラーム(保護機能)と、アラームが発生する前に警告を出力 するワーニング(警告機能)が備わっています。

■ 周辺機器

運転データやパラメータは、サポートソフト**MEXE02**、データ設定器**OPX-2A**、およびRS-485通信のどれかで設定します。 必要に応じて、次の周辺機器をご用意ください。

 MEXE02 ………… WEBサイトからダウンロードできます。
 MEXE02を使用する場合は、パソコンとドライバを接続するためのサポートソフト用通信ケーブル CC05IF-USBが必要です。必ずお買い求めください。

• OPX-2A.....別途お買い求めください。

■ 関連商品

当社のネットワークコンバータを介して接続すると、さまざまなネットワークで使用できるようになります。

ネットワークコンバータ品名	対応可能なネットワーク
NETC01-CC	CC-Link Ver.1.1
NETC02-CC	CC-Link Ver.2
NETC01-M2	MECHATROLINK-II
NETC01-M3	MECHATROLINK-III
NETC01-ECT	EtherCAT

■ 機能一覧

メイン機能

補助機能

[/۴	ラメータで設定】
 保護機能 アラーム検出 ワーニング検出 	• 原点復帰機能 原点オフセット 外部センサ信号検出
 I/O機能 入力機能の選択 出力機能の選択 入力接点設定 	 停止動作 STOP入力時の停止動作 ハードウェアオーバートラベル ソフトウェアオーバートラベル
• 座標設定 分解能(電子ギヤ) ラウンド機能 モーター回転方向	 モーターの機能設定 運転電流 停止電流 速度フィルタ 移動平均フィルタ

外部インターフェース

	データ設定器
注出 止動作 バートラベル バートラベル	 モニタ機能 データフ設定 デスト機能 パラメータ設定 ディーチング データ保存 パウンロード/アップロード
設定	RS-485通信
	 ・運転スタート ・モニタ機能 ・運転データ設定 ・メンテナンス機能 ・パラメータ設定

3-1 安全上のご注意

ここに示した注意事項は、製品を安全に正しくお使いいただき、お客様や他の人々への危害や損傷を未然に防止するための ものです。内容をよく理解してから製品をお使いください。

⚠警告	この警告事項に反した取り扱いをすると、死亡または重傷を負う場合がある内容を示しています。
⚠注意	この注意事項に反した取り扱いをすると、傷害を負うまたは物的損害が発生する場合がある内容を示 しています。
重要	製品を正しくお使いいただくために、お客様に必ず守っていただきたい事項を本文中の関連する取り 扱い項目に記載しています。

■ AC電源ドライバ/DC電源ドライバ 共通

全般

- 爆発性雰囲気、引火性ガスの雰囲気、腐食性の雰囲気、水のかかる場所、可燃物のそばでは使用しないでください。火災・ 感電・けがの原因になります。
- 設置、接続、運転・操作、点検・故障診断の作業は、適切な資格を有する人が行なってください。火災・感電・けが・装置破損の原因になります。
- 通電状態で移動、設置、接続、点検の作業をしないでください。電源を切ってから作業してください。感電の原因になり ます。
- 昇降装置に使用するときは、可動部の位置保持対策を行なってください。電源が遮断されるとモーターは保持力がなくなるため、可動部が落下して、けが・装置破損の原因になります。
- 電磁ブレーキ付モーターのブレーキ機構は、可動部とモーターの位置保持用です。制動・安全ブレーキとして使用しない でください。けが・装置破損の原因になります。
- ドライバのアラーム(保護機能)が発生すると、モーターは停止し、保持力がなくなります。可動部を保持する対策を施してください。けが・装置破損の原因になります。
- ドライバのアラーム(保護機能)が発生したときは、原因を取り除いた後でアラーム(保護機能)を解除してください。原因 を取り除かずに運転を続けると、モーター、ドライバが誤動作して、けが・装置破損の原因になります。

設置

• モーター、ドライバは筐体内に設置してください。感電・けがの原因になります。

接続

- ドライバの電源入力電圧は、必ず定格範囲を守ってください。火災・感電の原因になります。
- 接続図にもとづき、確実に接続してください。火災・感電の原因になります。
- 接続ケーブルを無理に曲げたり、引っ張ったり、挟み込まないでください。火災・感電の原因になります。
- パソコンをドライバに接続するときは、パソコンとドライバの電源を切ってください。感電の原因になります。

運転

- 停電したときは、ドライバの電源を切ってください。停電復旧時にモーターが突然起動して、けが・装置破損の原因になります。
- 運転中はモーターを無励磁にしないでください。モーターが停止し、保持力がなくなるため、けが・装置破損の原因になります。

修理·分解·改造

モーター、ドライバを分解・改造しないでください。感電・けがの原因になります。内部の点検や修理は、お買い上げになった支店または営業所に連絡してください。

設置

モーター、ドライバはクラス I 機器です。設置するときは、モーター、ドライバに触れないようにするか、接地してください。感電の原因になります。

保守·点検

• 通電中、および電源を切ってから10分以内は、ドライバの接続端子に触れないでください。また、接続作業や点検は、電源を切り、CHARGE LEDが消灯してから行なってください。感電の原因になります。

DC電源ドライバ

設置

• 設置するときは、モーター、ドライバに触れないようにするか、接地してください。感電の原因になります。

接続

• ドライバの電源は、一次側と二次側が強化絶縁された直流電源を使用してください。感電の原因になります。

⚠注意

■ AC電源ドライバ/DC電源ドライバ 共通

全般

- モーター、ドライバの仕様値を超えて使用しないでください。感電・けが・装置破損の原因になります。
- 指や物をモーター、ドライバの開口部に入れないでください。火災・感電・けがの原因になります。
- 運転中や停止後しばらくの間は、モーター、ドライバに触れないでください。モーター、ドライバの表面が高温のため、 やけどの原因になります。
- 当社のバッテリBAT01B以外は使用しないでください。けが・装置破損の原因になります。

運搬

• 出力軸やモーターケーブルを持たないでください。けがの原因になります。

設置

- モーターの回転部(出力軸)にカバーを設けてください。けがの原因になります。
- 通風を妨げる障害物をモーター、ドライバの周囲に置かないでください。装置破損の原因になります。

運転

- モーターとドライバは、指定された組み合わせで使用してください。火災の原因になります。
- 装置の故障や動作の異常が発生したときに、装置全体が安全な方向へはたらくよう非常停止装置、または非常停止回路を 外部に設置してください。けがの原因になります。
- ドライバの入力信号をすべてOFFにしてから、電源を投入してください。モーターが起動して、けが・装置破損の原因に なります。
- 手動で可動部を動かすときは、モーターを無励磁にしてください。励磁状態のまま作業すると、けがの原因になります。
- 運転中は回転部(出力軸)に触れないでください。けがの原因になります。
- 異常が発生したときは、ただちに運転を停止し、ドライバの電源を切ってください。火災・感電・けがの原因になります。
- ドライバのスイッチは、絶縁ドライバで調整してください。感電の原因になります。
- モーターは、正常な運転状態でも表面温度が70 ℃を超えることがあります。運転中のモーターに接近できるときは、図の警告ラベルをはっきり見える位置に貼ってください。やけどの原因になります。

保守·点検

• 絶縁抵抗測定、絶縁耐圧試験を行なうときは、端子に触れないでください。感電の原因になります。

接続

 ドライバのデータ設定器コネクタ(CN4)とRS-485通信コネクタ(CN6/CN7)は絶縁されていません。電源のプラス側を 接地するときは、マイナス側を接地した機器(パソコンなど)を接続しないでください。これらの機器とドライバが短絡 して、破損するおそれがあります。

運転

• DC24 V電源は、一次側と二次側が強化絶縁された電源を使用してください。感電の原因になります。

DC電源ドライバ

接続

- ドライバの電源コネクタ(CN1)、データ設定器コネクタ(CN3)、およびRS-485通信コネクタ(CN6/CN7)は絶縁されていません。電源のプラス側を接地するときは、マイナス側を接地した機器(パソコンなど)を接続しないでください。これらの機器とドライバが短絡して、破損するおそれがあります。
- 接続するときは、ドライバのシルクを確認し、電源の極性に気を付けてください。極性を間違えて接続すると、ドライバが破損する原因になります。電源回路とRS-485通信回路は絶縁されていないため、RS-485通信で複数のドライバを制御する場合に電源の極性を間違えると、短絡経路が発生して破損する原因になります。

運転

• 電磁ブレーキ用の直流電源は、一次側と二次側が強化絶縁された電源を使用してください。感電の原因になります。

3-2 バッテリの取り扱い注意事項

当社のバッテリBAT01Bを使用するときは、次のことを必ず守ってください。取り扱いを誤ると、漏液、発熱、破裂などのお それがあり、けが、機械の損傷の原因になります。

▲警告

- バッテリを火の中へ投入したり、加熱しないでください。
- バッテリをショートしたり、(+)・(-)の逆接続は絶対にしないでください。
- バッテリを携行・保管するときは、金属製のネックレス、ヘアピン、コイン、鍵などの電気を通すものと一緒にしないで ください。また、バッテリは、直射日光、高温、高湿の場所を避けて保管してください。
- バッテリを分解、改造しないでください。
- バッテリに直接はんだ付けしないでください。
- 充電は、専用充電器(ドライバ)を使用してください。
- バッテリは、内部のガスを放出するためのガス抜き構造を備えています。電池に強い力をかけて変形させないでください。
- バッテリを機械へ組み込むときは、絶対に密閉構造を避けてください。ガスが発生することがあり、破裂や、引火によっ て爆発する危険性があります。
- バッテリは、内部にアルカリ性溶液を保持しています。アルカリ性溶液が皮膚や衣服に付着した場合は、きれいな水で洗い流してください。万一、目に入ったときは、こすらずただちにきれいな水で充分に洗った後、ただちに医師の治療を受けてください。
- バッテリが漏液したり、変色・変形、その他今までと異なることに気付いたときは使用しないでください。
- バッテリを水や海水につけたり、濡らさないでください。バッテリが発熱したり、錆の原因になります。
- バッテリやケーブルに傷を付けないでください。バッテリがショート状態になりやすく、漏液、発熱、破裂させる原因になります。
- バッテリは一次回路に接続されています。通電中は触れないでください。
- ケーブルを無理に曲げたり、引っ張ったり、挟み込まないでください。また、ケーブルを繰り返し曲げ伸ばさないでくだ さい。
- 連続的な振動や過度の衝撃が加わらないようにしてください。

- バッテリはご使用前にドライバに接続して、必ず充電してください。充電の方法は、47ページ(AC電源ドライバ)、77ページ(DC電源ドライバ)に従ってください。
 - バッテリには、ニッケル・水素電池が使用されています。使用済みの電池は、法令に従って 適切に処理してください。不明な点は支店・営業所にお問い合わせください。

3-3 ドライバフロントパネルの図記号について

3-4 警告表記

ドライバとバッテリには、取り扱い上の警告が表示されています。 取り扱うときは、必ず表示の内容を守ってください。

● ドライバ(AC電源ドライバ)

感電警告ラベル

材質:PET

● バッテリ

感電警告ラベル

材質:ポリプロピレン

1 はじめに

4 使用上のお願い

製品をお使いいただくうえでの制限やお願いについて説明します。

■ AC電源ドライバ/DC電源ドライバ 共通

● モーターとドライバは、必ず当社のケーブルを使用して接続してください

ケーブルの品名は、50ページ(AC電源入力)、80ページ(DC電源入力)でご確認ください。

重

要) 接続ケーブルを使用する際の注意事項を、21ページに記載しています。必ずお読みください。

- 絶縁抵抗測定、絶縁耐圧試験を行なうときは、モーターとドライバを切り離してください
 モーターとドライバを接続した状態で、絶縁抵抗測定、絶縁耐圧試験を行なうと、製品が破損するおそれがあります。
- ラジアル荷重・アキシアル荷重は許容値以下で使用してください 許容値を超えたラジアル荷重やアキシアル荷重が加わった状態で運転を続けると、モーターの軸受け(ボールベアリング) が破損する原因になります。必ず許容値内のラジアル荷重・アキシアル荷重で運転してください。詳細は34ページ(AC電 源ドライバ)、66ページ(DC電源ドライバ)をご覧ください。
- モーターは、表面温度100 ℃以下で使用してください

ドライバには過熱から保護する機能がありますが、モーター自体にはそのような機能がありません。使用周囲温度、運転速度、運転デューティなどの運転条件によっては、モーターケースの表面温度が100 ℃を超える場合があります。モーターの軸受け(ボールベアリング)の寿命劣化を抑えるため、モーターケースの表面温度は100 ℃以下で使用してください。 ギヤードタイプは、ギヤ部のグリースや部材の劣化を防ぐため、ギヤ部のケース温度は70 ℃以下で使用してください。 なお、モーターを連続運転するときは、放熱板(材質:アルミニウム、250×250×6 mm)と同程度の放熱能力を持つ場所に モーターを設置してください。

停止時の保持トルク

モーターの停止時は、ドライバのカレントダウン機能によって保持トルクが低下します。モーターを選定するときは、カ タログで停止時保持トルクを確認してください。

● 電磁ブレーキを制動・安全ブレーキとして使用しないでください

電磁ブレーキをモーターの制動停止に使用しないでください。電磁ブレーキのブレーキハブが著しく磨耗して、制動力が低下します。電磁ブレーキは無励磁作動型のため、停電時などに負荷を保持するのに役立ちますが、負荷を確実に保持する機構ではありません。安全ブレーキとして使用しないでください。電磁ブレーキで負荷を保持するときは、モーターの停止後に行なってください。

● 両軸タイプのモーター

モーター出力軸の反対側の出力軸に、負荷トルク、ラジアル荷重、およびアキシアル荷重を加えないでください。

ノイズ対策

ノイズ対策については、47ページ(AC電源ドライバ)、77ページ(DC電源ドライバ)をご覧ください。

出力軸の回転方向

出荷時設定では、モーター出力軸は図のように回転します。回転方向は、パラメータで変更できます。

• 位置(移動量)をプラスの値に設定した場合 • 位置(移動量)をマイナスの値に設定した場合

ギヤードモーターの場合、モーター出力軸に対するギヤ出力軸の回転方向は、ギヤの種類や減速比によって異なります。 表でご確認ください。

ギヤの種類	減速比	モーター出力軸に対するギヤ出力軸の回転方向
THギヤード	7.2、10	逆方向
取付角寸法28 mm	20、30	同方向
THギヤード	3.6、7.2、10	同方向
取付角寸法42 mm、60 mm、90 mm	20、30	逆方向
FCギヤード、PSギヤード、 PNギヤード	全減速比	同方向
ハーモニックギヤード	全減速比	逆方向

● ギヤードタイプの瞬時最大トルク

ギヤードタイプは、必ず瞬時最大トルク以下の負荷で運転してください。瞬時最大トルクを超えた負荷が加わると、ギヤが 破損します。

● ギヤードモーターのグリース

ギヤードモーターからまれに、少量のグリースがにじみ出ることがあります。グリース漏れによる周囲環境の汚染が問題に なるときは、定期点検時にグリースのにじみを確認してください。または油受けなどの損害防止装置を取り付けてください。 油漏れによって、お客様の装置や製品などに不具合を発生させる原因になります。

● ギヤードモーターでは押し当て運転を行なわないでください

モーターやギヤ部が破損するおそれがあります。

● NVメモリへのデータ保存

データをNVメモリに書き込んでいる間、および書き込み後5秒以内は、主電源やDC24 V電源を切らないでください。書き 込みが正常に終了せず、EEPROM異常のアラームが発生する原因になります。 NVメモリの書き換え可能回数は、約10万回です。

● 電源投入時のモーター励磁

この製品は、DC電源と主電源を投入するとモーターが励磁します。電源投入時にモーターを無励磁にしたいときは、 C-ON入力をダイレクトI/OまたはリモートI/Oに割り当てて制御してください。

● アブソリュートバックアップシステムの多回転動作※

- 現在位置をプリセットしても、ドライバは原点からの位置を記憶しているため、多回転動作が可能な範囲(-167,772~+167,772回転)は変わりません。
- 多回転動作範囲 (-167,772~+167,772回転)を超えているときに電源を再投入すると、絶対位置異常のアラームが発生します。絶対位置異常のアラームは、次のどちらかの方法で解除してください。
 - ・P-CLR入力をONからOFFにする。(OFFエッジで有効です。)
 - ・RS-485通信、MEXE02、OPX-2Aのどれかで絶対位置異常のアラームをリセットする。
- ※ 多回転動作とは、同じ回転方向への連続運転や、位置決め運転を繰り返すことです。

■ AC電源ドライバ

● 漏れ電流対策

ドライバの動力線と他の動力線間、大地間、およびモーター間には浮遊容量が存在し、これを通して高周波漏れ電流が流れ、 周辺の機器に悪影響を与えることがあります。これは、ドライバのスイッチング周波数、ドライバとモーター間の配線長な どに左右されます。漏電ブレーカを設置するときは、次のような高周波対策品を使用してください。 三菱電機株式会社 NVシリーズ

● 過電圧保護のアラームが発生する場合

巻下げ運転などの上下駆動や、大慣性の急激な起動・停止が頻繁に繰り返されるときは、過電圧保護のアラームが検出され ることがあります。過電圧保護のアラームが検出されたときは、駆動条件を見なおすか、当社の回生抵抗RGB100を使用し てください。

● プラス側を接地した電源を接続するときの注意

ドライバのデータ設定器コネクタ (CN4) とRS-485通信コネクタ (CN6/CN7) は絶縁されていません。 電源のプラス側を接 地するときは、マイナス側を接地した機器 (パソコンなど)を接続しないでください。 これらの機器とドライバが短絡して、 破損するおそれがあります。 データの設定などには、**OPX-2A**をお使いください。

■ DC電源ドライバ

● 過電圧保護のアラームが発生する場合

巻下げ運転などの上下駆動や、大慣性の急激な起動・停止が頻繁に繰り返されるときは、過電圧保護のアラームが検出されることがあります。過電圧保護のアラームが検出されたときは、駆動条件を見なおしてください。

● プラス側を接地した電源を接続するときの注意

ドライバの電源コネクタ(CN1)、データ設定器コネクタ(CN3)、およびRS-485通信コネクタ(CN6/CN7)は絶縁されていません。電源のプラス側を接地するときは、マイナス側を接地した機器(パソコンなど)を接続しないでください。これらの機器とドライバが短絡して、破損するおそれがあります。データの設定などには、OPX-2Aをお使いください。

■ 接続ケーブル使用時の注意点

当社のケーブルを使用する際は、次の点にご注意ください。

● コネクタを挿入するとき

コネクタ本体を持って、まっすぐ確実に差し込んでください。コネクタが傾いたまま差し込むと、端子が破損したり、接続 不良の原因になります。

コネクタを抜くとき

コネクタのロック部分を解除しながら、まっすぐ引き抜いてください。ケーブルを持って引き抜くと、コネクタが破損する 原因になります。

● ケーブルの曲げ半径

ケーブルの曲げ半径は、ケーブル径の6倍以上で使用してください。 リード線部分を曲げたり、クランプなどで固定しないでください。 コネクタが破損するおそれがあります。

● ケーブルの固定方法

ケーブルを固定するときは、コネクタの近くを図のように2か所で固定するか、幅広のクランプで固定するなど、コネクタ にストレスがかからない対策を施してください。

2 AC電源入力タイプ

ARシリーズAC電源入力タイプのドライバに特有な内容について説明しています。

◆もくじ

1 シ	ステム構成	24
2 準	備	25
2-1	製品の確認	25
2-2	品名の見方	26
2-3	銘板の情報	27
2-4	モーターとドライバの組み合わせ	28
2-5	入出力定格	29
2-6	各部の名称と機能	29
3 設	置	32
3 設 3-1	置 設置場所	32 32
3 設 3-1 3-2	<u>置</u> 設置場所	32 32 32
3 設 3-1 3-2 3-3	置 設置場所 モーターの設置 負荷の取り付け	32 32 32 33
3 設 3-1 3-2 3-3 3-4	置 設置場所 モーターの設置 負荷の取り付け	32 32 33 33
3-1 3-2 3-3 3-4 3-5	置 設置場所 モーターの設置 負荷の取り付け 許容ラジアル荷重と許容アキシアル荷重 ドライバの設置	32 32 33 34 36
3-1 3-2 3-3 3-4 3-5 3-6	置 設置場所	32 32 33 34 36 37

続	38
接続例	38
モーター、ドライバの接地	39
主電源の接続	40
DC24 V電源・回生抵抗・電磁ブレーキの 接続	41
入出力信号の接続	43
データ設定器の接続	46
RS-485通信ケーブルの接続	46
バッテリの接続と充電	47
ノイズ対策	47
EMC指令への適合	48
ーブル	50
接続ケーブルセット	50
中継ケーブルセット	51
サポートソフト用通信ケーブル	52
RS-485通信ケーブル	52
入出力信号用ケーブル	52
辺機器	53
設定機器	53
配線サポート機器	53
その他	53
	 続

2 AC電源入力タイプ

1 システム構成

- ※1 当社でご用意しています。別途お買い求めください。
- ※2 パソコンはお客様側でご用意ください。ドライバとの接続には、当社のサポートソフト用通信ケーブルCC05IF-USB を使用してください。
- ※3 当社でご用意している周辺機器です。

2 準備

確認していただきたい内容や、各部の名称と機能について説明します。

2-1 製品の確認

次のものがすべて揃っていることを確認してください。不足したり破損している場合は、お買い求めの支店・営業所までご 連絡ください。

モーター

- モーター.....1台
- 平行キー......1個※1
- 安全にお使いいただくために1部
- APPENDIX UL Standards for AR Series.......1部※2
- ※1 ギヤードタイプに付属。ただし、ARM46-T、ARM66-Tを除く。
- ※2 UL規格認証品に添付。

• ドライバ

付属のコネクタ品番

CN3用コネクタには、ワゴジャパン株式会社製と日本モレックス合同会社製があります。 製品には、どちらか1つを付属しています。メーカー名はコネクタで確認してください。

種類	品番(メーカー名)
CN1用コネクタ	MC1,5/6-STF-3,5(フエニックス・コンタクト株式会社)
CN3用コネクタ	721-205 (ワゴジャパン株式会社) または 54928-0570 (日本モレックス合同会社)
CN5用コネクタ	FK-MC0,5/5-ST-2,5(フエニックス・コンタクト株式会社)
CN8用コネクタ	FK-MC0,5/9-ST-2,5(フエニックス・コンタクト株式会社)
CN9用コネクタ	FK-MC0,5/7-ST-2,5(フエニックス・コンタクト株式会社)

2-2 品名の見方

モーターとドライバの品名は、それぞれ製品の銘板に記載された品名で確認してください。銘板の見方については27ペー ジをご覧ください。

- モーター
- 標準タイプ

 $\frac{\textbf{ARM}}{1} \quad \frac{\textbf{6}}{2} \quad \frac{\textbf{6}}{3} \quad \frac{\textbf{A}}{4} \quad \frac{\textbf{0}}{5} \quad \frac{\textbf{C}}{6}$

● ギヤードタイプ(FCギヤードタイプを除く)

ARM	<u>6</u>	<u>6</u>	<u>A</u>	<u>C</u>	-	Ţ	<u>7.2</u>	<u>U</u>
1	2	3	4	6		7	8	9

1	シリーズ名	ARM:ARシリーズ モーター
2	モーター取付角寸法	4 :42 mm 6 :60 mm 9 :85 mm (ギヤードタイプは90 mm)
3	モーターケース長さ	
4	形状	A:片軸 B:両軸 M:電磁ブレーキ付
5	付加機能	なし:一面フライス 0:ストレート
6	モーター仕様	C:AC電源入力仕様
7	ギヤの種類	なし:標準 T:THギヤード PS:PSギヤード N:PNギヤード H:ハーモニックギヤード
8	減速比	減速比を表わす数字が入ります。減速比の種類は次表をご覧ください。
9	ケーブル引出方向※ (THギヤードタイプのみ)	なし:下方向 U:上方向 L:左方向 R :右方向

※ ケーブル引出方向は、出力軸を上側にして、出力軸面から見たときの方向を表わしています。

減速比の種類

ギヤの種類	減速比				
THギヤード	3.6、7.2、10、20、30				
PSギヤード	5,7.2%,10,25,36,50				
PNギヤード	ARM46:5,7.2,10 ARM66, ARM98:5,7.2,10,25,36,50				
ハーモニックギヤード	50,100				

※ PSギヤードタイプの減速比7.2は、品名が「7」になります。

準備

● FCギヤードタイプ

ARM	<u>6</u>	<u>6</u>	<u>A</u>	<u>C</u>	-	FC	<u>7.2</u>	Ŀ	<u>A</u>
1	2	3	4	5		6	7	8	9

1	シリーズ名	ARM: ARシリーズ モーター
2	モーター取付角寸法	4 :42 mm 6 :60 mm
3	モーターケース長さ	
4	形状	A :片軸
5	モーター仕様	C:AC電源入力仕様
6	ギヤの種類	FC:FCギヤード
7	減速比	7.2,10,20,30
8	出力軸の方向※	L:L軸(左) R:R軸(右)
9	識別	A:中実軸

※ モーターケーブル引出口側から見た出力軸の方向を表わしています。

■ ドライバ

$$\underline{ARD} - \underline{C} \underline{D}$$

1 2 3

1	シリーズ名	ARD:ARシリーズドライバ
2	電源入力	A :単相100-120 V C :単相200-240 V
3	種類	D:位置決め機能内蔵タイプ

2-3 銘板の情報

2 AC電源入力タイプ

(memo) 製品によって、情報の記載位置が異なる場合があります。

2-4 モーターとドライバの組み合わせ

■ 標準タイプ

片軸		両軸			電磁ブレーキ付		
モーター品名	ドライバ品名	モーター品名	ドライバ品名		モーター品名	ドライバ品名	
ARM46AC		ARM46BC			ARM46MC		
ARM46A0C		ARM46B0C			ARM46M0C		
ARM66AC		ARM66BC			ARM66MC		
ARM66A0C		ARM66B0C			ARM66M0C	ARD-AD	
ARM69AC	ARD-AD	ARM69BC	ARD-AD		ARM69MC	ARD-CD	
ARM69A0C	ARD-CD	ARM69B0C	ARD-CD		ARM69M0C		
ARM98AC		ARM98BC			ARM98MC		
ARM98A0C		ARM98B0C			ARM98M0C		
ARM911AC		ARM911BC				·	
ARM911A0C		ARM911B0C	1				

■ ギヤードタイプ

- 品名の●には、減速比を表わす数字が入ります。
- 品名の◆には、ケーブル引出方向を表わすU(上方向)、L(左方向)、R(右方向)のどれかが入ります。
 ケーブル引出方向が下方向の場合、◆はありません。

ギャク研断	片軸		電磁ブレーキ付		
キャの性知	モーター品名	ドライバ品名	モーター品名	ドライバ品名	
	ARM46AC-T●◆		ARM46MC-T●◆		
THギヤード	ARM66AC-T●◆		ARM66MC-T●◆		
	ARM98AC-T●◆		ARM98MC-T●◆	ARD-CD	
	ARM46AC-FC●LA				
ト	ARM46AC-FC•RA	ARD-AD			
FC+V=P	ARM66AC-FC●LA	ARD-CD	_	_	
	ARM66AC-FC•RA				
	ARM46AC-PS●		ARM46MC-PS●		
PSギヤード	ARM66AC-PS●		ARM66MC-PS•	ARD-AD	
	ARM98AC-PS●		ARM98MC-PS●		
	ARM46AC-N●		ARM46MC-N●		
PNギヤード	ARM66AC-N●		ARM66MC-N●		
	ARM98AC-N●		ARM98MC-N●	ARD-CD	
	ARM46AC-H●		ARM46MC-H●		
ハーモニックギヤード	ARM66AC-H●		ARM66MC-H●		
	ARM98AC-H●		ARM98MC-H●		

2-5 入出力定格

工	ドニノバロタ		1相あたりの		
モーター品名	トノイハ品名	電圧	周波数	電流	出力電流
ARM46				2.4 A	0.49 A
ARM66		*****		3.6 A	0.74 A
ARM69	ARD-AD	甲相 100-120 V		4.9 A	0.92 A
ARM98			50/60 Hz	4.6 A	1.13 A
ARM911				5.9 A	1.27 A
ARM46				1.5 A	0.49 A
ARM66				2.3 A	0.74 A
ARM69	ARD-CD	□ 単相 200-240 V		3.0 A	0.92 A
ARM98		200-240 V		2.9 A	1.13 A
ARM911				3.7 A	1.27 A

2-6 各部の名称と機能

■ ドライバ(例:ARD-CD)

名称	説明	参照先
	• PWR(緑):DC24 V電源が投入されているときに点灯します。	
PWR/ALM LED	• ALM(赤):アラーム(保護機能)が発生すると点滅します。点滅回数 を数えると、発生したアラームを確認できます。	p.147
	 C-DAT(緑):RS-485通信によるマスタとの通信が正常に行なわれているときに点滅または点灯します。 	
C-DAT/C-ERR LED	 C-ERR(赤):RS-485通信によるマスタとの通信に異常が発生すると 点灯します。 	_
号機設定スイッチ (ID)	RS-485通信で制御するときに使用してください。機能設定スイッチ (SW4)のNo.1と併用して、RS-485通信の号機番号(スレーブアドレ ス)を設定します。 出荷時設定:0	p.216 p.254
終端抵抗設定スイッチ (TERM.)	RS-485通信で制御するときに使用してください。RS-485通信の終 端抵抗(120 Ω)を設定します。 出荷時設定:OFF	p.255
RS-485通信コネクタ(CN6/CN7)	RS-485通信ケーブルを接続します。	p.46
出力信号コネクタ(CN9)	出力信号を接続します。	
入力信号コネクタ(CN8)	入力信号を接続します。	p.43
センサ信号コネクタ(CN5)	センサ信号を接続します。	
データ設定器コネクタ(CN4)	MEXE02をインストールしたパソコン、またはOPX-2Aを接続します。	p.46
保護接地端子	AWG16~14(1.25~2.0 mm ²)の接地線で接地してください。	p.39
DC24 V電源入力端子(CN1-24V)	ドライバの制御回路用電源を接続します。 + :+DC24 V電源入力 - :電源GND	
回生抵抗サーマル入力端子 (CN1-TH1/TH2)	当社の回生抵抗RGB100を接続します。回生抵抗を接続しないときは、TH1端子とTH2端子を短絡させてください。	p.41
電磁ブレーキ接続端子 (CN1-MB1/MB2)	電磁ブレーキ用ケーブルを接続します。 MB1:電磁ブレーキー (黒) MB2:電磁ブレーキ+ (白)	
モーターコネクタ(CN2)	モーターを接続します。	p.38
CHARGE LED (赤)	主電源が投入されているときに点灯します。主電源を切った後、内部の残留電圧が安全なレベルまで低下すると消灯します。	-
回生抵抗接続端子(CN3-RG1/RG2)	当社の回生抵抗RGB100を接続します。	p.42
主電源入力端子(CN3-L/N)	主電源を接続します。 L:ライブ N:ニュートラル	p.40
取付穴(背面2か所)	ねじでドライバを固定する取付穴です。	p.36
通信速度設定スイッチ(SW2)	RS-485通信で制御するときに使用してください。RS-485通信の通 信速度を設定します。 出荷時設定:7	
機能設定スイッチ(SW4)	 RS-485通信で制御するときに使用してください。 No.1:号機設定スイッチ(ID)と併用して、号機番号(スレーブアドレス)を設定します。 出荷時設定:OFF No.2:RS-485通信のプロトコルを設定します。 出荷時設定:OFF 	p.215 p.254
バッテリコネクタ(CN10)	当社のバッテリBAT01Bを接続します。	p.47

設置 3

設置

モーター、ドライバの設置場所、設置方法、および回生抵抗、バッテリの取り付け方法について説明します。

3-1 設置場所

モーター、ドライバは、機器組み込み用に設計、製造されています。 風通しがよく、点検が容易な次のような場所に設置してください。

- 屋内に設置された筐体内(換気口を設けてください)
- 使用周囲温度 モーター:-10~+50 ℃(凍結しないこと) ハーモニックギヤードタイプ:0~+40 ℃(凍結しないこと) ドライバ:0~+55 ℃(凍結しないこと)
- 使用周囲湿度 85%以下(結露しないこと)
- 爆発性雰囲気、有害なガス(硫化ガスなど)、および液体のないところ
- 直射日光が当たらないところ
- 塵埃や鉄粉などの少ないところ
- 水(雨や水滴)、油(油滴)、およびその他の液体がかからないところ
- 塩分の少ないところ
- 連続的な振動や過度の衝撃が加わらないところ
- 電磁ノイズ(溶接機、動力機器など)が少ないところ
- 放射性物質や磁場がなく、真空でないところ
- 海抜 1,000 m以下

3-2 モーターの設置

モーターの設置方向に制限はありません。

放熱性や振動防止を考慮し、できるだけ強固な金属面へ確実に取り付けてください。 締付トルクの値は推奨値です。取り付ける金属板の設計条件に合わせて、適切なトルクで締め付けてください。

● 設置方法A

● 設置方法B

● 設置方法B(FCギヤードタイプの場合)

タイプ	取付角寸法 (mm)	ねじの呼び	締付トルク (N·m)	有効ねじ深さ (mm)	設置方法	
	42	M3	1	4.5	A	
標準	60	M4	2			
	60 M4 2 85 M6 3 42,60 M4 2 8 90 M8 12 15 42 M4 2 8	D				
TUギャード	42、60	M4	2	8	Λ	
	90	M8	12	15	A	
「つた」と	42	M4	2		D	
rC+P=P	60	M5	COULTON (N·m) (mm M3 1 4.5 M4 2 - M6 3 - M4 2 8 M4 2 8 M8 12 15 M4 2 8 M5 3 - M5 3 10 M8 12 15 M8 12 15 M8 12 15	_	В	
PSギヤード	42	M4	2	8		
PNギヤード	60	M5	3	10	A	
ハーモニックギヤード※1	42 M3 60 M4 85 M6 42,60 M4 90 M8 42 M4 60 M5 42 M4 60 M5 42 M4 60 M5 42 M4 60 M5 %1 90 M8		12	15]	
ハーモニックギヤード※2	90	M8	15	_	В	

*1 **ARM46、ARM66**タイプのみ。

※2 ARM98タイプのみ。

3-3 負荷の取り付け

負荷をモーターに取り付ける方法について説明します。 当社でもフレキシブルカップリングをご用意しています。

- 要
 - 出力軸と負荷を連結するときは、心出し、ベルトのテンション、プーリーの平行度などに注意してくだ さい。また、カップリングやプーリーのねじは確実に締め付けてください。
 - カップリングやプーリーを出力軸に取り付けるときは、出力軸や軸受け(ボールベアリング)に損傷を与 えないでください。
 - •出力軸を改造したり、機械加工をしないでください。軸受け(ボールベアリング)が損傷して、モーター が破損する原因になります。
 - 平行キーを出力軸から取り外すときに、ハンマーなどで強い力を加えないでください。出力軸や軸受け (ボールベアリング)が破損する原因になります。

● カップリング連結のとき

出力軸と負荷の回転軸を一直線にしてください。

- ベルト連結のとき
 - 出力軸と負荷の回転軸を平行にしてください。
 - 出力軸と負荷の回転軸を、両プーリーの中心を結ぶ線に対して直角にしてください。
- ギヤ連結のとき
 - 出力軸とギヤ軸を平行にしてください。
 - ギヤ歯面の中心を正しく噛み合わせてください。

カップリング連結 ベルト連結

キー締結のとき(ギヤードモーター)

キーみぞ加工された出力軸と負荷を結合するときは、負荷側にキーみぞ加工をして、付属のキーで負荷と出力軸を固定して ください。

● ハーモニックギヤードタイプ:負荷をフランジ面に取り付けるとき

ハーモニックギヤードタイプ(ARM98を除く)は、フランジ面にある負荷取付用 ねじ穴を使用して、負荷を直接ギヤに取り付けることができます。

モーター品名	ねじの呼び	ねじの本数	締付トルク (N·m)	有効ねじ深さ (mm)
ARM46	M3	6	1.4	5
ARM66	M4	6	2.5	6

● 負荷をフランジ面に取り付ける場合、出力軸のキーみぞを併用して負荷を固定することはできません。
 ● モーターを取り付けている金属板やねじと、負荷が干渉しないように設計してください。

3-4 許容ラジアル荷重と許容アキシアル荷重

 ラジアル荷重やアキシアル荷重が許容値を超えると、繰り返し荷重によってモーターの軸受け(ボール ベアリング)や出力軸が疲労破損にいたる原因になります。

Memo PSギヤードタイプとPNギヤードタイプは、ラジアル荷重またはアキシアル荷重のどちらかが作用した場合に、寿命が20,000時間を満たす値を許容値としています。

				きのフィンフリ						
タイプ	モーター品名	減速比		出力軸先端からの距離(mm)						
			0	5	10	15	20			
	ARM46		35	44	58	85	—	15		
標準	ARM66 ARM69	_	90	100	130	180	270	30		
	ARM98 ARM911		260	290	340	390	480	60		
	ARM46		10	14	20	30	_	15		
THギヤード	ARM66	全減速比	70	80	100	120	150	40		
	ARM98		220	250	300	350	400	100		
	ARM46	全減速比	180	200	220	250	—	100		
	ARM66	上减还比	270	290	310	330	350	200		
	A DA4 4 4	5	70	80	95	120	—	100		
		7.2	80	90	110	140	—			
		10	85	100	120	150	—			
	AKM40	25	120	140	170	210	—			
		36	130	160	190	240	—			
BC ギャー ド		50	150	170	210	260	—			
13 + y = p		5	170	200	230	270	320			
		7.2	200	220	260	310	370			
	A DA46.6	10	220	250	290	350	410	200		
	AKINOO	25	300	340	400	470	560	200		
		36	340	380	450	530	630			
		50	380	430	500	600	700			

[•] 両軸タイプのときは、モーター出力軸の反対側の出力軸に、負荷トルク、ラジアル荷重、およびアキシ アル荷重を加えないでください。

タイプ	モーター品名	減速比		計谷アキンアル 荷重 (NI)				
			0	5	10	15	20	
		5	380	420	470	540	630	
		7.2	430	470	530	610	710	
DC ギャード		10	480	530	590	680	790	600
r3 + <i>p</i> = <i>p</i>	AKIM70	25	650	720	810	920	1,070	000
		36	730	810	910	1,040	1,210	
		50	820	910	1,020	1,160	1,350	
		5	80	95	120	160	—	
	ARM46	7.2	90	110	130	180	—	100
		10	100	120	150	200	—	
	ARM66	5	240	260	280	300	330	200
		7.2	270	290	310	340	370	
		10	300	320	350	380	410	
		25	410	440	470	520	560	
PNギヤード		36	360	410	480	570	640	
		50	360	410	480	570	700	
		5	370	390	410	430	460	
		7.2	410	440	460	490	520	
		10	460	490	520	550	580	600
	AKIM70	25	630	660	700	740	790	000
		36	710	750	790	840	900	
		50	790	840	890	940	1,000	
л т= <i>а</i>	ARM46		180	220	270	360	510	220
ハーモ <u>ー</u> ック ギヤード	ARM66	全減速比	320	370	440	550	720	450
+ +	ARM98		1,090	1,150	1,230	1,310	1,410	1,300

■ ハーモニックギヤードタイプの許容モーメント荷重

アームやテーブルをフランジ面に取り付けるときに、偏心荷重が加わる場合は、表の許容値を超えないでください。

モーター品名	許容モーメント荷重 (N·m)
ARM46	5.6
ARM66	11.6

モーメント荷重は、次の計算式で算出してください。

● 例1:出力フランジの中心から距離Lの位置に外力Fが加わる場合

L:出力フランジ中心からの距離 (m) F:外力 (N)

モーメント荷重M[N·m] = F × L

● 例2:出力フランジの取付面から距離Lの位置に外力Fが加わる場合

L:出力フランジ取付面からの距離(m) F:外力(N)

モーメント荷重M[N·m] = F × (L + 係数a)

モーター品名	係数a
ARM46	0.009
ARM66	0.0114

3-5 ドライバの設置

ドライバは、空気の対流による放熱や、筐体への熱伝導による放熱を前提として 設計されています。熱伝導効果が高い、平滑な金属板(材質:アルミニウム、200× 200×2 mm相当)に取り付けてください。ドライバを2台以上設置するときは、水 平方向へ20 mm、垂直方向へ25 mm以上離してください。 ドライバを筐体内に設置するときは、2本のねじ(M4:付属していません)を使用し

て、取付穴を固定してください。

(memo) ・ ドライバを汚損度3の環境で使用する場合は、IP54以上の筐体内に 設置してください。

- ドライバの周囲には、発熱量やノイズが大きい機器を設置しないで ください。
- ドライバは、コントローラや他の熱に弱い機器の下側に設置しない でください。
- ドライバの周囲温度が55 ℃を超えるときは、換気条件を見なおしてください。
- •ドライバは、必ず垂直(縦位置)に設置してください。

外形図(単位:mm)

質量:0.75 kg

2 AC電源入力タイプ

回生抵抗の取り付け 3-6

当社の回生抵抗RGB100は、放熱板(材質:アルミニウム、350×350×3 mm)と同程度の放熱能力を持つ場所に設置してく ださい。2本のねじ(M4:付属していません)で、熱伝導効果が高い平滑な金属板に固定してください。

3-7 バッテリの取り付け

当社のバッテリセットBAT01Bは、バッテリとバッテリホルダがセットになっています。バッテリホルダを使用して、バッ テリを確実に固定してください。

4 接続

ドライバとモーター、入出力信号、電源の接続方法、および接地方法について説明します。 また、ノイズ対策、EMC指令に適合させるための設置・配線方法についても説明しています。

警告

• 感電防止のため、配線が終わるまでは電源を入れないでください。

 モーターコネクタ(CN2)、主電源入力端子(CN3)には高電圧がかかります。通電中は触れない でください。火災・感電の原因になります。

4-1 接続例

図は、電磁ブレーキ付モーター、単相200-240 V電源の場合です。

※1 モーターとドライバ間の配線距離は30 m以下にしてください。

※2 当社でご用意しています。別途お買い求めください。

- コネクタは確実に接続してください。コネクタの接続が不完全だと、動作不良を起こしたり、モーター やドライバが破損するおそれがあります。
 - 電源を再投入したり、コネクタを抜き差しするときは、電源を切り、CHARGE LEDが消灯してから行なってください。残留電圧によって感電するおそれがあります。
 - ドライバの電源ケーブルは、他の電源ラインやモーターケーブルと同一の配管内に配線しないでください。ノイズによって誤動作するおそれがあります。
 - 電磁ブレーキ用ケーブルのリード線には極性がありますので、正しく接続してください。極性を逆にして接続すると、電磁ブレーキが正常に動作しません。

(memo)

• コネクタを抜くときは、指でコネクタのラッチ部分を押しながら、引き抜いてください。

 モーターを可動部分に取り付けるときは、可動ケーブルを使用してください。品名は50ページでご 確認ください。

2 AC電源入力タイプ

● 電線サイズと締付トルク

コネクタ	端子記号	推奨電線サイズ	ねじサイズ	締付トルク(N·m)
	24V+、24V-	より線AWG28~16 (0.08~1.25 mm²)		
CN1	TH1、TH2	より線AWG22(0.3 mm²)	M2	0.22~0.25
	MB1、MB2	より線AWG20(0.5 mm²)		
CNI2	RG1、RG2	より線AWG18(0.75 mm²)		
CINS	L, N	より線AWG16~14(1.25~2.0 mm²)	_	_
CN5	-	より線AWG26~20(0.14~0.5 mm²)	-	-
CN8	-	より線AWG26~20(0.14~0.5 mm²)	_	-
CN9	_	より線AWG26~20(0.14~0.5 mm²)	_	-

DC24 V電源の電流容量

モーター品名	電流容量
ARM46	0.33 A以上
ARM66	
ARM69	0.5 A以上
ARM98	

■ モーターの接地

モーターの保護接地端子を確実に接地してください。

- 接地線:AWG18(0.75 mm²)以上
- ねじサイズ:M4
- 締付トルク:1.2 N·m

接地するときは丸形端子を使用し、座金を入れたボルトで固定してください。 接地線や圧着端子は付属していません。

■ ドライバの接地

ドライバの保護接地端子を必ず接地してください。

- 接地線:AWG16~14(1.25~2.0 mm²)
- ねじサイズ:M4
- 締付トルク:1.2 N·m

どちらの保護接地端子を接地しても構いません。接地しない端子はサービス端子です。 モーターと接続してモーターを接地させるなど、必要に応じてお使いください。 接地線は、溶接機や動力機器などと共用しないでください。 接地するときは、丸形端子を使用して、ドライバの近くに固定してください。

4-3 主電源の接続

CN3用コネクタ (5ピン)を使用して、電源ケーブル (AWG16~14:1.25~2.0 mm²)をドライバの主電源入力端子 (CN3) に接続します。

- ・ドライバの電源ケーブルは、他の電源ラインやモーターケーブルと同一の配管内に配線しないでください。ノイズによって誤動作するおそれがあります。
 - 電源を再投入したりコネクタを抜き差しするときは、電源を切り、CHARGE LEDが消灯してから行なってください。残留電圧によって感電するおそれがあります。

リード線

結線方法

- 適合電線:AWG16~14(1.25~2.0 mm²)
- 被覆剥き長さ:8~9 mm
- 1. コネクタ結線レバーを挿入します。
- 2. コネクタ結線レバーを押し下げながら、リード線を挿入します。

マイナスドライバでも結線できます

刃先幅3.0~3.5 mmのマイナスドライバで挿入口を押したまま、リード線を挿入してください。

■ 電源電流容量

組み合わせる製品によって、主電源の電流容量が異なります。

電動アクチュエータをお使いの場合は、搭載モーターの品名を参考にして確認してください。 DGIIシリーズの場合、主電源の電流容量はDGIIシリーズ 取扱説明書 アクチュエータ編に記載していますので、アクチュ エータ編でご確認ください。

モーター品名	単相100-120 V 15~+6% 50/60 Hz	単相200-240 V 15~+6% 50/60 Hz
ARM46	2.4 A以上	1.5 A以上
ARM66	3.6 A以上	2.3 A以上
ARM69	4.9 A以上	3.0 A以上
ARM98	4.6 A以上	2.9 A以上
ARM911	5.9 A以上	3.7 A以上

CN1用コネクタ(6ピン)を使用して、DC24 V電源、回生抵抗、および電磁ブレーキを接続します。 表で確認しながら、リード線(AWG28~16:0.08~1.25 mm²)をコネクタに接続してください。

表示	説明	
24V+		
24V-	DCZ4 V 电源入力	
TH1	回生抵抗サーマル入力	
TH2	(使用しないときはジャンパー線で短絡させてください。)	
MB1	電磁ブレーキー (電磁ブレーキの黒色リード線を接続)	
MB2	電磁ブレーキ+ (電磁ブレーキの白色リード線を接続)	

■ 接続方法

- 1. リード線の被覆を7 mm剥きます。
- リード線をCN1用コネクタに挿入し、マイナスドライバでねじを締め付けます。 コネクタねじ寸法:M2 締付トルク:0.22~0.25 N·m
- CN1用コネクタをCN1に差し込み、ねじを締め付けます。 コネクタねじ寸法:M2.5 締付トルク:0.4 N·m

DC24 V電源の接続

次の容量のDC24 V電源を使用してください。

電動アクチュエータをお使いの場合は、搭載モーターの品名を参考にして確認してください。

DGIシリーズの場合、DC24 V電源の電流容量はDGIシリーズ 取扱説明書 アクチュエータ編に記載していますので、 アクチュエータ編でご確認ください。

DC24 V電源は制御回路用電源です。必ず接続してください。

工	入力電源電圧	電源電流容量	
モーター回名		電磁ブレーキ無し	電磁ブレーキ付
ARM46			0.33 A以上
ARM66、ARM69、ARM98	DC24 V±5 %※	0.25 A以上	0.5 A以上
ARM911			-

※ モーターとドライバ間を20~30 mに延長するときは、DC24 V±4 %の電源を使用してください。

回生抵抗の接続

巻下げ運転などの上下駆動や、大慣性の急激な起動・停止が頻繁に繰り返される運転には、当社の回生抵抗RGB100を使用してください。

- 回生抵抗の細いリード線2本(AWG22:0.3 mm²)はサーモスタット出力です。CN1用コネクタを使用して、TH1と TH2端子に接続してください。
- 回生抵抗の太いリード線2本(AWG18:0.75 mm²)は回生電流が流れます。CN3用コネクタを使用して、RG1とRG2端 子に接続してください。
- (memo) •回生抵抗を接続するときは、必ずジャンパー線をCN1用コネクタから外してください。
 - ・回生抵抗の許容消費電力を超えたときは、サーモスタットがはたらいて、回生抵抗器過熱のアラームが 発生します。回生抵抗器過熱のアラームが発生したときは、電源を切り、異常の内容を確認してください。

回生抵抗の仕様

品名	RGB100
許容消費電力	連続回生電力:50 W※ 瞬時回生電力:600 W
抵抗値	150 Ω
サーモスタット動作温度	動作:150±7 ℃で開 復帰:145±12 ℃で閉(ノーマルクローズ)
サーモスタット電気定格	AC120 V 4 A、DC30 V 4 A(最小電流5 mA)

※ アルミ板(350×350×3 mm)と同程度の放熱能力を持つ場所に設置してください。

■ 電磁ブレーキの接続

電磁ブレーキを接続すると、C-ON入力やFREE入力に連動して電磁ブレーキが自動で制御されます。 接続方法は38ページをご覧ください。

4-5 入出力信号の接続

■ 結線方法

- 適用リード線:AWG26~20(0.14~0.5 mm²)
- 被覆剥き長さ:8 mm
- 1. リード線の被覆を剥きます。
- 2. マイナスドライバで橙色のボタンを押したまま、リード線を挿入します。
- 3. リード線を挿入したら、ボタンを離してリード線を固定します。

■ ピンアサイン

センサ信号(CN5)

ピンNo.	信号名	内容	
1	+LS	+側リミットセンサ入力	[d_ Ⅲ(¬)— 1
2	–LS	-側リミットセンサ入力	
3	HOMES	機械原点センサ入力	
4	SLIT	スリットセンサ入力	<u>q uc+</u> -5
5	IN-COM2	センサ用コモン	

• 入力信号(CN8)

ピンNo.	信号名	内容※	
1	INO	制御入力0(HOME)	
2	IN1	制御入力1 (START)	
3	IN2	制御入力2(M0)	
4	IN3	制御入力3(M1)	
5	IN4	制御入力4(M2)	
6	IN5	制御入力5(FREE)	
7	IN6	制御入力6(STOP)	g WC)
8	IN7	制御入力7(ALM-RST)	
9	IN-COM1	入力信号用コモン	

※ ()内は初期値です。

● 出力信号(CN9)

ピンNo.	信号名	内容※	
1	OUT0	制御出力0(HOME-P)	
2	OUT1	制御出力1 (END)	
3	OUT2	制御出力2(AREA1)	
4	OUT3	制御出力3(READY)	
5	OUT4	制御出力4(WNG)	
6	OUT5	制御出力5(ALM)	
7	OUT-COM	出力信号用コモン	

※ ()内は初期値です。

- 1

. 9

■ 電流シンク出力回路との接続例(NPN仕様)

(memo) • 入力信号はDC24 Vでお使いください。

- 出力信号はDC12~24 V 10 mA以下でお使いください。電流値が10 mAを超えるときは、外部抵抗R0 を接続して、10 mA以下にしてください。
- 出力信号の飽和電圧は最大3 Vです。

■ 電流ソース出力回路との接続例(PNP仕様)

(memo) • 入力信号はDC24 Vでお使いください。

- 出力信号はDC12~24 V 10 mA以下でお使いください。 電流値が10 mAを超えるときは、外部抵抗R0 を接続して、10 mA以下にしてください。
- 出力信号の飽和電圧は最大3 Vです。

4-6 データ設定器の接続

サポートソフト用通信ケーブル、または**OPX-2A**のケーブルを ドライバのデータ設定器コネクタ(CN4)に接続します。

⚠注意

ドライバのデータ設定器コネクタ(CN4)とRS-485通信コネクタ(CN6/CN7)は絶縁されていません。電源のプラス側を接地するときは、マイナス側を接地した機器(パソコンなど)を接続しないでください。これらの機器とドライバが短絡して、破損するおそれがあります。

4-7 RS-485通信ケーブルの接続

RS-485通信で製品を制御するときに接続します。RS-485通信ケーブルをCN6またはCN7に接続してください。 空いた方のコネクタで、別のドライバと接続できます。当社でもドライバ間接続用のケーブルをご用意しています。 品名は52ページでご確認ください。また、市販のLANケーブル (ストレートケーブル) でもドライバ同士を接続できます。

1

- 8

CN6/CN7のピンアサイン

ピンNo.	信号名	内容	
1	N.C.	未使用	
2	GND	GND	
3	TR+	RS-485通信用信号(+)	L I
4	N.C.	土体田	
5	N.C.		Fr B
6	TR-	RS-485通信用信号(-)	
7	N.C.	土体田	
8	N.C.	不使用	

AC電源入力タイプ

4-8 バッテリの接続と充電

アブソリュートバックアップシステムでお使いの場合は、当社のバッテリ**BAT01B**を接続してください。

バッテリをバッテリコネクタ (CN10) に接続し、DC24 V電源を投入すると、バッテリの 充電が始まります。約32時間で完了します。(周囲温度が20 ℃の場合)

アブソリュートバックアップシステムの設定方法は168ページをご覧ください。

バッテリの仕様

電池の種類	密閉形ニッケル・水素蓄電池
公称電圧	2.4 V
定格容量	1,900 mAh
質量	0.10 kg
期待寿命	約4年※1
充電時間	32時間※1
データ保持時間	約360時間(約15日)※1※2
使用周囲温度	0~+40 ℃(凍結しないこと)
使用周囲湿度	45~85 %(結露しないこと)

- ※1 周囲温度20 ℃のとき
- ※2 満充電状態で電源をOFFにした場合

4-9 ノイズ対策

ノイズには、外部からドライバに侵入してドライバを誤動作させるノイズ、およびドライバから放射されて周辺の機器を誤 動作させるノイズの2種類があります。

外部から侵入するノイズに対しては、ドライバの誤動作を防ぐ対策を実施してください。特に信号ラインはノイズの影響を 受けやすいため、十分な対策が必要です。

ドライバから放射されるノイズに対しては、ノイズを抑制する対策を実施してください。

■ ノイズ対策の方法

ノイズ対策の方法には、主に次の3種類があります。

● ノイズの抑制

- リレーや電磁スイッチを使用するときは、ノイズフィルタやCR回路でサージを吸収してください。
- モーターとドライバ間を延長するときは、当社の接続ケーブルまたは中継ケーブルを使用してください。品名は50ページでご確認ください。
- アルミなどの金属板でドライバを覆ってください。ドライバから放射されるノイズを遮蔽する効果があります。

● ノイズの伝播の防止

- ノイズフィルタをドライバの電源ケーブルに接続してください。
- モーターケーブルや電源ケーブルなどの動力系ケーブルと信号系ケーブルは200 mm以上離し、束ねたり、平行に配線しないでください。動力系ケーブルと信号系ケーブルが交差するときは、直角に交差させてください。
- 電源ケーブルや信号系ケーブルにはツイストペアシールドケーブルを使用してください。
- ケーブルは最短で配線し、長すぎて余った部分を巻いたり、束ねないでください。
- 多点接地にすると接地部のインピーダンスが下がるため、ノイズを遮断する効果が上がります。ただし、接地した箇所に 電位差が生じないよう、安定した電位に接地してください。当社でもアース線を取り付けた入出力信号用ケーブルをご用 意しています。品名は52ページでご確認ください。
- ケーブルを接地するときは、シールドの全周と接触できる金属 シールドケーブル 製のケーブルクランプを使用し、できるだけ製品の近くに接地 してください。

ブルクランプ

● ノイズの伝播による影響の抑制

ノイズが伝播しているケーブルをフェライトコアに巻きつけてください。伝播したノイズがドライバに侵入したり、ドライ バから放出されることを防止します。フェライトコアの効果がみられる周波数帯は、一般的に1 MHz以上です。お使いにな るフェライトコアの周波数特性を確認してください。フェライトコアによるノイズ減衰の効果を高める場合は、ケーブル を多めに巻きつけてください。

■ ノイズ対策部品

• ノイズフィルタ

 表のノイズフィルタ(または相当品)を電源ラインに接続してください。電源ラインを通じて伝播するノイズを防ぎます。 ノイズフィルタは、できるだけドライバの近くに取り付けてください。

メーカー	品番
双信電機株式会社	HF2010A-UPF
Schaffner EMC	FN2070-10-06

- ノイズフィルタの入出力ケーブルには、AWG18 (0.75 mm²)以上の線を使用し、ケーブルが浮かないようケーブルク ランプなどで確実に固定してください。
- ノイズフィルタの入出力ケーブルは十分に離し、並行に配線しないでください。ケーブル間の距離が近かったり、並行に 配線すると、筐体内のノイズが浮遊容量を介して電源ケーブルに結合してしまい、ノイズ抑制効果が低減します。
- ノイズフィルタを接地する線は、できるだけ太く、最短距離で接地してください。
- 筐体内でノイズフィルタを接続する場合は、ノイズフィルタの入力ケーブルを長く配線しないでください。ノイズ抑制 効果が低減します。

● サージアレスタ

サージアレスタは、交流電源ラインとアース間、および交流電源ライン間で発生する雷サージのサージ電圧を低減させる効果があります。次のサージアレスタを接続してください。 R·A·V-781BWZ-4(岡谷電機産業株式会社)

装置の耐圧試験を行なうときは、サージアレスタを取り外してください。サージアレスタが破損する原因 になります。

■ 当社のノイズ対策部品

品名は52ページでご確認ください。

● 入出力信号用ケーブル

ドライバと上位システムを接続する、耐ノイズ性に優れたツイストペアシールドケーブルです。接地に便利なアース線が ケーブル両端から出ています。EMC試験は当社の入出力信号用ケーブルを使用して行なっています。

• サージキラー

リレー接点部で発生するサージを抑制する効果があります。リレーや電磁スイッチをお使いになる場合に接続してください。サージキラーには、サージ電圧吸収用CR回路と、CR回路モジュールの2種類があります。

4-10 EMC指令への適合

モーター、ドライバから周辺の制御システム機器へのEMI、およびモーター、ドライバのEMSに対して有効な対策を施さないと、機械装置の機能に重大な障害を引き起こすおそれがあります。モーター、ドライバは、次の設置・配線方法を施すことで、EMC指令への適合が可能になります。

オリエンタルモーターは、49ページ「設置・配線例」に従って、モーター、ドライバのEMC試験を実施しています。 EMCの適合性は、次に説明する内容にもとづいて設置・配線し、お客様の責任で機械のEMCの適合性を確認していただく必要があります。

この製品は、住宅に電力を供給する低電圧配電線への接続、および住宅環境での使用を意図してい ません。低電圧配電線に接続、または住宅環境で使用すると、周囲の機器の無線受信に影響する場 合があります。

● ノイズフィルタの接続

ノイズの影響が大きいときは、ノイズフィルタを接続してください。詳細は前述の「ノイズフィルタ」をご覧ください。

● サージアレスタの接続

48ページ「サージアレスタ」をご覧ください。

● DC24 V電源の接続

EMC指令に適合した電源を使用してください。 配線にはツイストペアシールドケーブルを使用してください。配線方法は47ページ「ノイズの伝播の防止」をご覧ください。

● モーターケーブルの接続

モーターとドライバ間を延長するときは、当社の接続ケーブルまたは中継ケーブルを使用してください。品名は50ページでご確認ください。

● 信号ケーブルの接続

47ページ「ノイズの伝播の防止」をご覧ください。

● 接地方法

- 接地した箇所に電位差が生じないよう、モーター、ドライバ、およびノイズフィルタを接地する線は、できるだけ太く、 最短距離で接地してください。
- 接地ポイントには、広く、太く、均一な導電面を使用してください。
- モーターとドライバは保護接地端子を接地してください。接地方法は39ページをご覧ください。

設置・配線例

审 要

ドライバは、静電気に敏感な部品を使用しています。静電気によってドライバが誤動作したり破損するおそれ があるため、取り扱いの際は静電防止対策を行なってください。

ケーブル 5

> (memo) モーターを可動部分に取り付けるときは、可動ケーブルを使用してください。

5-1 接続ケーブルセット

モーターとドライバを接続するときに使用します。

電磁ブレーキ付モーター用は、モーター用と電磁ブレーキ用の2本組です。

接続ケ-	-ブルセッ	ト品名
2		

CC150VAF

CC200VAF

CC300VAF

20

30

※ 電磁ブレーキ付モーターのとき。

● 接続ワーフルビット回告			
長さ(m)	標準モーター用	電磁ブレーキ付モーター用	長る
0.5	CC005VAF	CC005VAFB	
1	CC010VAF	CC010VAFB	
1.5	CC015VAF	CC015VAFB	
2	CC020VAF	CC020VAFB	
2.5	CC025VAF	CC025VAFB	
3	CC030VAF	CC030VAFB	
4	CC040VAF	CC040VAFB	
5	CC050VAF	CC050VAFB	
7	CC070VAF	CC070VAFB	
10	CC100VAF	CC100VAFB	

CC150VAFB

CC200VAFB

CC300VAFB

● 可動接続ケーブルセット品名

長さ(m)	標準モーター用	電磁ブレーキ付モーター用
0.5	CC005VAR	CC005VARB
1	CC010VAR	CC010VARB
1.5	CC015VAR	CC015VARB
2	CC020VAR	CC020VARB
2.5	CC025VAR	CC025VARB
3	CC030VAR	CC030VARB
4	CC040VAR	CC040VARB
5	CC050VAR	CC050VARB
7	CC070VAR	CC070VARB
10	CC100VAR	CC100VARB
15	CC150VAR	CC150VARB
20	CC200VAR	CC200VARB
30	CC300VAR	CC300VARB

5-2 中継ケーブルセット

モーターとドライバ間の距離を離す場合、使用している接続ケーブルの長さが足りないときに使用してください。 中継ケーブルを接続ケーブルに継ぎ足して延長します。 電磁ブレーキ付モーター用は、モーター用と電磁ブレーキ用の2本組です。

※2 電磁ブレーキ付モーターのとき。

(memo) 中継ケーブルを接続ケーブルに継ぎ足して延長するときは、ケーブル全長を30 m以下にしてください。

● 中継ケーブルセット品名

長さ(m)	標準モーター用	電磁ブレーキ付モーター用	長さ(n
0.5	CC005VAFT	CC005VAFBT	0.5
1	CC010VAFT	CC010VAFBT	1
1.5	CC015VAFT	CC015VAFBT	1.5
2	CC020VAFT	CC020VAFBT	2
2.5	CC025VAFT	CC025VAFBT	2.5
3	CC030VAFT	CC030VAFBT	3
4	CC040VAFT	CC040VAFBT	4
5	CC050VAFT	CC050VAFBT	5
7	CC070VAFT	CC070VAFBT	7
10	CC100VAFT	CC100VAFBT	10
15	CC150VAFT	CC150VAFBT	15
20	CC200VAFT	CC200VAFBT	20

● 可動中継ケーブルセット品名

長さ(m)	標準モーター用	電磁ブレーキ付モーター用
0.5	CC005VART	CC005VARBT
1	CC010VART	CC010VARBT
1.5	CC015VART	CC015VARBT
2	CC020VART	CC020VARBT
2.5	CC025VART	CC025VARBT
3	CC030VART	CC030VARBT
4	CC040VART	CC040VARBT
5	CC050VART	CC050VARBT
7	CC070VART	CC070VARBT
10	CC100VART	CC100VARBT
15	CC150VART	CC150VARBT
20	CC200VART	CC200VARBT

5-3 サポートソフト用通信ケーブル

サポートソフト**MEXE02**をインストールしたパソコンとドライバを接続するときは、必ずお買い求めください。 PCインターフェースケーブルとUSBケーブルの2本1組です。パソコンとの接続はUSBになります。 **MEXE02**はWEBサイトからダウンロードできます。

品名:**CC05IF-USB**(5 m)

5-4 RS-485通信ケーブル

RS-485通信コネクタ(CN6、CN7)に接続して、ドライバ間を接続できます。

品名:CC002-RS4(0.25 m)

5-5 入出力信号用ケーブル

耐ノイズ性に優れた、ドライバの制御入出力用のシールドケーブルです。接地に便利なアース線がケーブル両端から出ています。接続する入出力信号の数に合ったケーブルをお選びください。

汎用タイプ

ケーブル長さ	リード線の心数				
(m)	6本	10本	12本	16本	
0.5	CC06D005B-1	CC10D005B-1	CC12D005B-1	CC16D005B-1	
1	CC06D010B-1	CC10D010B-1	CC12D010B-1	CC16D010B-1	
1.5	CC06D015B-1	CC10D015B-1	CC12D015B-1	CC16D015B-1	
2	CC06D020B-1	CC10D020B-1	CC12D020B-1	CC16D020B-1	

2 AC電源入力タイプ

6 周辺機器

📕 バッテリセット

アブソリュートバックアップシステムで使用するバッテリとバッテリホルダのセットです。 品名:BAT01B

3 DC電源入力タイプ

ARシリーズDC電源入力タイプのドライバに特有な内容について説明しています。

◆もくじ

1 シ	'ステム構成	56
2 準	備	57
2-1	製品の確認	57
2-2	品名の見方	58
2-3	銘板の情報	59
2-4	モーターとドライバの組み合わせ	60
2-5	入出力定格	61
2-6	各部の名称と機能	61
3 設	置	64
3-1	設置場所	64
3-2	モーターの設置	64
3-3	負荷の取り付け	65
3-4	許容ラジアル荷重と許容アキシアル荷重	66
3-5	ドライバの設置	68
3-6	バッテリの取り付け	69

4 报	き続	70
4-1	接続例	70
4-2	モーター、ドライバの接地	71
4-3	電源と電磁ブレーキの接続	72
4-4	入出力信号の接続	73
4-5	データ設定器の接続	76
4-6	RS-485通信ケーブルの接続	76
4-7	バッテリの接続と充電	77
4-8	ノイズ対策	77
4-9	EMC指令への適合	78
5 ク	「一ブル	80
5-1	接続ケーブルセット	80
5-1 5-2	接続ケーブルセット 中継ケーブルセット	80 81
5-1 5-2 5-3	接続ケーブルセット 中継ケーブルセット サポートソフト用通信ケーブル	80 81 82
5-1 5-2 5-3 5-4	接続ケーブルセット 中継ケーブルセット サポートソフト用通信ケーブル RS-485通信ケーブル	80 81 82 82
5-1 5-2 5-3 5-4 5-5	接続ケーブルセット 中継ケーブルセット サポートソフト用通信ケーブル RS-485通信ケーブル 入出力信号用ケーブル	80 81 82 82 82
5-1 5-2 5-3 5-4 5-5 6 居	接続ケーブルセット 中継ケーブルセット サポートソフト用通信ケーブル RS-485通信ケーブル 入出力信号用ケーブル	80 81 82 82 82 82
5-1 5-2 5-3 5-4 5-5 6 厚 6-1	接続ケーブルセット 中継ケーブルセット サポートソフト用通信ケーブル RS-485通信ケーブル 入出力信号用ケーブル 辺機器 設定機器	80 81 82 82 82 83 83
5-1 5-2 5-3 5-4 5-5 6 6-1 6-2	接続ケーブルセット 中継ケーブルセット サポートソフト用通信ケーブル RS-485通信ケーブル 入出力信号用ケーブル 辺機器 設定機器 配線サポート機器	

1 システム構成

- ※1 当社でご用意しています。モーターケーブルの長さが足りないときに、別途お買い求めください。
- ※2 パソコンはお客様側でご用意ください。ドライバとの接続には、当社のサポートソフト用通信ケーブルCC05IF-USB を使用してください。
- ※3 当社でご用意している周辺機器です。

2 準備

確認していただきたい内容や、各部の名称と機能について説明します。

2-1 製品の確認

次のものがすべて揃っていることを確認してください。不足したり破損している場合は、お買い求めの支店・営業所までご 連絡ください。

モーター

- モーター.....1台
- 平行キー......1個※1
- バリスタ.....1個※2
- APPENDIX UL Standards for AR Series......1部※3
- ※1 ギヤードタイプに付属。ただし、次のギヤードタイプを除く。 THギヤード:ARM24-T、ARM46-T、およびARM66-T PSギヤード:ARM24-PS PNギヤード:ARM24-N ハーモニックギヤード:ARM24-H
- ※2 電磁ブレーキ付モーターに付属。位置決め機能内蔵タイプのドライバでは使用しません。
- ※3 UL規格認証品に添付。

• ドライバ

- ドライバ......1台
- CN1用コネクタ(5ピン)1個
- CN5用コネクタ(5ピン)1個
- CN8用コネクタ(9ピン)1個
- CN9用コネクタ(7ピン)1個
- 安全にお使いいただくために......1部

付属のコネクタ品番

種類	品番(メーカー名)
CN1用コネクタ	MC1,5/5-STF-3,5(フエニックス・コンタクト株式会社)
CN5用コネクタ	FK-MC0,5/5-ST-2,5(フエニックス・コンタクト株式会社)
CN8用コネクタ	FK-MC0,5/9-ST-2,5(フエニックス・コンタクト株式会社)
CN9用コネクタ	FK-MC0,5/7-ST-2,5(フエニックス・コンタクト株式会社)

2-2 品名の見方

モーターとドライバの品名は、それぞれ製品の銘板に記載された品名で確認してください。銘板の見方については59ページをご覧ください。

- モーター
- 標準タイプ

 $\frac{\textbf{ARM}}{1} \quad \frac{\textbf{2}}{2} \quad \frac{\textbf{4}}{3} \quad \frac{\textbf{S}}{4} \quad \frac{\textbf{A}}{5} \quad \frac{\textbf{0}}{6} \quad \frac{\textbf{K}}{7}$

● ギヤードタイプ

1	シリーズ名	ARM:ARシリーズ モーター
2	モーター取付角寸法	1:20 mm 2:28 mm(ハーモニックギヤードタイプは30 mm) 4:42 mm 6:60 mm 9:85 mm(ギヤードタイプは90 mm)
3	モーターケース長さ	
4	モーター識別	S:IP20仕様
5	形状	A:片軸 B:両軸 M:電磁ブレーキ付
6	付加機能	なし:一面フライス 0 :ストレート
7	モーター仕様	K:DC電源入力仕様
8	ギヤの種類	なし:標準 T:THギヤード PS:PSギヤード N:PNギヤード H:ハーモニックギヤード
9	減速比	減速比を表わす数字が入ります。減速比の種類は59ページをご覧ください。
10	ケーブル引出方向※ (THギヤードタイプのみ)	なし:下方向 U:上方向 L:左方向 R:右方向

※ ケーブル引出方向は、出力軸を上側にして、出力軸面から見たときの方向を表わしています。

減速比の種類

ギヤの種類	減速比
THギヤード	ARM24:7.2,10,20,30
	ARM46, ARM66, ARM98:3.6,7.2,10,20,30
DC++++	ARM24:5,7.2%,10
rs +v=r	ARM46、ARM66、ARM98:5、7.2%、10、25、36、50
	ARM24 , ARM46 :5,7.2,10
PN+P=P	ARM66, ARM98:5,7.2,10,25,36,50
ハーモニックギヤード	50,100

※ PSギヤードタイプの減速比7.2は、品名が「7」になります。

■ ドライバ

$\frac{\mathbf{ARD}}{1} \quad \mathbf{-} \quad \frac{\mathbf{K}}{2} \quad \frac{\mathbf{D}}{3}$

1	シリーズ名	ARD:ARシリーズドライバ
2	電源入力	K:DC24/48 V
3	種類	D:位置決め機能内蔵タイプ

2-3 銘板の情報

2-4 モーターとドライバの組み合わせ

■ 標準タイプ

片	軸	両	両軸		レーキ付	
モーター品名	ドライバ品名	モーター品名	ドライバ品名	モーター品名	ドライバ品名	
ARM14SAK		ARM14SBK		ARM24SMK		
ARM14SA0K		ARM14SB0K		ARM24SM0K		
ARM15SAK		ARM15SBK		ARM26SMK		
ARM15SA0K		ARM15SB0K		ARM26SM0K		
ARM24SAK	ARD-KD	ARM24SBK	ARD-KD	ARM46SMK		
ARM24SA0K		ARM24SBOK		ARM24SBOK	ARM46SM0K	
ARM26SAK		ARM26SBK		ARM66SMK	AKD-KD	
ARM26SA0K		ARM26SB0K		ARM66SM0K		
ARM46SAK		ARM46SBK		ARM46SBK ARM69SN	ARM69SMK	
ARM46SA0K		ARM46SB0K		ARM69SM0K		
ARM66SAK		ARM66SBK		ARM98SMK		
ARM66SA0K		ARM66SB0K		ARM98SM0K		
ARM69SAK		ARM69SBK				
ARM69SA0K		ARM69SB0K				
ARM98SAK		ARM98SBK				
ARM98SA0K		ARM98SB0K				

■ ギヤードタイプ

- 品名の●には、減速比を表わす数字が入ります。
- 品名の◆には、ケーブル引出方向を表わすU(上方向)、L(左方向)、R(右方向)のどれかが入ります。
 ケーブル引出方向が下方向の場合、◆はありません。

せ ち う 本 ま ま	片軸	1	電磁ブレーキ付		
キャの性短	モーター品名	ドライバ品名	モーター品名	ドライバ品名	
	ARM24SAK-T●		ARM24SMK-T•		
	ARM46SAK-T●◆		ARM46SMK-T●◆		
	ARM66SAK-T●◆	ARD-RD	ARM66SMK-T●◆	AKD-KD	
	ARM98SAK-T●◆		ARM98SMK-T●◆		
	ARM24SAK-PS●		-	-	
PSギヤード	ARM46SAK-PS•		ARM46SMK-PS•		
	ARM66SAK-PS●	AKD-KD	ARM66SMK-PS●	ARD-KD	
	ARM98SAK-PS•		ARM98SMK-PS•	L	
	ARM24SAK-N●		-	-	
DNIギャード	ARM46SAK-N●		ARM46SMK-N●		
	ARM66SAK-N●	AKD-KD	ARM66SMK-N●	ARD-KD	
	ARM98SAK-N●		ARM98SMK-N●		
ハーモニックギヤード	ARM24SAK-H•		ARM24SMK-H•		
	ARM46SAK-H●		ARM46SMK-H●		
	ARM66SAK-H•	AND-ND	ARM66SMK-H•	AND-ND	
	ARM98SAK-H●		ARM98SMK-H●		

2-5 入出力定格

工	ドニノバロタ	入	1相当たりの	
モーター品名	トノイハ四名	電圧	電流	出力電流
ARM14			0.4 A	0.43 A
ARM15		DC24 V	0.5 A	0.52 A
ARM24		DCZ+V	1.3 A	0.88 0
ARM26				0.00 A
ARM46	ARD-KD		1.8 A	1.48 A
ARM66		DC24 V	3.8 A	
ARM69		DC48 V	3.7 A	2.55 A
ARM98			3.1 A	

2-6 各部の名称と機能

■ ドライバ

名称	説明	参照先
POWER LED(緑)	電源が投入されているときに点灯します。	-
ALARM LED (赤)	アラーム(保護機能)が発生すると点滅します。点滅回数を数えると、発生 したアラームを確認できます。	p.147
C-DAT LED (緑)	RS-485通信によるマスタとの通信が正常に行なわれているときに点滅ま たは点灯します。	-
C-ERR LED(赤)	RS-485通信によるマスタとの通信に異常が発生すると点灯します。	-
号機設定スイッチ(SW1)	RS-485通信で制御するときに使用してください。機能設定スイッチ (SW3)のNo.1と併用して、RS-485通信の号機番号(スレーブアドレス) を設定します。 出荷時設定:0	
通信速度設定スイッチ (SW2)	RS-485通信で制御するときに使用してください。RS-485通信の通信速 度を設定します。 出荷時設定:7	n 217
機能設定スイッチ(SW3)	RS-485通信で制御するときに使用してください。 No.1: 号機設定スイッチ(SW1)と併用して、号機番号(スレーブアドレ ス)を設定します。 出荷時設定:OFF No.2: RS-485通信のプロトコルを設定します。 出荷時設定:OFF No.3: 使用しません。 No.4: RS-485通信の終端抵抗(120 Ω)を設定します。 出荷時設定:OFF	p.217 p.218 p.256

名称	説明	参照先
電磁ブレーキ接続端子 (CN1-MB1/MB2)	電磁ブレーキ用ケーブルを接続します。 MB1:電磁ブレーキー (黒) MB2:電磁ブレーキ+ (白)	p.72
電源入力端子(CN1)	ドライバの電源を接続します。 + :+DC24 V/48 V電源入力 - :電源GND	p.72
フレームグランド端子(CN1)	AWG24~16(0.2~1.25 mm ²)の接地線で接地してください。	p.71
モーターコネクタ(CN2)	モーターを接続します。	p.70
データ設定器コネクタ(CN3)	MEXE02をインストールしたパソコン、またはOPX-2Aを接続します。	p.76
バッテリコネクタ(CN4)	当社のバッテリ BAT01B を接続します。	p.77
センサ信号コネクタ(CN5)	センサ信号を接続します。	p.73
RS-485通信コネクタ (CN6/CN7)	RS-485通信ケーブルを接続します。	p.76
入力信号コネクタ(CN8)	入力信号を接続します。	n 72
出力信号コネクタ(CN9)	出力信号を接続します。	p.75

3 設置

モーターとドライバの設置場所、設置方法、負荷の取り付けについて説明します。

3-1 設置場所

モーター、ドライバは、機器組み込み用に設計、製造されています。 風通しがよく、点検が容易な次のような場所に設置してください。

- 屋内に設置された筐体内(換気口を設けてください)
- 使用周囲温度 モーター:-10~+50 ℃(凍結しないこと)
 - ハーモニックギヤードタイプ:0~+40 ℃(凍結しないこと) ドライバ:0~+50 ℃(凍結しないこと)
- 使用周囲湿度 85 %以下(結露しないこと)
- 爆発性雰囲気、有害なガス(硫化ガスなど)、および液体のないところ
- 直射日光が当たらないところ
- 塵埃や鉄粉などの少ないところ
- •水(雨や水滴)、油(油滴)、およびその他の液体がかからないところ
- 塩分の少ないところ
- 連続的な振動や過度の衝撃が加わらないところ
- 電磁ノイズ(溶接機、動力機器など)が少ないところ
- 放射性物質や磁場がなく、真空でないところ
- 海抜1,000 m以下

3-2 モーターの設置

モーターの設置方向に制限はありません。

放熱性や振動防止を考慮し、できるだけ強固な金属面へ確実に取り付けてください。 締付トルクの値は推奨値です。取り付ける金属板の設計条件に合わせて、適切なトルクで締め付けてください。

● 設置方法A

● 設置方法B

タイプ	取付角寸法 (mm) ねじの呼び		締付トルク (N·m)	有効ねじ深さ (mm)	設置方法	
	20	M2	0.25	2.5		
標準	28	M2.5	0.5	2.5	A	
	42	M3	1	4.5		
	60	60 M4 2 -		_	B	
	85	M6	3	—	Б	
	28	M2.5	0.5	4		
THギヤード	42、60	M4	2	8	А	
	90	M8	12	15		

タイプ	取付角寸法 (mm)	ねじの呼び	締付トルク (N·m)	有効ねじ深さ (mm)	設置方法
	28、30	M3	1	6	
PSギヤード	42		2	8	^
ハーモニックギヤード※1	60	M5	3	10	A
	90	M8	12	15	
ハーモニックギヤード※2	90	M8	15	_	В

*1 **ARM24、ARM46、ARM66**タイプのみ。

※2 ARM98タイプのみ。

3-3 負荷の取り付け

負荷をモーターに取り付ける方法について説明します。 当社でもフレキシブルカップリングをご用意しています。

- **重要** 出力軸と負荷を連結するときは、心出し、ベルトのテンション、プーリーの平行度などに注意してください。また、カップリングやプーリーのねじは確実に締め付けてください。
 - カップリングやプーリーを出力軸に取り付けるときは、出力軸や軸受け(ボールベアリング)に損傷を与えないでください。
 - 出力軸を改造したり、機械加工をしないでください。軸受け(ボールベアリング)が損傷して、モーター が破損する原因になります。
 - 平行キーを出力軸から取り外すときに、ハンマーなどで強い力を加えないでください。出力軸や軸受け (ボールベアリング)が破損する原因になります。

● カップリング連結のとき

出力軸と負荷の回転軸を一直線にしてください。

- ベルト連結のとき
 - 出力軸と負荷の回転軸を平行にしてください。
 - 出力軸と負荷の回転軸を、両プーリーの中心を結ぶ線に対して直角にしてください。

ギヤ連結のとき

- 出力軸とギヤ軸を平行にしてください。
- ギヤ歯面の中心を正しく噛み合わせてください。

カップリング連結 ^

● キー締結のとき(ギヤードモーター)

キーみぞ加工された出力軸と負荷を結合するときは、負荷側にキーみぞ加工をして、付属のキーで負荷と出力軸を固定して ください。

ハーモニックギヤードタイプ:負荷をフランジ面に取り付けるとき

ハーモニックギヤードタイプ(ARM98を除く)は、フランジ面にある負荷 取付用ねじ穴を使用して、負荷を直接ギヤに取り付けることができます。

モーター品名	ねじの 呼び	ねじの 本数	締付トルク (N·m)	有効ねじ深さ (mm)
ARM24	M3	4	1.4	4
ARM46	M3	6	1.4	5
ARM66	M4	6	2.5	6

(memo) • 負荷をフランジ面に取り付ける場合、出力軸のキーみぞを併用して負荷を固定することはできません。 • モーターを取り付けている金属板やねじと、負荷が干渉しないように設計してください。

3-4 許容ラジアル荷重と許容アキシアル荷重

- ラジアル荷重やアキシアル荷重が許容値を超えると、繰り返し荷重によってモーターの軸受け(ボール ベアリング)や出力軸が疲労破損にいたる原因になります。
 - 両軸タイプのときは、モーター出力軸の反対側の出力軸に、負荷トルク、ラジアル荷重、およびアキシ アル荷重を加えないでください。

(memo) PSギャードタイプとPNギャードタイプは、ラジアル荷重またはアキシアル荷重のどちらかが作用した場 合に、寿命が20,000時間を満たす値を許容値としています。

			許容ラジアル荷重(N)						
タイプ	モーター品名	減速比		許容アキシアル					
			0	5	10	15	20	- 10里(IN)	
	ARM14 ARM15		12	15	-	_	-	3	
137.24	ARM24 ARM26		25	34	52	_	-	5	
標準	ARM46	-	35	44	58	85	_	15	
	ARM66 ARM69		90	100	130	180	270	30	
	ARM98		260	290	340	390	480	60	
	ARM24		15	17	20	23	-	10	
T ロギャード	ARM46	今浦油中	10	14	20	30	-	15	
	ARM66	土阀还儿	70	80	100	120	150	40	
	ARM98		220	250	300	350	400	100	
	ARM24	全減速比	45	60	80	100	-	40	
ARM46	5	70	80	95	120	-			
	7.2	80	90	110	140	_			
	ARM46	10	85	100	120	150	-	100	
	ARM40	25	120	140	170	210	_		
		36	130	160	190	240	-		
		50	150	170	210	260	_		
		5	170	200	230	270	320		
		7.2	200	220	260	310	370		
PSギヤード	ARM66	10	220	250	290	350	410	200	
		25	300	340	400	470	560	200	
		36	340	380	450	530	630		
		50	380	430	500	600	700		
		5	380	420	470	540	630		
		7.2	430	470	530	610	710		
	ARM98	10	480	530	590	680	790	600	
	Additio	25	650	720	810	920	1,070		
		36	730	810	910	1,040	1,210		
		50	820	910	1,020	1,160	1,350		
	ARM24	全減速比	45	60	80	100	-	40	
PNギヤード		5	80	95	120	160	-		
	ARM46	7.2	90	110	130	180	-	100	
			10	100	120	150	200	-	

タイプ	モーター品名	減速比			計谷アキシアル 荷重 (NI)			
			0	5	10	15	20	
		5	240	260	280	300	330	
	7.2	270	290	310	340	370		
	A P.M.6.6	10	300	320	350	380	410	200
	AKMOO	25	410	440	470	520	560	200
		36	360	410	480	570	640	
		50	360	410	480	570	700	
		5	370	390	410	430	460	600
	ADMOR	7.2	410	440	460	490	520	
		10	460	490	520	550	580	
	AKIM70	25	630	660	700	740	790	
		36	710	750	790	840	900	
	50	790	840	890	940	1,000		
	ARM24		100	135	175	250	-	140
ハーモニック	ARM46	今试油中	180	220	270	360	510	220
ギヤード	ARM66	土, 州, 还儿	320	370	440	550	720	450
	ARM98		1,090	1,150	1,230	1,310	1,410	1,300

■ ハーモニックギヤードタイプの許容モーメント荷重

アームやテーブルをフランジ面に取り付けるときに、偏心荷重が加わ る場合は、表の許容値を超えないでください。 モーメント荷重は、次の計算式で算出してください。

モーター品名	許容モーメント荷重(N·m)
ARM24	2.9
ARM46	5.6
ARM66	11.6

● 例1:出力フランジの中心から距離Lの位置に外力Fが加わる場合

L:出力フランジ中心からの距離(m) F:外力(N) モーメント荷重M[N・m] = F × L

● 例2:出力フランジの取付面から距離Lの位置に外力Fが加わる場合

L:出力フランジ取付面からの距離(m) F:外力(N)

モーメント荷重M[N・m] = F × (L + 係数a)

モーター品名	係数a
ARM24	0.0073
ARM46	0.009
ARM66	0.0114

3-5 ドライバの設置

ドライバはレール幅35 mmのDINレールに取り付けてください。 ドライバを2台以上並べて設置するときは、水平方向は密着できます。 垂直方向は50 mm以上離してください。 ドライバを3台以上密着させて設置すると、内側のドライバの発熱が高くなります。使 用頻度の少ないドライバを内側に設置してください。ドライバの内部温度の確認には、 「過熱ワーニング」パラメータをご利用ください。 ・ドライバの周囲には、発熱量やノイズが大きい機器を設置しないでくだ さい。 ・ドライバは、コントローラや他の熱に弱い機器の下側に設置しないで ください。

- ドライバの周囲温度が50 ℃を超えるときは、換気条件を見なおしてく ださい。
- ドライバは、必ず垂直(縦位置)に設置してください。

- 1. ドライバのDINレバーを引き下げてロックし、背面にあるフックをDINレールに掛けます。
- 2. ドライバをDINレールに押し当て、DINレバーを押し上げて固定します。
- 3. エンドプレートでドライバの両側を固定します。

DINレールから取り外すとき

マイナスドライバなどでDINレバーを引き下げてロックし、ドライバを下から 持ち上げて取り外します。DINレバーを引き下げるときは、10~20 N程度の 力を加えてください。力を加えすぎると、DINレバーが破損します。

外形図(単位:mm)

質量:0.17 kg

3-6 バッテリの取り付け

当社のバッテリセットBAT01Bは、バッテリとバッテリホルダがセットになっています。バッテリホルダを使用して、バッテリを確実に固定してください。

ドライバとモーター、入出力信号、電源の接続方法、および接地方法について説明します。 また、ノイズ対策、EMC指令に適合させるための設置・配線方法についても説明しています。

警告 感電防止のため、配線が終わるまでは電源を入れないでください。

4-1 接続例

図は、電磁ブレーキ付モーターの場合です。

- ※1 モーターとドライバ間の配線距離は30 m以下にしてください。
- ※2 当社でご用意しています。別途お買い求めください。

モーター用ケーブルは、モーターケーブルの長さが足りないときにお使いください。

- ・コネクタは確実に接続してください。コネクタの接続が不完全だと、動作不良を起こしたり、モーター やドライバが破損するおそれがあります。
 - コネクタを抜き差しするときは、電源を切り、POWER LEDが消灯してから行なってください。
 - 接続するときは、ドライバのシルクを確認し、電源の極性に気を付けてください。極性を間違えて接続すると、ドライバが破損する原因になります。電源回路とRS-485通信回路は絶縁されていないため、 RS-485通信で複数のドライバを制御する場合に電源の極性を間違えると、短絡経路が発生して破損する原因になります。
 - ドライバの電源ケーブルは、他の電源ラインやモーターケーブルと同一の配管内に配線しないでください。ノイズによって誤動作するおそれがあります。
 - 電磁ブレーキ用ケーブルのリード線には極性がありますので、正しく接続してください。極性を逆にして接続すると、電磁ブレーキが正常に動作しません。

(memo

コネクタを抜くときは、指でコネクタのラッチ部分を押しながら、引き抜いてください。
 モーターを可動部分に取り付けるときは、可動ケーブルを使用してください。品名は80ページでご確認ください。

● 電線サイズと締付トルク

コネクタ	端子記号	推奨電線サイズ	ねじサイズ	締付トルク(N·m)
CN1	24/48V+、24/48V-	より線AWG24~16(0.2~1.25 mm²)	142	0.22~0.25
	MB1、MB2	より線AWG20(0.5 mm²)	1112	
CN5	-	より線AWG26~20(0.14~0.5 mm²)	-	-
CN8	-	より線AWG26~20(0.14~0.5 mm²)	-	-
CN9	-	より線AWG26~20(0.14~0.5 mm²)	-	-

4-2 モーター、ドライバの接地

■ モーターの接地

モーターの保護接地端子を確実に接地してください。(ドライバの電源がDC24 V のときは必要ありません。)

- 接地線:AWG18(0.75 mm²)以上
- ねじサイズ:M4
- 締付トルク:1.2 N·m

接地するときは丸形端子を使用し、菊座金を入れたボルトで固定してください。 接地線や圧着端子は付属していません。

■ ドライバの接地

必要に応じて、フレームグランド端子(CN1)を接地してください。 接地にはAWG24~16(0.2~1.25 mm²)の線を使用し、溶接機や動力機器などと共用しないでください。

4-3 電源と電磁ブレーキの接続

CN1用コネクタ(5ピン)を使用して、電源と電磁ブレーキを接続します。

■ 接続方法

- 1. リード線 (AWG24~16:0.2~1.25 mm²)の被覆を7 mm剥きます。
- リード線をCN1用コネクタに挿入し、マイナスドライバでねじを締め付けます。 コネクタねじ寸法:M2 締付トルク:0.22~0.25 N·m
- CN1用コネクタをCN1に差し込み、ねじを締め付けます。 コネクタねじ寸法:M2.5 締付トルク:0.4 N·m

ピンアサイン

ピンNo.	信号名	内容	
1	MB1	電磁ブレーキー(黒)	
2	MB2	電磁ブレーキ+(白)	
3	+	+DC24 V/48 V電源入力	
4	-	電源GND	
5	FG	フレームグランド	

電源電流容量

組み合わせる製品によって、電源の電流容量が異なります。

電動アクチュエータをお使いの場合は、搭載モーターの品名を参考にして確認してください。

DGIシリーズの場合、主電源の電流容量はDGIシリーズ 取扱説明書 アクチュエータ編に記載していますので、アクチュ エータ編でご確認ください。

エ_タ_ロタ	入力電源電圧	電源電流容量		
		電磁ブレーキなし	電磁ブレーキ付	
ARM14		0.4 A以上	-	
ARM15	DC24 V+5 %%	0.5 A以上	-	
ARM24		1 25 AN F	13000	
ARM26				
ARM46		1.72 A以上	1.8 A以上	
ARM66	DC24 V±5 %%	3.55 A以上	3.8 A以上	
ARM69	DC48 V±5 %	3.45 A以上	3.7 A以上	
ARM98		2.85 A以上	3.1 A以上	

※ モーターとドライバ間を20~30 mに延長するときは、DC24 V±4 %の電源を使用してください。
4-4 入出力信号の接続

■ 結線方法

- 適用リード線:AWG26~20(0.14~0.5 mm²)
- 被覆剥き長さ:8 mm
- 1. リード線の被覆を剥きます。
- 2. マイナスドライバで橙色のボタンを押したまま、リード線を挿入します。
- 3. リード線を挿入したら、ボタンを離してリード線を固定します。

■ ピンアサイン

ピンNo.	信号名	内容	
1	+LS	+側リミットセンサ入力	
2	–LS	-側リミットセンサ入力	
3	HOMES	機械原点センサ入力	
4	SLIT	スリットセンサ入力	<u>q mc</u>
5	IN-COM2	センサ用コモン	

• 入力信号(CN8)

ピンNo.	信号名	内容※	
1	INO	制御入力0(HOME)	
2	IN1	制御入力1 (START)	
3	IN2	制御入力2(M0)	
4	IN3	制御入力3(M1)	
5	IN4	制御入力4(M2)	
6	IN5	制御入力5(FREE)	
7	IN6	制御入力6(STOP)	₫ Ш⊖Ӈ— 9
8	IN7	制御入力7(ALM-RST)	
9	IN-COM1	入力信号用コモン	

※ ()内は初期値です。

● 出力信号(CN9)

ピンNo.	信号名	内容※	
1	OUT0	制御出力0(HOME-P)	
2	OUT1	制御出力1 (END)	
3	OUT2	制御出力2(AREA1)	
4	OUT3	制御出力3(READY)	
5	OUT4	制御出力4(WNG)	
6	OUT5	制御出力5(ALM)	
7	OUT-COM	出力信号用コモン	

※ ()内は初期値です。

- 1 ■ 電流シンク出力回路との接続例(NPN仕様)

※ ()内は初期値です。

(**memo)** • 入力信号はDC24 Vでお使いください。

- 出力信号はDC12~24 V 10 mA以下でお使いください。電流値が10 mAを超えるときは、外部抵抗R0 を接続して、10 mA以下にしてください。
- 出力信号の飽和電圧は最大3 Vです。

■ 電流ソース出力回路との接続例(PNP仕様)

(memo) • 入力信号はDC24 Vでお使いください。

- 出力信号はDC12~24 V 10 mA以下でお使いください。電流値が10 mAを超えるときは、外部抵抗R0 を接続して、10 mA以下にしてください。
- 出力信号の飽和電圧は最大3 Vです。

4-5 データ設定器の接続

サポートソフト用通信ケーブル、または**OPX-2A**のケーブルを ドライバのデータ設定器コネクタ(CN3)に接続します。

⚠注意

ドライバの電源コネクタ(CN1)、データ設定器コネクタ(CN3)、およびRS-485通信コネクタ (CN6/CN7)は絶縁されていません。電源のプラス側を接地するときは、マイナス側を接地した 機器(パソコンなど)を接続しないでください。これらの機器とドライバが短絡して、破損するおそ れがあります。

4-6 RS-485通信ケーブルの接続

RS-485通信で製品を制御するときに接続します。RS-485通信ケーブルをCN6またはCN7に接続してください。 空いた方のコネクタで、別のドライバと接続できます。当社でもドライバ間接続用のケーブルをご用意しています。 品名は82ページでご確認ください。また、市販のLANケーブル(ストレートケーブル)でもドライバ同士を接続できます。

• 内部入力回路

※ CN1のGNDと共通です(非絶縁)。

CN6/CN7のピンアサイン

ピンNo.	信号名	内容	
1	N.C.	未使用	
2	GND	GND	
3	TR+	RS-485通信用信号(+)	낭
4	N.C.	未使用	
5	N.C.	未使用	ሌ
6	TR-	RS-485通信用信号(-)	
7	N.C.	未使用	
8	N.C.	未使用	

4-7 バッテリの接続と充電

アブソリュートバックアップシステムでお使いの場合は、当社のバッテリBAT01Bを接 続してください。

バッテリをドライバのバッテリコネクタ (CN4) に接続し、電源を投入すると、バッテ リの充電が始まります。約32時間で完了します(周囲温度が20 ℃の場合)。

アブソリュートバックアップシステムの設定方法は168ページをご覧ください。

G - - - バッテリ電源GND G - - バッテリ電源入力 G - - - - 未使用

バッテリの仕様

電池の種類	密閉形ニッケル・水素蓄電池
公称電圧	2.4 V
定格容量	1,900 mAh
質量	0.10 kg
期待寿命	約4年※1
充電時間	32時間※1
データ保持時間	約360時間(約15日)※1※2
使用周囲温度	0~+40 °C(凍結しないこと)
使用周囲湿度	45~85 %(結露しないこと)

- ※1 周囲温度20 ℃のとき
- ※2 満充電状態で電源をOFFにした場合

4-8 ノイズ対策

ノイズには、外部からドライバに侵入してドライバを誤動作させるノイズ、およびドライバから放射されて周辺の機器を誤 動作させるノイズの2種類があります。

外部から侵入するノイズに対しては、ドライバの誤動作を防ぐ対策を実施してください。特に信号ラインはノイズの影響を 受けやすいため、十分な対策が必要です。

ドライバから放射されるノイズに対しては、ノイズを抑制する対策を実施してください。

■ ノイズ対策の方法

ノイズ対策の方法には、主に次の3種類があります。

● ノイズの抑制

- リレーや電磁スイッチを使用するときは、ノイズフィルタやCR回路でサージを吸収してください。
- モーターとドライバ間を延長するときは、当社の接続ケーブルまたは中継ケーブルを使用してください。品名は 80ページでご確認ください。
- アルミなどの金属板でドライバを覆ってください。ドライバから放射されるノイズを遮蔽する効果があります。
- ノイズの伝播の防止
 - ノイズフィルタを直流電源の入力側に接続してください。
 - モーターケーブルや電源ケーブルなどの動力系ケーブルと信号系ケーブルは200 mm以上離し、束ねたり、平行に配線しないでください。動力系ケーブルと信号系ケーブルが交差するときは、直角に交差させてください。
 - 電源ケーブルや信号系ケーブルにはツイストペアシールドケーブルを使用してください。
 - ケーブルは最短で配線し、長すぎて余った部分を巻いたり、束ねないでください。
 - 多点接地にすると接地部のインピーダンスが下がるため、ノイズを遮断する効果が上がります。ただし、接地した箇所に 電位差が生じないよう、安定した電位に接地してください。当社でもアース線を取り付けた入出力信号用ケーブルをご用 意しています。品名は82ページでご確認ください。
 - ケーブルを接地するときは、シールドの全周と接触できる金属 シールドケーブル 製のケーブルクランプを使用し、できるだけ製品の近くに接地 してください。

-ブルクランプ

● ノイズの伝播による影響の抑制

ノイズが伝播しているケーブルをフェライトコアに巻きつけてください。伝播したノイズがドライバに侵入したり、ドライバから放出されることを防止します。フェライトコアの効果がみられる周波数帯は、一般的に1 MHz以上です。お使いになるフェライトコアの周波数特性を確認してください。フェライトコアによるノイズ減衰の効果を高める場合は、ケーブルを多めに巻きつけてください。

■ ノイズ対策部品

- ノイズフィルタ
 - 表のノイズフィルタ(または相当品)を直流電源の入力側に接続してください。電源トランスを使用する場合は、必ずノイズフィルタを電源トランスのAC入力側に接続してください。電源ラインを通じて伝播するノイズを防ぎます。ノイズフィルタは、できるだけ直流電源の入力端子の近くに取り付けてください。

メーカー	品番
双信電機株式会社	HF2010A-UPF
Schaffner EMC	FN2070-10-06

- ノイズフィルタの入出力ケーブルには、AWG18(0.75 mm²)以上の線を使用し、ケーブルが浮かないようケーブルク ランプなどで確実に固定してください。
- ノイズフィルタの入出力ケーブルは十分に離し、並行に配線しないでください。ケーブル間の距離が近かったり、並行に 配線すると、筐体内のノイズが浮遊容量を介して電源ケーブルに結合してしまい、ノイズ抑制効果が低減します。
- ノイズフィルタを接地する線は、できるだけ太く、最短距離で接地してください。
- 筐体内でノイズフィルタを接続する場合は、ノイズフィルタの入力ケーブルを長く配線しないでください。ノイズ抑制 効果が低減します。

■ 当社のノイズ対策部品

品名は82ページでご確認ください。

● 入出力信号用ケーブル

ドライバと上位システムを接続する、耐ノイズ性に優れたツイストペアシールドケーブルです。接地に便利なアース線が ケーブル両端から出ています。EMC試験は当社の入出力信号用ケーブルを使用して行なっています。

● サージキラー

リレー接点部で発生するサージを抑制する効果があります。リレーや電磁スイッチをお使いになる場合に接続してください。サージキラーには、サージ電圧吸収用CR回路と、CR回路モジュールの2種類があります。

4-9 EMC指令への適合

モーター、ドライバから周辺の制御システム機器へのEMI、およびモーター、ドライバのEMSに対して有効な対策を施さないと、機械装置の機能に重大な障害を引き起こすおそれがあります。モーター、ドライバは、次の設置・配線方法を施すことで、EMC指令への適合が可能になります。

オリエンタルモーターは、79ページ「設置・配線例」に従って、モーター、ドライバのEMC試験を実施しています。 EMCの適合性は、次に説明する内容にもとづいて設置・配線し、お客様の責任で機械のEMCの適合性を確認していただく必 要があります。

注意

この製品は、住宅に電力を供給する低電圧配電線への接続、および住宅環境での使用を意図してい ません。低電圧配電線に接続、または住宅環境で使用すると、周囲の機器の無線受信に影響する場 合があります。

ノイズフィルタの接続

ノイズの影響が大きいときは、ノイズフィルタを接続してください。詳細は前述の「ノイズフィルタ」をご覧ください。

● 電源の接続

電源は、EMC指令に適合した直流電源を使用してください。

配線にはツイストペアシールドケーブルを使用してください。 配線方法は77ページ [ノイズの伝播の防止]をご覧ください。

3 DC電源入力タイプ

● モーターケーブルの接続

モーターとドライバ間を延長するときは、当社の接続ケーブルまたは中継ケーブルを使用してください。品名は80ページでご確認ください。

● 信号ケーブルの接続

77ページ「ノイズの伝播の防止」をご覧ください。

- 接地方法
 - 接地した箇所に電位差が生じないよう、モーター、ドライバ、およびノイズフィルタを接地する線は、できるだけ太く、 最短距離で接地してください。
 - 接地ポイントには、広く、太く、均一な導電面を使用してください。
 - モーターとドライバは保護接地端子を接地してください。接地方法は71ページをご覧ください。

設置・配線例

ドライバは、静電気に敏感な部品を使用しています。静電気によってドライバが誤動作したり破損するおそれ があるため、取り扱いの際は静電防止対策を行なってください。

ケーブル 5

> (memo` モーターを可動部分に取り付けるときは、可動ケーブルを使用してください。

5-1 接続ケーブルセット

モーターとドライバを接続するときに使用します。

電磁ブレーキ付モ

電磁ブレーキ付モーター用は、モーター用と電磁ブレーキ用の2本組です。

3 DC電源入力タイプ

● 接続ケーブルセット品名

標準モーター用

CC005VA2F2

CC010VA2F2

CC015VA2F2

CC020VA2F2

CC025VA2F2

CC030VA2F2

CC040VA2F2

CC050VA2F2

CC070VA2F2

CC100VA2F2

CC150VA2F2

CC200VA2F2

CC300VA2F2

長さ(m)

0.5

1

1.5

2

2.5

3

4

5

7

10

15

20

30

● 可動接続ケーブルセット品名

※ 電磁ブレーキ付モーターのとき。

ブレーキ付モーター用	長さ(m)	標準モーター用	電磁ブレーキ付モーター用
CC005VA2FB2	0.5	CC005VA2R2	CC005VA2RB2
CC010VA2FB2	1	CC010VA2R2	CC010VA2RB2
CC015VA2FB2	1.5	CC015VA2R2	CC015VA2RB2
CC020VA2FB2	2	CC020VA2R2	CC020VA2RB2
CC025VA2FB2	2.5	CC025VA2R2	CC025VA2RB2
CC030VA2FB2	3	CC030VA2R2	CC030VA2RB2
CC040VA2FB2	4	CC040VA2R2	CC040VA2RB2
CC050VA2FB2	5	CC050VA2R2	CC050VA2RB2
CC070VA2FB2	7	CC070VA2R2	CC070VA2RB2
CC100VA2FB2	10	CC100VA2R2	CC100VA2RB2
CC150VA2FB2	15	CC150VA2R2	CC150VA2RB2
CC200VA2FB2	20	CC200VA2R2	CC200VA2RB2
CC300VA2FB2	30	CC300VA2R2	CC300VA2RB2
		-	

5-2 中継ケーブルセット

モーターとドライバ間の距離を離す場合、使用している接続ケーブルの長さが足りないときに使用してください。 中継ケーブルを接続ケーブルに継ぎ足して延長します。 電磁ブレーキ付モーター用は、モーター用と電磁ブレーキ用の2本組です。

(memo) 中継ケーブルを接続ケーブルに継ぎ足して延長するときは、ケーブル全長を30 m以下にしてください。

● 中継ケーブルセット品名

長さ(m)	標準モーター用	電磁ブレーキ付モーター用
0.5	CC005VA2F2	CC005VA2FBT2
1	CC010VA2F2	CC010VA2FBT2
1.5	CC015VA2F2	CC015VA2FBT2
2	CC020VA2F2	CC020VA2FBT2
2.5	CC025VA2F2	CC025VA2FBT2
3	CC030VA2F2	CC030VA2FBT2
4	CC040VA2F2	CC040VA2FBT2
5	CC050VA2F2	CC050VA2FBT2
7	CC070VA2F2	CC070VA2FBT2
10	CC100VA2F2	CC100VA2FBT2
15	CC150VA2F2	CC150VA2FBT2
20	CC200VA2F2	CC200VA2FBT2

● 可動中継ケーブルセット品名

長さ(m)	標準モーター用	電磁ブレーキ付モーター用
0.5	CC005VA2R2	CC005VA2RBT2
1	CC010VA2R2	CC010VA2RBT2
1.5	CC015VA2R2	CC015VA2RBT2
2	CC020VA2R2	CC020VA2RBT2
2.5	CC025VA2R2	CC025VA2RBT2
3	CC030VA2R2	CC030VA2RBT2
4	CC040VA2R2	CC040VA2RBT2
5	CC050VA2R2	CC050VA2RBT2
7	CC070VA2R2	CC070VA2RBT2
10	CC100VA2R2	CC100VA2RBT2
15	CC150VA2R2	CC150VA2RBT2
20	CC200VA2R2	CC200VA2RBT2

5-3 サポートソフト用通信ケーブル

サポートソフト**MEXE02**をインストールしたパソコンとドライバを接続するときは、必ずお買い求めください。 PCインターフェースケーブルとUSBケーブルの2本1組です。パソコンとの接続はUSBになります。 **MEXE02**はWEBサイトからダウンロードできます。

品名:**CC05IF-USB**(5 m)

5-4 RS-485通信ケーブル

RS-485通信コネクタ(CN6、CN7)に接続して、ドライバ間を接続できます。

品名:CC001-RS4(0.1 m) CC002-RS4(0.25 m)

5-5 入出力信号用ケーブル

耐ノイズ性に優れた、ドライバの制御入出力用のシールドケーブルです。 接地に便利なアース線がケーブル両端から出ています。

接続する入出力信号の数に合ったケーブルをお選びください。

汎用タイプ

ケーブル長さ	リード線の心数			
(m)	6本	10本	12本	16本
0.5	CC06D005B-1	CC10D005B-1	CC12D005B-1	CC16D005B-1
1	CC06D010B-1	CC10D010B-1	CC12D010B-1	CC16D010B-1
1.5	CC06D015B-1	CC10D015B-1	CC12D015B-1	CC16D015B-1
2	CC06D020B-1	CC10D020B-1	CC12D020B-1	CC16D020B-1

6 周辺機器

■ データ設定器

ARシリーズの運転データやパラメータの設定が簡単に行なえるほか、モニタとしてもお使いいただけます。 品名:OPX-2A

6-2 配線サポート機器

■ サージ電圧吸収用CR回路

リレー接点部で発生するサージを抑制する効果があります。リレーやスイッチの接点保護にお使いください。 品名:EPCR1201-2

CR回路モジュール

リレー接点部で発生するサージを抑制する効果があります。リレーやスイッチの接点保護にお使いください。 コンパクトな基板にサージ電圧吸収用CR回路を4個搭載し、DINレールに取り付け可能です。端子台接続にも対応している ため、簡単で確実に配線できます。

品名:VCS02

6-3 その他

📕 バッテリセット

アブソリュートバックアップシステムで使用するバッテリとバッテリホルダのセットです。 品名:**BAT01B** 3 DC電源入力タイプ

4 AC電源入力タイプ/ DC電源入力タイプ 共通

ARシリーズAC電源入力タイプとDC電源入力タイプのドライバに共通の内容について説明しています。

◆もくじ

1	入出力信号の説明	
1-1	l ダイレクトI/Oの割り付け	86
1-2	2 リモートI/Oの割り付け	90
1-3	3 入力信号	94
1-4	4 出力信号	
1-5	5 センサ入力	
1-6	5 汎用信号(RO~R15)	
2	I/O制御	
2-1	I ガイダンス	
2-2	2 運転データ	
2-3	3 パラメータ	
3	OPX-2Aの操作方法	
3-1	I OPX-2Aの概要	
3-2	2 各部の名称と機能	
3-3	3 表示部の見方	
3-4	4 OPX-2A のエラー表示	

3-5	画面遷移	
3-6	モニタモード	
3-7	データモード	
3-8	パラメータモード	
3-9	テストモード	
3-10	コピーモード	
4 点标	検•保守	146
4-1	点検	
4-2	保証	
4-3	廃棄	
5 ア	ラームとワーニング	147
5-1	アラーム	
5-2	ワーニング	
5-3	通信エラー	
6 故	障の診断と処置	156

1 入出力信号の説明

このマニュアルでは、I/O信号を次のように記載しています。

- ダイレクトI/O:入力信号コネクタ(CN8)および出力信号コネクタ(CN9)からアクセスするI/O
- リモートI/O:RS-485通信でアクセスするI/O

紹介するパラメータは、MEXEO2、OPX-2A、およびRS-485通信のどれかで設定してください。

1-1 ダイレクトI/Oの割り付け

■ 入力端子への割り付け

パラメータで、表の入力信号をCN8の入力端子IN0~IN7に割り付けることができます。 入力信号の詳細は94ページをご覧ください。

ダイレクトI/O信号名	初期値	ダイレクトI/O信号名	初期値
INO	3:HOME	IN4	50:M2
IN1	4:START	IN5	16:FREE
IN2	48:M0	IN6	18:STOP
IN3	49:M1	IN7	24:ALM-RST

割付No.	信号名	機能					
0	未使用	入力端子を使用しないときに設定します。					
1	FWD	+方向の連続運転を実行します。					
2	RVS	- 方向の連続運転を実行します。					
3	HOME	原点復帰運転を実行します。					
4	START	位置決め運転を実行します。					
5	SSTART	順送り位置決め運転を実行します。					
6	+JOG	+方向のJOG運転を実行します。					
7	–JOG	- 方向のJOG運転を実行します。					
8	MS0						
9	MS1						
10	MS2	ダイレクト位置決め運転を実行します					
11	MS3						
12	MS4						
13	MS5						
16	FREE	モーターを無励磁にして、電磁ブレーキを解放します。					
17	C-ON	モーターの励磁/無励磁を切り替えます。					
18	STOP	モーターを停止させます。					
24	ALM-RST	現在アラームをリセットします。					
25	P-PRESET	位置プリセットを実行します。					
26	P-CLR	絶対位置異常アラームをリセットします。					
27	HMI	MEXE02やOPX-2Aの機能制限を解除します。					
32	RO						
33	R1						
34	R2						
35	R3						
36	R4	汎用信号です。RS-485通信で制御するときに使用します。					
37	R5						
38	R6						
39	R7						
40	R8						

3	信号名	能
	R9	
	R10	
	R11	
汎用信号です。RS-485	R12	制御するときに使用します。
	R13	
	R14	
	R15	
	MO	
	M1	
6つのビットを使って、	M2	
のフリビットを使うて、	M3	ークNO.を迭折しより。
	M4	
	M5	

関連するパラメータ

MEXE02ッリー表	示	パラメータ	'名			初期値		
		IN0入力機能選択 IN1入力機能選択					3:HOME	
						4:START		
		IN2入力機能選	訳	<u>– –</u> –				
		IN3入力機能選	訳	人力信号を	:人力端子IN0~IN/	に割り付けます。	49:M1	
1/0 俄能[八/]]		IN4入力機能選	訳	【設正範囲】	 		50:M2	
		IN5入力機能選	訳	八衣をし見	次衣をこ見ください。			
		IN6入力機能選択					18:STOP	
		IN7入力機能選択					24:ALM-RST	
0:未使用	7:	-JOG	16:FR	EE	32:R0	39:R7	46:R14	
1:FWD	8:	MS0	17:C-	ON	33:R1	40:R8	47:R15	
2:RVS	9:	MS1	18:ST	OP	34:R2	41:R9	48:M0	
3:HOME	10	:MS2	24:AL	M-RST	35:R3	42:R10	49:M1	
4:START	11	:MS3	25:P-F	PRESET	36:R4	43:R11	50:M2	
5:SSTART	12	:MS4	26:P-0	CLR	37:R5	44:R12	51:M3	
6:+JOG	13	:MS5	27:HN	ΛI	38:R6	45:R13	52:M4	
							53:M5	

• 同じ入力信号を複数の入力端子に割り当てないでください。複数の入力端子に割り当てたときは、どこ かの端子に入力があれば、機能が実行されます。

ALM-RST入力とP-CLR入力は、ONからOFFになったときに実行されます。
 P-PRESET入力は、OFFからONになったときに実行されます。

• C-ON入力とHMI入力は、入力端子に割り当てられなかったときは常時ONになります。また、ダイレクトI/OとリモートI/Oの両方に割り当てたときは、両方ともONにならないと機能しません。

■ 入力信号の接点設定の切り替え

パラメータで、入力端子IN0~IN7の接点設定を切り替えることができます。

関連するパラメータ

MEXE02ツリー表示	パラメータ名	内容	初期値
	IN0入力接点設定		0
	IN1入力接点設定		
	IN2入力接点設定	入力端子IN0~IN7の接点設定を切り替えます。	
	IN3入力接点設定	【設定範囲】	
1/ ① 成 能 [八 /]]	IN4入力接点設定	0:A接点(N.O.)	
	IN5入力接点設定	1:B接点(N.C.)	
	IN6入力接点設定		
	IN7入力接点設定		

■ 出力端子への割り付け

パラメータで、次の出力信号をCN9の出力端子OUT0~OUT5に割り付けることができます。 出力信号の詳細は100ページをご覧ください。

ダイレクトI/O信号名	初期値	ダイレクトI/O信号名	初期値
OUT0	70:HOME-P	OUT3	67:READY
OUT1	69:END	OUT4	66:WNG
OUT2	73:AREA1	OUT5	65:ALM

割付No.	信号名	機能					
0	未使用	出力端子を使用しないときに設定します。					
1	FWD_R	FWDに対する応答を出力します。					
2	RVS_R	RVSに対する応答を出力します。					
3	HOME_R	HOMEに対する応答を出力します。					
4	START_R	STARTに対する応答を出力します。					
5	SSTART_R	SSTARTに対する応答を出力します。					
6	+JOG_R	+JOGに対する応答を出力します。					
7	-JOG_R	-JOGに対する応答を出力します。					
8	MS0_R						
9	MS1_R						
10	MS2_R	MSO〜MS5に対する応答を出力します。					
11	MS3_R						
12	MS4_R						
13	MS5_R						
16	FREE_R	FREEに対する応答を出力します。					
17	C-ON_R	C-ONに対する応答を出力します。					
18	STOP_R	STOPに対する応答を出力します。					
32	RO						
33	R1						
34	R2						
35	R3						
36	R4						
37	R5	汎用信号RO~R10の状態を出力します。					
38	R6						
39	R7						
40	R8						
41	R9						
42	R10						

割付No.	信号名	機能							
43	R11								
44	R12								
45	R13	汎用信号R11~R15の状態を出力します。							
46	R14								
47	R15								
48	M0_R								
49	M1_R								
50	M2_R								
51	M3_R	M0~M5に対する応答を出力します。							
52	M4_R								
53	M5_R								
60	+LS_R	+LSに対する応答を出力します。							
61	-LS_R	-LSに対する応答を出力します。							
62	HOMES_R	HOMESに対する応答を出力します。							
63	SLIT_R	SLITに対する応答を出力します。							
65	ALM	ドライバのアラーム状態を出力します。(B接点)							
66	WNG	ドライバのワーニング状態を出力します。							
67	READY	ドライバの運転準備が完了したときに出力されます。							
68	MOVE	モーターが動作中のときに出力されます。							
69	END	位置決め運転が完了したときに出力されます。							
70	HOME-P	モーターが原点にあるときに出力されます。							
71	TLC	負荷がモーターのトルク仕様の範囲外であるときに出力されます。							
72	TIM	モーター出力軸が7.2°回転するたびに出力されます。							
73	AREA1	モーターがエリア1の範囲内にあるときに出力されます。							
74	AREA2	モーターがエリア2の範囲内にあるときに出力されます。							
75	AREA3	モーターがエリア3の範囲内にあるときに出力されます。							
80	S-BSY	ドライバが内部処理状態のときに出力されます。							
82	MPS*	主電源の投入状態を出力します。							

※ AC電源ドライバのみ

関連するパラメータ

MEXE02ッリー表示		パラメータ名		内容				初期値
		OUT0出力機能	遙選択				70:HOME-P	
		OUT1出力機能	膨張					69:END
		OUT2出力機能	比選択	出力信号を	出力端子OU10~C	015に割り付けます	F .	73:AREA1
1/0懱能[出力]		OUT3出力機能	比選択	【設定範囲】	 		Ī	67:READY
		OUT4出力機能	遙選択	八式でこ見			[66:WNG
		OUT5出力機能	遙選択					65:ALM
0:未使用	10	:MS2_R	35:R3		45:R13	61:-LS_R	72	:TIM
1:FWD_R	11	:MS3_R	36:R4		46:R14	62:HOMES_R	73	:AREA1
2:RVS_R	12	:MS4_R	37:R5		47:R15	63:SLIT_R	74	:AREA2
3:HOME_R	13	:MS5_R	38:R6	1	48:M0_R	65:ALM	75	:AREA3
4:START_R	16	:FREE_R	39:R7		49:M1_R	66:WNG	80	:S-BSY
5:SSTART_R	17	C-ON_R	40:R8		50:M2_R	67:READY	82	:MPS*
6:+JOG_R	18	STOP R 41:R9			51:M3_R	68:MOVE		
7:-JOG_R	32	:R0	42:R1	0	52:M4_R	69:END		
8:MS0_R	33	:R1	43:R1	1	53:M5_R	70:HOME-P		
9:MS1_R	34	:R2	44:R1	2	60:+LS_R	71:TLC		

※ AC電源ドライバのみ

1-2 リモートI/Oの割り付け

I/O機能をRS-485通信に割り付けます。

■ 入力信号の割り付け

パラメータで、次の入力信号をリモートI/OのNET-IN0~NET-IN15に割り付けることができます。 NET-IN0~NET-IN15の配置については、各プロトコルを参照してください。

割付No.	信号名	機能	設定範囲			
0	未使用	入力端子を使用しないときに設定します。	-			
1	FWD	+方向の連続運転を実行します。	0:減速停止			
2	RVS	- 方向の連続運転を実行します。	1:運転			
3	HOME	原点復帰運転を実行します。				
4	START	位置決め運転を実行します。	0.11/2-+>1			
5	SSTART	順送り位置決め運転を実行します。	U.動作なし 1:運転開始			
6	+JOG	+方向のJOG運転を実行します。				
7	–JOG	- 方向のJOG運転を実行します。				
8	MS0					
9	MS1					
10	MS2	I/Oパラメータで設定した運転データNo.のダイレクト位	0:動作なし			
11	MS3	置決め運転を実行します。	1:運転開始			
12	MS4					
13	MS5					
16	FREE	モーターを無励磁にして、電磁ブレーキを解放します。	0:動作なし 1:電磁ブレーキ解放+ モーター無励磁			
17	C-ON	モーターの励磁/無励磁を切り替えます。	0:モーター無励磁 1:モーター励磁			
18	STOP	モーターを停止させます。	0:動作なし 1:運転停止			
24	ALM-RST ※	現在発生しているアラームをリセットします。	0:動作なし 1:アラームリセット			
25	P-PRESET ※	位置プリセットを実行します。	0:動作なし 1:プリセット実行			
26	P-CLR*	絶対位置異常アラームをリセットします。	0:動作なし 1:アラームリセット			
27	HMI	MEXE02やOPX-2Aの機能制限を解除します。	0:機能制限 1:機能制限解除			
32	RO					
33	R1					
34	R2					
35	R3					
36	R4					
37	R5					
38	R6					
39	R7	汎用信号です。	0:OFF			
40	R8	RS-485通信で制御するときに使用します。	1:ON			
41	R9					
42	R10					
43	R11					
44	R12					
45	R13					
46	R14					
47	R15					

割付No.	信号名	機能	設定範囲
48	MO		
49	M1		0:OFF
50	M2	6つのビットのON/OFFを組み合わせて、連転データ	1:ON
51	M3	10.を選択しより。祖の百行せの詳細は95ページをと 覧ください。	(運転データNo.は0~63ま
52	M4		で選択可能)
53	M5		

※ 仕様変更前のドライバでは設定できません。詳細は8ページをご覧ください。

関連するパラメータ

MEXE02ツリー表	示	パラメ-	-9名		内容		初期値		
		NET-IN0入力	機能選択			48:M0			
		NET-IN1入力	機能選択				49:M1		
		NET-IN2入力	機能選択				50:M2		
		NET-IN3入力	機能選択				4:START		
		NET-IN4入力	機能選択				3:HOME		
		NET-IN5入力	機能選択				18:STOP		
		NET-IN6入力	機能選択	入力信	号をNET-IN0~NET-I	16:FREE			
I/O機能[RS-485]		NET-IN7入力	機能選択	す。			0:未使用		
		NET-IN8入力	機能選択	【設定筆	範囲】	8:MS0			
		NET-IN9入力機能選択		次表をご覧ください。			9:MS1		
		NET-IN10入力機能選択					10:MS2		
		NET-IN11入力機能選択				5:SSTART			
		NET-IN12入力機能選択				6:+JOG			
		NET-IN13入力機能選択				7:-JOG			
		NET-IN14入;	力機能選択			1:FWD			
		NET-IN15入;	力機能選択			2:RVS			
0:未使用	7:	-JOG	16:FREE		32:R0	39:R7	46:R14		
1:FWD	8:	MS0	17:C-ON		33:R1	40:R8	47:R15		
2:RVS	9:	MS1	18:STOP		34:R2	41:R9	48:M0		
3:HOME	10):MS2	24:ALM-F	RST⋇	35:R3	42:R10	49:M1		
4:START	11:MS3 25:P-PF		25:P-PRE	SET ※	36:R4	43:R11	50:M2		
5:SSTART	12	2:MS4	26:P-CLR	*	37:R5	44:R12	51:M3		
6:+JOG	13	3:MS5 27:HMI			38:R6	45:R13	52:M4		

※ 仕様変更前のドライバでは設定できません。詳細は8ページをご覧ください。

53:M5

 同じ入力信号を複数の入力端子に割り当てないでください。複数の入力端子に割り当てたときは、どれ か入力があれば機能が実行されます。

ALM-RST入力とP-CLR入力は、ONからOFFになったときに実行されます。
 P-PRESET入力は、OFFからONになったときに実行されます。

• C-ON入力とHMI入力は、入力端子に割り当てられなかったときは常時ONになります。また、ダイレクトI/OとリモートI/Oの両方に割り当てたときは、両方ともONにならないと機能しません。

■ 出力信号の割り付け

パラメータで、次の出力信号をリモートI/OのNET-OUT0~NET-OUT15に割り付けることができます。 NET-OUT0~NET-OUT15の配置については、各プロトコルを参照してください。

割付No.	信号名	機能	読み出し内容
0	未使用	出力端子を使用しないときに設定します。	-
1	FWD_R	FWDに対する応答を出力します。	
2	RVS_R	RVSに対する応答を出力します。	
3	HOME_R	HOMEに対する応答を出力します。	
4	START_R	STARTに対する応答を出力します。	
5	SSTART_R	SSTARTに対する応答を出力します。	
6	+JOG_R	+JOGに対する応答を出力します。	
7	-JOG_R	-JOGに対する応答を出力します。	
8	MS0_R	MSOに対する応答を出力します。	0:OFF
9	MS1_R	MS1に対する応答を出力します。	1:ON
10	MS2_R	MS2に対する応答を出力します。	
11	MS3_R	MS3に対する応答を出力します。	
12	MS4_R	MS4に対する応答を出力します。	
13	MS5_R	MS5に対する応答を出力します。	
16	FREE_R	FREEに対する応答を出力します。	
17	C-ON_R	C-ONに対する応答を出力します。	
18	STOP_R	STOPに対する応答を出力します。	
32	RO		
33	R1		
34	34 R2 35 R3 36 R4		0:OFF 1:ON
35			
36			
37	R5		
38	R6		
39	R7		
40	R8		
41	R9		
42	R10		
43	R11		
44	R12		
45	R13		
46	R14		
47	R15		
48	M0_R		
49	M1_R		
50	M2_R	 M0~M5に対する応答を出力します。	0:OFF
51	M3_R		1:ON
52	M4_R		
53	M5_R		
60	+LS_R	+LSに対する応答を出力します。	
61	-LS_R	-LSに対する応答を出力します。	0:OFF
62	HOMES_R	HOMESに対する応答を出力します。	1:ON
63	SLIT_R	SLITに対する応答を出力します。	
65	ALM	ドライバのアラームを出力します。(A接点)	0:アラームなし 1:アラーム発生中
66	WNG	ドライバのワーニングを出力します。	0:ワーニングなし 1:ワーニング発生中
67	READY	ドライバの運転準備が完了すると出力されます。	0:運転不可 1:運転準備完了

割付No.	信号名	機能	読み出し内容
68	MOVE	モーターが動作中のときに出力されます。	0:モーター停止 1:モーター動作中
69	END	位置決め運転が完了したときに出力されます。	0:モーター動作中 1:モーター動作完了
70	HOME-P	モーターが原点にあるときに出力されます。	0:原点以外 1:原点位置
71	TLC	負荷がモーターのトルク仕様の範囲外であるときに出力 されます。	0:トルク範囲内 1:トルク範囲外
72	TIM	モーター出力軸が7.2°回転するたびに出力されます。	0:OFF 1:ON
73	AREA1	モーターがエリア1の範囲内にあるときに出力されます。	のモリフな回知
74	AREA2	モーターがエリア2の範囲内にあるときに出力されます。	0: エリア 範囲外 1: エリア 範囲内
75	AREA3	モーターがエリア3の範囲内にあるときに出力されます。	
80	S-BSY	ドライバの内部処理中に出力されます。	0:OFF
82	MPS*	主電源の投入状態を出力します。	1:ON

※ AC電源ドライバのみ

関連するパラメータ

MEXE02ツリー表	示	パラメ	一夕名		内	容		初期値
		NET-OUT0出	力機能選択					48:M0_R
		NET-OUT1出	力機能選択					49:M1_R
		NET-OUT2出力機能選択						50:M2_R
		NET-OUT3出	力機能選択					4:START_R
		NET-OUT4出	力機能選択					70:HOME-P
		NET-OUT5出	力機能選択					67:READY
		NET-OUT6出	力機能選択	出:	カ信号をNET-OUT()~NET-OUT15に	훼	66:WNG
	-	NET-OUT7出	力機能選択	1	付けます。			65:ALM
I/O機能[RS-485	J	NET-OUT8出	力機能選択	【影	定範囲】			80:S-BSY
		NET-OUT9出力機能選択			表をご覧ください。			73:AREA1
		NET-OUT10出力機能選択					74:AREA2	
		NET-OUT11出力機能選択					75:AREA3	
		NET-OUT12出力機能選択					72:TIM	
		NET-OUT13出力機能選択					68:MOVE	
		NET-OUT14出力機能選択					69:END	
		NET-OUT15出力機能選択						71:TLC
0:未使用	10	:MS2_R	35:R3		45:R13	61:-LS_R	72	:TIM
1:FWD_R	11	:MS3_R	36:R4		46:R14	62:HOMES_R	73	:AREA1
2:RVS_R	12	:MS4_R	37:R5		47:R15	63:SLIT_R	74	:AREA2
3:HOME_R	13	:MS5_R	38:R6		48:M0_R	65:ALM	75	:AREA3
4:START_R	16	FREE_R	39:R7		49:M1_R	66:WNG	80	:S-BSY
5:SSTART_R	17	':C-ON_R	40:R8		50:M2_R	67:READY	82	:MPS※
6:+JOG_R	18	STOP_R	41:R9		51:M3_R	68:MOVE		
7:-JOG_R	32	RO	42:R10		52:M4_R	69:END		
8:MSO_R	33	:R1	43:R11		53:M5_R	70:HOME-P		
9:MS1_R	34	:R2	44:R12		60:+LS_R	71:TLC		

※ AC電源ドライバのみ

1-3 入力信号

ドライバの入力信号は、すべてフォトカプラ入力です。

- ダイレクトI/O.....A接点のI/O:「ON:通電」「OFF:非通電」
 B接点のI/O:「ON:非通電」「OFF:通電」
- リモートI/O [ON:1] [OFF:0]

📕 内部回路図

	4.4 kΩ [] 1 kΩ	⋬⋣⋾⋌
IN1入力。——	4.4 kΩ [] 1 kΩ	
IN2入力	4.4 kΩ [] 1 kΩ	₩₩₽
IN3入力。——	4.4 kΩ 1 kΩ	
IN4入力。——	4.4 kΩ [] 1 kΩ	
IN5入力。——	4.4 kΩ 1 kΩ	₩₩₽
IN6入力 ⊶——	4.4 kΩ [] 1 kΩ	⋬⋨≠८
IN7入力。——	44 ko 11 ko	
IN-COM1 ○		

M0~M5入力のON/OFFを組み合わせて、位置決め運転や連続運転の運転データNo.を選択します。

運転データNo.	M5	M4	M3	M2	M1	MO	運転データNo.	M5	M4	M3	M2	M1	MO
0	OFF	OFF	OFF	OFF	OFF	OFF	32	ON	OFF	OFF	OFF	OFF	OFF
1	OFF	OFF	OFF	OFF	OFF	ON	33	ON	OFF	OFF	OFF	OFF	ON
2	OFF	OFF	OFF	OFF	ON	OFF	34	ON	OFF	OFF	OFF	ON	OFF
3	OFF	OFF	OFF	OFF	ON	ON	35	ON	OFF	OFF	OFF	ON	ON
4	OFF	OFF	OFF	ON	OFF	OFF	36	ON	OFF	OFF	ON	OFF	OFF
5	OFF	OFF	OFF	ON	OFF	ON	37	ON	OFF	OFF	ON	OFF	ON
6	OFF	OFF	OFF	ON	ON	OFF	38	ON	OFF	OFF	ON	ON	OFF
7	OFF	OFF	OFF	ON	ON	ON	39	ON	OFF	OFF	ON	ON	ON
8	OFF	OFF	ON	OFF	OFF	OFF	40	ON	OFF	ON	OFF	OFF	OFF
9	OFF	OFF	ON	OFF	OFF	ON	41	ON	OFF	ON	OFF	OFF	ON
10	OFF	OFF	ON	OFF	ON	OFF	42	ON	OFF	ON	OFF	ON	OFF
11	OFF	OFF	ON	OFF	ON	ON	43	ON	OFF	ON	OFF	ON	ON
12	OFF	OFF	ON	ON	OFF	OFF	44	ON	OFF	ON	ON	OFF	OFF
13	OFF	OFF	ON	ON	OFF	ON	45	ON	OFF	ON	ON	OFF	ON
14	OFF	OFF	ON	ON	ON	OFF	46	ON	OFF	ON	ON	ON	OFF
15	OFF	OFF	ON	ON	ON	ON	47	ON	OFF	ON	ON	ON	ON
16	OFF	ON	OFF	OFF	OFF	OFF	48	ON	ON	OFF	OFF	OFF	OFF
17	OFF	ON	OFF	OFF	OFF	ON	49	ON	ON	OFF	OFF	OFF	ON
18	OFF	ON	OFF	OFF	ON	OFF	50	ON	ON	OFF	OFF	ON	OFF
19	OFF	ON	OFF	OFF	ON	ON	51	ON	ON	OFF	OFF	ON	ON
20	OFF	ON	OFF	ON	OFF	OFF	52	ON	ON	OFF	ON	OFF	OFF
21	OFF	ON	OFF	ON	OFF	ON	53	ON	ON	OFF	ON	OFF	ON
22	OFF	ON	OFF	ON	ON	OFF	54	ON	ON	OFF	ON	ON	OFF
23	OFF	ON	OFF	ON	ON	ON	55	ON	ON	OFF	ON	ON	ON
24	OFF	ON	ON	OFF	OFF	OFF	56	ON	ON	ON	OFF	OFF	OFF
25	OFF	ON	ON	OFF	OFF	ON	57	ON	ON	ON	OFF	OFF	ON
26	OFF	ON	ON	OFF	ON	OFF	58	ON	ON	ON	OFF	ON	OFF
27	OFF	ON	ON	OFF	ON	ON	59	ON	ON	ON	OFF	ON	ON
28	OFF	ON	ON	ON	OFF	OFF	60	ON	ON	ON	ON	OFF	OFF
29	OFF	ON	ON	ON	OFF	ON	61	ON	ON	ON	ON	OFF	ON
30	OFF	ON	ON	ON	ON	OFF	62	ON	ON	ON	ON	ON	OFF
31	OFF	ON	ON	ON	ON	ON	63	ON	ON	ON	ON	ON	ON

START入力

位置決め運転を開始する信号です。 運転データNo.を選択した後、START入力をONにすると、位置決め運転が始まります。

関連す	る/	パラメ	ータ
-----	----	-----	----

MEXE02ッリー表示	パラメータ名	内容	初期値
アラーム	原点復帰未完了アラーム	座標が確定していない状態で位置決め運転を開始したと きに、アラームを発生させるかを設定します。 【設定範囲】 0:無効 1:有効	0

順送り位置決め運転(174ページ)を開始する信号です。 SSTARTをONにするたびに、次の運転データNo.の位置決め運転を行ないます。運転データNo.を選択する操作が省けるため、位置決めを順番に行ないたいときに便利な機能です。

関連するパラメータ

MEXE02 ツリー表示	パラメータ名	内容	初期値
アラーム	原点復帰未完了アラーム	座標が確定していない状態で位置決め運転を開始したと きに、アラームを発生させるかを設定します。 【設定範囲】 0:無効 1:有効	0

MS0~MS5入力

ダイレクト位置決め運転(173ページ)を開始する信号です。

MS0~MS5入力のどれかをONにすると、それぞれの入力に対応した運転データNo.の位置決め運転を行ないます。MS0~ MS5入力のどれかをONにするだけで位置決め運転を行なえるため、運転データNo.を選択する操作が省けます。

関連するパラメータ

MEXE02 ツリー表示	パラメータ名	内容	初期値
アラーム	原点復帰未完了 アラーム	座標が確定していない状態で位置決め運転を開始したとき に、アラームを発生させるかを設定します。 【設定範囲】 0:無効 1:有効	0
	MS0運転No.選択		0
	MS1運転No.選択		1
	MS2運転No.選択	MSU~MS5人力に対応させる運転ナーダNO.を設定します。	2
1/0	MS3運転No.選択	【設正範囲】	3
	MS4運転No.選択		4
	MS5運転No.選択		5

■ HOME入力

原点復帰運転(183ページ)を開始する信号です。

HOME入力をONにすると、原点復帰運転が始まります。原点復帰運転が終了してモーターが停止すると、HOME-P出力が ONになります。

関連するパラメータ

MEXE02 ツリー表示	パラメータ名	内容	初期値
原点復帰	原点復帰方法	原点復帰方法を設定します。 【設定範囲】 0:2センサ方式 1:3センサ方式 2:押し当て方式	1
	原点復帰運転速度	原点復帰運転の運転速度を設定します。 【設定範囲】 1~1,000,000 Hz	1,000
	原点復帰加減速	原点復帰運転の加減速レート(加減速時間)を設定します。 【設定範囲】 1~1,000,000 (1=0.001 ms/kHzまたは1=0.001 s)	1,000

MEXE02 ツリー表示	パラメータ名	内容	初期値
原点復帰	原点復帰起動速度	原点復帰運転の起動速度を設定します。 【設定範囲】 1〜1,000,000 Hz	500
	原点復帰オフセット	原点からのオフセット量を設定します。 【設定範囲】 -8,388,608~8,388,607 step	0
	原点復帰開始方向	原点検出の開始方向を設定します。 【設定範囲】 0:-側 1:+側	1
	原点復帰SLITセンサ検出	原点復帰時にSLIT入力を併用するかを設定します。 【設定範囲】 0:無効 1:有効	0
	原点復帰TIM信号検出	原点復帰時にTIM信号を併用するかを設定します。 【設定範囲】 0:無効 1:有効	0
	押し当て原点復帰運転電流	定格電流を100 %として、押し当て原点復帰の運転 電流を設定します。 【設定範囲】 0~1,000(1=0.1 %)	1,000

FWD入力、RVS入力

連続運転(191ページ)を開始する信号です。

運転データNo.を選択した後、FWD入力またはRVS入力をONにすると、選択した運転データNo.の運転速度で連続運転が 始まります。FWD入力をONにしたときは+方向、RVS入力をONにしたときは-方向へ回転します。 減速停止中、同じ回転方向の信号がONになると、モーターは再加速して運転を続けます。 FWD入力とRVS入力が両方ともONになると、モーターは減速停止します。 連続運転中に運転データNo.を変更すると、変更した運転データNo.の速度に変速します。

■ +JOG入力、-JOG入力

JOG運転 (196ページ)を開始する信号です。 +JOG入力をONにすると+方向、–JOG入力をONにすると-方向へJOG運転を行ないます。

関連するパラメータ

MEXE02 ツリー表示	パラメータ名	内容	初期値
		JOG運転の移動量を設定します。	
	JOG移動量	【設定範囲】	1
		1~8,388,607 step	
		JOG運転の運転速度を設定します。	
	JOG運転速度	【設定範囲】	1,000
调带		1~1,000,000 Hz	
建邦	JOG加減速	JOG運転の加減速レート(加減速時間)を設定します。	
		【設定範囲】	1,000
		1~1,000,000(1=0.001 ms/kHzまたは1=0.001 s)	
		JOG運転の起動速度を設定します。	
	JOG起動速度	【設定範囲】	500
		0~1,000,000 Hz	

STOP入力

STOP入力をONにすると、モーターが停止します。 位置決め運転中にSTOP入力をONにしたときは、残りの移動量はクリアされます。停止動作については199ページをご覧 ください。

関連するパラメータ

MEXE02 ツリー表示	パラメータ名	内容	初期値
1/0	STOP入力停止方法	 STOP入力でモーターを停止させたときの、モーターの停止 方法を設定します。 【設定範囲】 0:即停止 1:減速停止 2:即停止+カレントオフ 3:減速停止+カレントオフ 	1

C-ON入力

モーターを励磁する信号です。

C-ON入力をONにするとモーターが励磁され、OFFにすると無励磁状態になります。 電磁ブレーキ付モーターの場合は、モーターが励磁した後に電磁ブレーキを解放します。

(memo) C-ON入力は、ダイレクトI/OやリモートI/Oに割り当てられないときは、常時ONになります。また、ダ イレクトI/OとリモートI/Oの両方に割り当てたときは、両方ともONにならないと機能しません。

FREE入力

FREE入力をONにすると、モーターの電流が遮断されます。 モーターの保持力がなくなるため、外力で出力軸を動かせるようになります。電磁ブレーキ付の場合は、電磁ブレーキも解 放されます。

重要 負荷を垂直に設置しているときは、FREE入力をONにしないでください。保持力がなくなって負荷が落下 する原因になります。

FREE入力、C-ON入力、および出力軸の状態は、次のような関係になります。

電磁ブレーキなしの場合

C-ON入力 FREE入力	OFF	ON
OFF	出力軸フリー	モーター励磁により 出力軸保持
ON	出力軸フリー	出力軸フリー

電磁ブレーキ付の場合

C-ON入力 FREE入力	OFF	ON
OFF	電磁ブレーキにより 出力軸保持	モーター励磁により 出力軸保持
ON	出力軸フリー	出力軸フリー

指令位置をプリセットする信号です。

P-PRESET入力をOFFからONにすると、指令位置が「プリセット位置」パラメータで設定した値になります(ONエッジで有効)。

ただし、次の条件のときは、プリセットは実行されません。

- アラームの発生中
- モーターの動作中

関連するパラメータ

MEXE02ッリー表示	パラメータ名	内容	初期値
座標	プリセット位置	プリセット位置を設定します。 【設定範囲】 -8,388,608~8,388,607 step	0

ALM-RST入力

アラームが発生するとモーターが停止します。このとき、ALM-RST入力をONからOFFにすると、アラームが解除されま す(OFFエッジで有効)。必ず、アラームが発生した原因を取り除き、安全を確保してから、アラームを解除してください。 なお、ALM-RST入力では解除できないアラームもあります。アラームの内容については148ページをご覧ください。

P-CLR入力

絶対位置異常のアラームが発生したとき、P-CLR入力をONからOFFにすると、アラームが解除されます(OFFエッジで有効)。

P-CLR入力は、絶対位置異常のアラームしか解除できません。

HMI入力

HMI入力をONにすると、MEXE02やOPX-2Aの機能制限を解除します。OFFにすると、機能が制限されます。制限される機能は次のとおりです。

- I/Oテスト
- テスト運転
- ティーチング
- パラメータの設定、書き込み、ダウンロード、初期化
- データの設定、クリア、初期化

(Memo) HMI入力は、入力端子に割り当てられなかったときは常時ONになります。また、ダイレクトI/OとリモートI/Oの両方に割り当てたときは、両方ともONにならないと機能しません。

1-4 出力信号

ドライバの出力信号はフォトカプラ・オープンコレクタ出力です。

- ダイレクトI/O......A接点のI/O:「ON:通電」「OFF:非通電」
- B接点のI/O:「ON:非通電」「OFF:通電」

■ 内部出力回路

ALM出力

アラームの内容については147ページをご覧ください。

● ダイレクトI/Oの場合

アラームが発生すると、ALM出力がOFFになります。同時にドライバのALM LED (またはALARM LED)が点滅し、モーターへの電流は遮断されて、モーターは停止します。ALM出力はB接点 (ノーマルクローズ)です。

● リモートI/Oの場合

アラームが発生すると、ALM出力がONになります。同時にドライバのALM LED (またはALARM LED)が点滅し、モーターへの電流は遮断されて、モーターは停止します。ALM出力はA接点 (ノーマルオープン)です。

● 関連するパラメータ

MEXE02ッリー表示	パラメータ名	内容	初期値
	過負荷アラーム	過負荷のアラームの発生条件を設定します。 【設定範囲】 1~300(1=0.1 s)	50
アラーム	カレントオン時位置 偏差過大アラーム	カレントオン時位置偏差過大のアラームの発生条件を設定し ます。 【設定範囲】 1~30,000(1=0.01 rev)	300
	原点復帰未完了 アラーム	座標が確定していない状態で位置決め運転を開始したとき に、アラームを発生させるかを設定します。 【設定範囲】 0:無効 1:有効	0

MEXE02 ツリー表示	パラメータ名	内容	初期値
アラーム	カレントオフ時位置 偏差過大アラーム	設定した値を超えると、カレントオフ時位置偏差過大ワーニ ングが発生します。さらにC-ON入力をONにすると、カレン トオフ時位置偏差過大アラームが発生します。 【設定範囲】 1~30,000(1=0.01 rev)	10,000
济(言	通信タイムアウト	RS-485通信の通信タイムアウトの発生条件を設定します。設 定値が0のときは監視しません。 【設定範囲】 0:監視なし 1~10,000 ms	0
	通信異常アラーム	RS-485通信異常アラームの発生条件を設定します。設定した 回数だけRS-485通信異常が発生すると、通信異常アラームに なります。 【設定範囲】 1~10回	3

■ WNG出力

ワーニングが発生すると、WNG出力がONになります。ワーニングの内容については154ページをご覧ください。

関連するパラメータ

MEXE02 ツリー表示	パラメータ名	内容	初期値
	過熱ワーニング	主回路過熱のワーニングの発生条件を設定し ます。 【設定範囲】 40~85 ℃	85
	過負荷ワーニング	過負荷のワーニングの発生条件を設定します。 【設定範囲】 1~300 (1=0.1 s)	50
ワーニング	過速度ワーニング	過速度のワーニングの発生条件を設定します。 【設定範囲】 1~5,000 r/min	4,500
	過電圧ワーニング	過電圧のワーニングの発生条件を設定します。 【設定範囲】 AC電源ドライバ:120〜450 V DC電源ドライバ:150〜630 V(1=0.1 V)	AC電源ドライバ:435 DC電源ドライバ:630
	不足電圧ワーニング	不足電圧のワーニングの発生条件を設定します。 【設定範囲】 AC電源ドライバ:120~280 V DC電源ドライバ:150~630 V(1=0.1 V)	AC電源ドライバ:120 DC電源ドライバ:180
	カレントオン時位置 偏差過大ワーニング	カレントオン時位置偏差過大のワーニングの 発生条件を設定します。 【設定範囲】 1~30,000(1=0.01 rev)	300

■ READY出力

運転準備が完了すると、READY出力がONになります。READY出力がONになってから、運転開始指令をドライバに入力 してください。次のすべての条件が満たされると、READY出力はONになります。

- ドライバの主電源を投入
- 運転を開始する入力がすべてOFF
- FREE入力がOFF
- C-ON入力がON(C-ON入力が割り付けられているとき)
- STOP入力がOFF
- アラームが発生していない
- モーターが動作していない
- MEXE02でテスト機能、ダウンロード、またはティーチングが実行されていない
- OPX-2Aでテスト運転、ダウンロード、初期化、またはティーチングが実行されていない
- RS-485通信でConfigurationコマンド、全データ初期化コマンド、およびNVメモリー括読み出しコマンドが実行されて いない

■ HOME-P出力

[HOME-P出力機能選択]パラメータの設定に応じて、HOME-P出力がONになります。座標の確定については201ページ をご覧ください。

● 「HOME-P出力機能選択」パラメータが「原点出力」のとき

MOVE出力がOFFで、ドライバの指令位置が原点にあるとき、HOME-P出力がONになります。ただし、ドライバの座標が確定していないときはOFFのままです。

● 「HOME-P出力機能選択」パラメータが「原点復帰完了出力」のとき

ドライバの指令位置に関係なく、ドライバの座標が確定すると、HOME-P出力がONになります。したがって原点復帰運転の終了後やプリセット後にONになります。いったんONになったHOME-P出力は、座標が未確定状態になるまでOFFになりません。

(memo) バッテリを使用している場合、DC電源がONの間は、バッテリが充電されます。DC電源がOFFの状態で バッテリが切れたり、データ保持時間を過ぎると、座標が未確定状態(原点座標を見失った状態)になりま す。

● 関連するパラメータ

MEXE02 ツリー表示	パラメータ名	内容	初期値
1/0	HOME-P出力機能選択	HOME-P出力を出力させるタイミングを設定します。 【設定範囲】 0:原点出力 1:原点復帰完了出力	0

MOVE出力

モーターの動作中、MOVE出力がONになります。

関連するパラメータ

MEXE02ッリー表示	パラメータ名	内容	初期値
I/O	MOVE出力最小時間	MOVE出力の最小ON時間を設定します。 【設定範囲】 0~255 ms	0

END出力

モーターの運転が終了すると、END出力がONになります。END出力は、MOVE出力がOFFの状態で、ローターが指令位 置に対して「位置決め完了出力幅」パラメータの値に収束したとき、ONになります。

関連するパラメータ

MEXE02ッリー表示	パラメータ名	内容	初期値
	位置決め完了出力幅	ENDの出力範囲(ローターが収束する角度範囲)を設 定します。 【設定範囲】 0~180(1=0.1°)	18
1/0	位置決め完了出力オフセット	ENDのオフセット(収束する角度範囲のオフセット) を設定します。 【設定範囲】 -18~18(1=0.1°)	0

TLC出力

負荷がモーターのトルク仕様を超えるとONになります。 押し当て運転では、押し当て運転電流比率から算出されたトルク範囲を超えると、TLC出力がONになります。 押し当て運転の完了信号としてお使いください。

AREA1~AREA3出力

モーターが設定したエリアの範囲内にあるとき、AREA出力がONになります。 モーターの停止中でも、モーターが範囲内にあるときはONになります。

関連するパラメータ

MEXE02ツリー表示	パラメータ名	内容	初期値
	AREA1+方向位置	AREA1~AREA3の+方向位置を設定します。	
I/O	AREA2+方向位置	【設定範囲】	0
	AREA3+方向位置	-8,388,608~8,388,607 step	
	AREA1-方向位置	AREA1~AREA3の-方向位置を設定します。	
	AREA2-方向位置	【設定範囲】	0
	AREA3-方向位置	-8,388,608~8,388,607 step	

「AREA+方向位置」パラメータ=「AREA-方向位置」パラメータの場合 AREA出力がON条件:モーターの位置=AREA-方向位置=AREA+方向位置

AREA1~AREA3出力のON条件であるモーター位置には、指令位置と検出位置の2種類があります。 AREA1、AREA2:指令位置、AREA3:検出位置

TIM出力

TIM出力は、モーター出力軸が7.2°回転するたびにONになります。 なお、TIM出力は、指令速度が30 r/min以下にならないと正常にONになりません。

TIM出力は、モーター出力軸1回転あたり50パルス出力されます。TIM出力を使用するときは、「電子ギヤ」 パラメータで分解能を50の整数倍に設定してください。

S-BSY出力

ドライバが内部処理状態のときにONになります。ドライバは次の場合に内部処理状態になります。

• RS-485通信でメンテナンスコマンドを実行中

MPS出力(AC電源ドライバのみ)

ドライバの主電源が投入されているときに、ONになります。

■ レスポンス出力

レスポンス出力は、対応する入力信号のON/OFF状態を出力する信号です。 入力信号と出力信号の対応は表のとおりです。

入力信号	出力信号	入力信号	出力信号	入力信号	出力信号
FWD	FWD_R	MS2	MS2_R	M2	M2_R
RVS	RVS_R	MS3	MS3_R	M3	M3_R
HOME	HOME_R	MS4	MS4_R	M4	M4_R
START	START_R	MS5	MS5_R	M5	M5_R
SSTART	SSTART_R	FREE	FREE_R	+LS	+LS_R
+JOG	+JOG_R	C-ON	C-ON_R	–LS	-LS_R
-JOG	-JOG_R	STOP	STOP_R	HOMES	HOMES_R
MS0	MS0_R	MO	M0_R	SLIT	SLIT_R
MS1	MS1_R	M1	M1_R		

(memo) レスポンス出力は、入力信号の状態を返す出力信号です。そのため、START_R出力など、モーターを運転 する入力信号に対する出力信号は、モーターの動作を示すものではありません。

1-5 センサ入力

■ 内部入力回路

📕 +LS入力、-LS入力

リミットセンサからの入力です。+LS入力は+側センサ、-LS入力は-側センサになります。

- 原点復帰時……………+LS入力または-LS入力が検出されると、「原点復帰方法」パラメータの設定に従って、原点復帰運転 を行ないます。
- 原点復帰以外......ハードウェアオーバートラベルを検出し、モーターを停止させます。ハードウェアオーバートラベル いについては199ページをご覧ください。

関連するパラメータ

MEXE02ツリー表示	パラメータ名	内容	初期値
I/O	ハードウェアオーバートラベル	±LS入力によるハードウェアオーバートラベル 検出の有効/無効を設定します。 【設定範囲】 0:無効 1:有効	1
	オーバートラベル動作	オーバートラベルが発生したときのモーターの 停止方法を設定します。 【設定範囲】 0:即停止 1:減速停止	0
	LS接点設定	±LS入力の入力接点を設定します。 【設定範囲】 0:A接点(N.O.) 1:B接点(N.C.)	0

■ HOMES入力

「原点復帰方法」パラメータを「1:3センサ方式」に設定したときの、機械原点センサの入力です。 原点復帰運転については183ページをご覧ください。

関連するパラメータ

MEXE02ツリー表示	パラメータ名	内容	初期値
I/O	HOMES接点設定	HOMES入力の入力接点を設定します。	
		【設定範囲】 0:A接点 (N.O.) 1:B接点 (N.C.)	0

SLIT入力

スリット付の電動スライダなどを使用するときに接続してください。 原点復帰運転時、SLIT入力を併用すると、より正確に原点を検出できます。 原点復帰運転については183ページをご覧ください。

関連するパラメータ

MEXE02 ツリー表示	パラメータ名	内容	初期値
		SLIT入力の入力接点を設定します。	
I/O	SLIT接点設定	【設定範囲】 0:A接点 (N.O.) 1:B接点 (N.C.)	0

1-6 汎用信号(R0~R15)

R0~R15は、RS-485通信で制御できる汎用信号です。 R0~R15を使用すると、ドライバを通して、上位システムから外部機器の入出力信号を制御できます。ドライバのダイレクトI/OをI/Oユニットのように使用できます。 以下に、汎用信号の設定例を示します。

● 上位システムから外部機器に出力する場合

汎用信号R0をOUT0出力とNET-IN0に割り付けます。 NET-IN0を1にするとOUT0出力がONになり、0にするとOUT0出力がOFFになります。

● 外部機器の出力を上位システムに入力する場合

汎用信号R1をIN7入力とNET-OUT15に割り付けます。 外部機器からIN7入力をONにするとNET-OUT15が1になり、IN7入力をOFFにするとNET-OUT15が0になります。IN7 入力の接点は、「IN7入力接点設定」パラメータで設定できます。

※ 図は、AC電源ドライバです。

2 I/O制御

107

4 AC電源入力タイプ/DC電源入力タイプ 共通

STEP 4 うまく動かせましたか?

いかがでしたか。うまく運転できたでしょうか。 モーターが動かないときは、次の点を確認してください。

• CN1の回生抵抗サーマル入力端子 (TH1とTH2)は短絡されていますか?

- アラームが発生していませんか?
- 電源やモーターは確実に接続されていますか?

詳細な設定や機能については、157ページ[5 運転の種類と設定」をご覧ください。
■ DC電源ドライバ

STEP 4 うまく動かせましたか?

いかがでしたか。うまく運転できたでしょうか。 モーターが動かないときは、次の点を確認してください。

- アラームが発生していませんか?
- 電源やモーターは確実に接続されていますか?

詳細な設定や機能については、157ページ「5 運転の種類と設定」をご覧ください。

2-2 運転データ

設定できる運転データ数は64個です(データNo.0~63)。 データを変更すると、運転の停止後に再計算とセットアップが行なわれます。

項目	内容	初期値
位置No.0 ~	位置決め運転の位置(移動量)を設定します。 【設定範囲】	0
位置No.63	-8,388,608~+8,388,607 step	
	位置決め運転と連続運転の運転速度を設定します。	
~ 運転速度No.63	【設定範囲】 0~1,000,000 Hz	1,000
運転方式No.0 ~ 運転方式No.63	位置決め運転の位置(移動量)の指定方法を設定します。 【設定範囲】 0:INC (インクリメンタル) 1:ABS (アブソリュート)	0
	位置決め運転の実行方式を設定します。	
運転機能No.0 ~	【設定範囲】 0:単独	0
運転機能No.63	1:連結 2:連結2 3:押し当て	
加速No.0	位置決め運転と連続運転の加速レート(加速時間)を設定します。※1	
~ 加速No.63	【設定範囲】 1~1,000,000(1=0.001 ms/kHzまたは1=0.001 s)※2	1,000
	位置決め運転と連続運転の減速レート(減速時間)を設定します。※1	
~ 減速No.63	【設定範囲】 1~1,000,000(1=0.001 ms/kHzまたは1=0.001 s)※2	1,000
押し当て電流No.0	押し当て運転の電流比率を設定します。	
~ 押し当て電流No.63	【設定範囲】 0~1,000(1=0.1 %)※3	200
順送り位置決めNo.0	順送り位置決め運転の有効/無効を設定します。 【設定範囲】	
~ 順送り位置決めNo.63	0:無効 1:有効	U
ドウェル時間No.0	連結運転2の停止待ち時間を設定します。	
~ ドウェル時間No.63	【設定範囲】 0~50,000(1=0.001 s)	0

※1 「加減速選択」パラメータが「独立」のときに有効です。「共通」のときは、「共通加速」「共通減速」パラメータの設定値 が使用されます(初期値:独立)。

※2 「加減速単位」パラメータで、加減速レート (ms/kHz) か加減速時間 (s) を選択できます (初期値:加減速レート)。

※3 仕様変更前のドライバでは、設定範囲が0~500(1=0.1%)になります。詳細は8ページをご覧ください。

2-3 パラメータ

■ パラメータの反映タイミング

パラメータはRAMまたはNVメモリに保存されます。RAMのパラメータはDC電源を遮断すると消去されますが、NVメモ リのパラメータはDC電源を遮断しても保存されています。

ドライバにDC電源を投入すると、NVメモリのパラメータがRAMに転送され、RAM上でパラメータの再計算やセットアップが行なわれます。

RS-485 通信またはFAネットワークで設定したパラメータは、RAMに保存されます。RAMに保存されたパラメータをNV メモリに保存するには、メンテナンスコマンドの「NVメモリー括書き込み」を行なってください。 MEXE02で設定したパラメータは、「データの書き込み」を行なうとNVメモリに保存されます。

パラメータを変更したときに、変更した値が反映されるタイミングはパラメータによって異なります。反映タイミングの詳細は、「表記の規則」でご確認ください。

・ RS-485 通信またはFAネットワークで設定したパラメータはRAMに保存されます。電源の再投入が必要なパラメータを変更したときは、電源を切る前に必ずNVメモリへ保存してください。
 ・ NVメモリへの書き込み可能回数は、約10万回です。

表記の規則

本編では、それぞれの反映タイミングをアルファベットで表わしています。

表記	反映タイミング	内容
А	即時	パラメータを書き込むと、すぐに再計算とセットアップが行なわれます。
В	運転停止後	運転を停止すると、再計算とセットアップが行なわれます。
С	Configurationの実行後 または電源の再投入後	Configurationの実行後またはDC電源の再投入後に、再計算とセットアップ が行なわれます。
D	電源の再投入後	DC電源の再投入後に再計算とセットアップが行なわれます。

■ パラメータ一覧

	• STOP入力停止方法	● AREA2-方向位置	● MS0運転No.選択
	 ハードウェアオーバートラベル 	● AREA3+方向位置	● MS1運転No.選択
	 オーバートラベル動作 	● AREA3-方向位置	• MS2運転No.選択
1/0パラメータ	 位置決め完了出力幅 	● MOVE出力最小時間	• MS3運転No.選択
(113ページ)	●位置決め完了出力オフセット	● LS接点設定	● MS4運転No.選択
	● AREA1+方向位置	● HOMES接点設定	• MS5運転No.選択
	● AREA1-方向位置	• SLIT接点設定	• HOME-P出力機能選択
	● AREA2+方向位置		
	• RUN電流	• 速度ループ積分時定数	 速度差ゲイン1
モーターパラメータ	• STOP電流	• 速度フィルタ	• 速度差ゲイン2
(114ページ)	●位置ループゲイン	•移動平均時間	● 制御モード
	 速度ループゲイン 	• フィルタ選択	• スムースドライブ
	• 共通加速	• JOG起動速度	• 自動復帰運転速度
	●共通減速	• 加減速選択	• 自動復帰加減速
運転ハフメータ (115ページ)	• 起動速度	• 加減速単位	• 自動復帰起動速度
(113 ())	• JOG運転速度	• 自動復帰動作	• JOG移動量
	• JOG加減速		
	• 原点復帰方法	• 原点復帰起動速度	 ● 原点復帰SLITセンサ検出
原点復帰バラメータ (116ページ)	• 原点復帰運転速度	● 原点復帰オフセット	 ● 原点復帰TIM信号検出
	• 原点復帰加減速	• 原点復帰開始方向	 押し当て原点復帰運転電流
アラームパラメータ	 過負荷アラーム 	• カレントオン時位置偏差過大アラ	<u>–</u> –––––––––––––––––––––––––––––––––––
(117ページ)	● 原点復帰未完了アラーム	• カレントオフ時位置偏差過大アラ	ラーム

	• 過熱ワーニング	• 過電圧ワーニング	
(117ページ)	• 過負荷ワーニング	• 不足電圧ワーニング	
	• 過速度ワーニング	• カレントオン時位置偏差過大ワ-	ーニング
	 電子ギヤA 	 ソフトウェアオーバートラベル 	 プリセット位置
坐標バラメータ (118ページ)	 電子ギヤB 	• +ソフトウェアリミット	• ラウンド設定
(110(-y))	• モーター回転方向	• - ソフトウェアリミット	• ラウンド設定範囲
共通パラメータ	• データ設定器速度表示	 アブソリュートバックアップシス 	ステム
(118ページ)	• データ設定器編集		
I/O機能[入力] パラメータ (119ページ)	• IN0~IN7入力機能選択	● IN0~IN7入力接点設定	
I/O機能[出力] パラメータ (119ページ)	•OUT0~OUT5出力機能選択		
I/O機能[RS-485]パラメータ (120ページ)	•NET-IN0~NET-IN15入力機能通	選択	
	• NET-OUT0~NET-OUT15出力	機能選択	
通信パラメータ	 通信タイムアウト 	●通信パリティ	 送信待ち時間
(121ページ)	• 通信異常アラーム	• 通信ストップビット	

■ I/Oパラメータ

パラメータ名	内容	初期値	反映
STOP入力停止方法	STOP入力でモーターを停止させたときの、モーターの停止方法を設定 します。 【設定範囲】 0:即停止 1:減速停止 2:即停止+カレントオフ 3:減速停止+カレントオフ	1	A
ハードウェア オーバートラベル	±LS入力によるハードウェアオーバートラベル検出の有効/無効を設定し ます。 【設定範囲】 0:無効 1:有効	1	A
オーバートラベル 動作	オーバートラベルが発生したときのモーターの停止方法を設定します。 【設定範囲】 0:即停止 1:減速停止	0	A
位置決め完了出力幅	END出力の出力範囲(ローターが収束する角度範囲)を設定します。 【設定範囲】 0~180(1=0.1°)	18	А
位置決め完了出力 オフセット	END出力のオフセット(収束する角度範囲のオフセット)を設定します。 【設定範囲】 -18~18(1=0.1°)	0	А
AREA1+方向位置 AREA2+方向位置 AREA3+方向位置	AREA1~AREA3の+方向位置を設定します。 【設定範囲】 -8,388,608~8,388,607 step	0	А
AREA1-方向位置 AREA2-方向位置 AREA3-方向位置	AREA1~AREA3の-方向位置を設定します。 【設定範囲】 -8,388,608~8,388,607 step	0	А
MOVE出力最小時間	MOVE出力の最小ON時間を設定します。 【設定範囲】 0~255 ms	0	А
LS接点設定	±LS入力の入力接点を設定します。 【設定範囲】 0:A接点 (N.O.) 1:B接点 (N.C.)	0	С

パラメータ名	内容	初期値	反映
HOMES接点設定	HOMES入力の入力接点を設定します。 【設定範囲】 0:A接点 (N.O.) 1:B接点 (N.C.)	0	С
SLIT接点設定	SLIT入力の入力接点を設定します。 【設定範囲】 0:A接点 (N.O.) 1:B接点 (N.C.)	0	С
MS0運転No.選択		0	
MS1運転No.選択		1	
MS2運転No.選択	MSU~MS5人刀に対応させる連転テータNO.を設定します。	2	Б
MS3運転No.選択	【設定範囲】 10~63	3	D
MS4運転No.選択		4	
MS5運転No.選択		5	
HOME-P出力機能 選択	HOME-P出力を出力させるタイミングを設定します。 【設定範囲】 0:原点出力 1:原点復帰完了出力	0	A

■ モーターパラメータ

パラメータ名	内容	初期値	反映
RUN電流	定格電流を100%として、モーターの運転電流率を設定します。 【設定範囲】 0~1,000(1=0.1%)	1,000	A
STOP電流	定格電流を100 %として、モーター停止時の電流を定格電流に 対する割合で設定します。 【設定範囲】 0~500(1=0.1 %)	500	A
位置ループゲイン	位置偏差に対する追従性を調整します。 【設定範囲】 1~50	10	А
速度ループゲイン	速度偏差に対する追従性を調整します。 【設定範囲】 10~200	180	A
速度ループ積分時定数	速度ループゲインでは調整できない偏差を調整します。 【設定範囲】 100~2,000(1=0.1 ms)	1,000	А
速度フィルタ	モーターの応答性を調整します。 【設定範囲】 0~200 ms	1	В
移動平均時間	移動平均フィルタの時定数を設定します。 【設定範囲】 1~200 ms	1	В
フィルタ選択	モーターの応答性を調整するためのフィルタ機能を設定します。 【設定範囲】 0:速度フィルタ 1:移動平均フィルタ	0	С
速度差ゲイン1	運転時の振動を調整します。 【設定範囲】 0~500	45	А
速度差ゲイン2	加減速時の振動を調整します。 【設定範囲】 0~500	45	A

パラメータ名	内容	初期値	反映
制御モード	ドライバの制御モードを設定します。 【設定範囲】 0:ノーマルモード 1:電流制御モード	0	С
スムースドライブ	スムースドライブ機能の有効/無効を設定します。 【設定範囲】 0:無効 1:有効	1	С

■ 運転パラメータ

パラメータ名	内容	初期値	反映
共通加速	位置決め運転と連続運転の共通加速レート(共通加速時間)を設定します。 【設定範囲】 1~1,000,000(1=0.001 ms/kHzまたは1=0.001 s)※	1,000	В
共通减速	位置決め運転と連続運転の共通減速レート (共通減速時間) を設定します。 【設定範囲】 1~1,000,000 (1=0.001 ms/kHzまたは1=0.001 s) ※	1,000	В
起動速度	位置決め運転と連続運転の起動速度を設定します。運転速度の値が起動速度よりも小さいときは、起動速度で運転します。 【設定範囲】 0~1,000,000 Hz	500	В
JOG運転速度	JOG運転の運転速度を設定します。 【設定範囲】 1~1,000,000 Hz	1,000	В
JOG加減速	JOG運転の加減速レート(加減速時間)を設定します。 【設定範囲】 1~1,000,000(1=0.001 ms/kHzまたは1=0.001 s)※	1,000	В
JOG起動速度	JOG運転の起動速度を設定します。 【設定範囲】 0~1,000,000 Hz	500	В
加減速選択	共通加減速または運転データの加減速のどちらを使用するか設定し ます。 【設定範囲】 0:共通 1:独立	1	В
加減速単位	加減速の単位を設定します。 【設定範囲】 O:ms/kHz 1:s	0	С
自動復帰動作	自動復帰動作の有効/無効を設定します。 【設定範囲】 0:無効 1:有効	0	С
自動復帰運転速度	自動復帰動作の運転速度を設定します。 【設定範囲】 1~1,000,000 Hz	1,000	В
自動復帰加減速	自動復帰動作の加減速レート(加減速時間)を設定します。 【設定範囲】 1~1,000,000(1=0.001 ms/kHzまたは1=0.001_s)※	1,000	В
自動復帰起動速度	自動復帰動作の起動速度を設定します。 【設定範囲】 0~1,000,000 Hz	500	В

パラメータ名	内容	初期値	反映
JOG移動量	JOG運転の移動量を設定します。 【設定範囲】 1~8,388,607 step	1	В

※ 「加減速単位」パラメータで、加減速レート(ms/kHz)か加減速時間(s)を選択できます(初期値:加減速レート)。

■ 原点復帰パラメータ

パラメータ名	内容	初期値	反映
原点復帰方法	原点復帰方法を設定します。 【設定範囲】 0:2センサ方式 1:3センサ方式 2:押し当て方式	1	В
原点復帰運転速度	原点復帰運転の運転速度を設定します。 【設定範囲】 1~1,000,000 Hz	1,000	В
原点復帰加減速	原点復帰運転の加減速レート (加減速時間) を設定します。 【設定範囲】 1~1,000,000 (1=0.001 ms/kHzまたは1=0.001 s) ※	1,000	В
原点復帰起動速度	原点復帰運転の起動速度を設定します。 【設定範囲】 1~1,000,000 Hz	500	В
原点復帰オフセット	原点からのオフセット量を設定します。 【設定範囲】 -8,388,608~8,388,607 step	0	В
原点復帰開始方向	原点検出の開始方向を設定します。 【 <mark>設定範囲】</mark> 0:-側 1:+側	1	В
原点復帰SLITセンサ検出	原点復帰時にSLIT入力を併用するかを設定します。 【 <mark>設定範囲】</mark> 0:無効 1:有効	0	В
原点復帰TIM信号検出	原点復帰時にTIM信号を併用するかを設定します。 【 <mark>設定範囲】</mark> 0:無効 1:有効	0	В
押し当て原点復帰運転電流	定格電流を100 %として、押し当て原点復帰の運転電流率を 設定します 【設定範囲】 0~1,000(1=0.1 %)	1,000	В

※ 「加減速単位」パラメータで、加減速レート(ms/kHz)か加減速時間(s)を選択できます(初期値:加減速レート)。

■ アラームパラメータ

パラメータ名	内容	初期値	反映
過負荷アラーム	過負荷のアラームの発生条件を設定します。 【設定範囲】 1~300(1=0.1 s)	50	A
カレントオン時位置偏差 過大アラーム	カレントオン時位置偏差過大のアラームの発生条件を設定します。 【設定範囲】 1~30,000(1=0.01 rev)	300	А
原点復帰未完了アラーム	座標が確定していない状態で位置決め運転を開始したときに、アラー ムを発生させるかを設定します。 【設定範囲】 0:無効 1:有効	0	С
カレントオフ時位置偏差 過大アラーム	設定した値を超えると、カレントオフ時位置偏差過大ワーニングが 発生します。さらにC-ON入力をONにすると、カレントオフ時位置 偏差過大アラームが発生します。 【設定範囲】 1~30,000(1=0.01 rev)	10,000	A

■ ワーニングパラメータ

パラメータ名	内容	初期値	反映
過熱ワーニング	主回路過熱のワーニングの発生条件を設定します。 【設定範囲】 40~85 ℃	85	А
過負荷ワーニング	過負荷のワーニングの発生条件を設定します。 【設定範囲】 1~300(1=0.1 s)	50	А
過速度ワーニング	過速度のワーニングの発生条件を設定します。 【設定範囲】 1~5,000 r/min	4,500	A
過電圧ワーニング (AC電源ドライバ)	過電圧のワーニングの発生条件を設定します。 【設定範囲】 120~450 V	435	A
過電圧ワーニング (DC電源ドライバ)	過電圧のワーニングの発生条件を設定します。 【設定範囲】 150~630(1=0.1 V)	630	A
不足電圧ワーニング (AC電源ドライバ)	不足電圧のワーニングの発生条件を設定します。 【設定範囲】 120~280 V	120	А
不足電圧ワーニング (DC電源ドライバ)	不足電圧のワーニングの発生条件を設定します。 【設定範囲】 150~630 (1=0.1 V)	180	А
カレントオン時位置偏差 過大ワーニング	カレントオン時位置偏差過大のワーニングの発生条件を設定します。 【設定範囲】 1~30,000(1=0.01 rev)	300	А

4 AC電源入力タイプ/DC電源入力タイプ 共通

■ 座標パラメータ

パラメータ名	内容	初期値	反映
電子ギヤA	電子ギヤの分母を設定します。 【設定範囲】 1~65,535	1	С
電子ギヤB	電子ギヤの分子を設定します。 【設定範囲】 1~65,535	1	С
モーター回転方向	モーター出力軸の回転方向を設定します。 【設定範囲】 0:+側=CCW 1:+側=CW	1	С
ソフトウェアオーバー トラベル	 ソフトリミットによるソフトウェアオーバートラベル検出の有効 /無効を設定します。 【設定範囲】 0:無効 1:有効 	1	A
+ソフトウェアリミット	+方向のソフトウェアリミットを設定します。 【設定範囲】 -8,388,608~8,388,607 step	8,388,607	A
	ー方向のソフトウェアリミットを設定します。 【設定範囲】 -8,388,608~8,388,607 step	-8,388,608	А
プリセット位置	プリセット位置を設定します。 【設定範囲】 –8,388,608~8,388,607 step	0	А
ラウンド設定	ラウンド機能の有効/無効を設定します。 【設定範囲】 0:無効 1:有効	0	С
ラウンド設定範囲	ラウンド設定範囲を設定します。 【設定範囲】 1~8,388,607 step	1,000	С

■ 共通パラメータ

パラメータ名	内容	初期値	反映
データ設定器速度表示	OPX-2Aの速度モニタの表示方法を設定します。 【設定範囲】 0:符号あり 1:絶対値	0	A
データ設定器編集	OPX-2Aによる編集を可能にするかを設定します。 【設定範囲】 0:無効 1:有効	1	A
アブソリュートバック アップシステム	アブソリュートバックアップシステムの有効/無効を設定します。 【設定範囲】 0:無効 1:有効	0	С

■ I/O機能[入力]パラメータ

パラメータ名	内容	初期値	反映
IN0入力機能選択		3:HOME	
IN1入力機能選択		4:START	
IN2入力機能選択	入力信号を入力端子INO~IN7に割り付けます。 【設定範囲】 次表をご覧ください。	48:M0	
IN3入力機能選択		49:M1	C
IN4入力機能選択		50:M2	C
IN5入力機能選択		16:FREE	
IN6入力機能選択		18:STOP	
IN7入力機能選択		24:ALM-RST	
IN0入力接点設定			
IN1入力接点設定			
IN2入力接点設定	入力端子IN0~IN7の接点設定を切り替えます。		
IN3入力接点設定	【設定範囲】	0	C
IN4入力接点設定	0:A接点(N.O.)	0	C
IN5入力接点設定	1:B接点(N.C.)		
IN6入力接点設定			
IN7入力接点設定			

IN入力機能選択の設定範囲

0:未使用	8:MS0	18:STOP	35:R3	43:R11	51:M3
1:FWD	9:MS1	24:ALM-RST	36:R4	44:R12	52:M4
2:RVS	10:MS2	25:P-PRESET	37:R5	45:R13	53:M5
3:HOME	11:MS3	26:P-CLR	38:R6	46:R14	
4:START	12:MS4	27:HMI	39:R7	47:R15	
5:SSTART	13:MS5	32:R0	40:R8	48:M0	
6:+JOG	16:FREE	33:R1	41:R9	49:M1	
7:-JOG	17:C-ON	34:R2	42:R10	50:M2	

■ I/O機能[出力]パラメータ

パラメータ名	内容	初期値	反映
OUT0出力機能選択		70:HOME-P	
OUT1出力機能選択		69:END	
OUT2出力機能選択	出力信号を出力端子OUI0~OUI5に割り付けます。 【設定範囲】 次表をご覧ください。	73:AREA1	C
OUT3出力機能選択		67:READY	
OUT4出力機能選択		66:WNG	
OUT5出力機能選択		65:ALM	

OUT出力機能選択の設定範囲

0:未使用	10:MS2_R	35:R3	45:R13	61:-LS_R	72:TIM
1:FWD_R	11:MS3_R	36:R4	46:R14	62:HOMES_R	73:AREA1
2:RVS_R	12:MS4_R	37:R5	47:R15	63:SLIT_R	74:AREA2
3:HOME_R	13:MS5_R	38:R6	48:M0_R	65:ALM	75:AREA3
4:START_R	16:FREE_R	39:R7	49:M1_R	66:WNG	80:S-BSY
5:SSTART_R	17:C-ON_R	40:R8	50:M2_R	67:READY	82:MPS*
6:+JOG_R	18:STOP_R	41:R9	51:M3_R	68:MOVE	
7:-JOG_R	32:R0	42:R10	52:M4_R	69:END	
8:MS0_R	33:R1	43:R11	53:M5_R	70:HOME-P	
9:MS1_R	34:R2	44:R12	60:+LS_R	71:TLC	

※ AC電源ドライバのみ

■ I/O機能[RS-485]パラメータ

パラメータ名	内容	初期値	反映
NET-IN0入力機能選択		48:M0	
NET-IN1入力機能選択		49:M1	
NET-IN2入力機能選択		50:M2	
NET-IN3入力機能選択		4:START	
NET-IN4入力機能選択		3:HOME	
NET-IN5入力機能選択		18:STOP	
NET-IN6入力機能選択		16:FREE	
NET-IN7入力機能選択	へ力信号をNET-INU~NET-INT5に割り付けます。	0:未使用	C
NET-IN8入力機能選択	【設定範囲】 - 次表をご覧ください。	8:MS0	C
NET-IN9入力機能選択		9:MS1	
NET-IN10入力機能選択		10:MS2	
NET-IN11入力機能選択		5:SSTART	
NET-IN12入力機能選択		6:+JOG	
NET-IN13入力機能選択		7:-JOG	
NET-IN14入力機能選択		1:FWD	
NET-IN15入力機能選択		2:RVS	
NET-OUT0出力機能選択		48:M0_R	
NET-OUT1出力機能選択		49:M1_R	
NET-OUT2出力機能選択		50:M2_R	
NET-OUT3出力機能選択		4:START_R	
NET-OUT4出力機能選択		70:HOME-P	
NET-OUT5出力機能選択		67:READY	
NET-OUT6出力機能選択		66:WNG	
NET-OUT7出力機能選択	山川信ちをNET-OUTU~NET-OUTUC割りりります。	65:ALM	C
NET-OUT8出力機能選択	【設正郵囲】 次ページをご覧ください	80:S-BSY	C
NET-OUT9出力機能選択		73:AREA1	
NET-OUT10出力機能選択		74:AREA2	
NET-OUT11出力機能選択		75:AREA3	
NET-OUT12出力機能選択		72:TIM	
NET-OUT13出力機能選択		68:MOVE	
NET-OUT14出力機能選択		69:END	
NET-OUT15出力機能選択		71:TLC	

● NET-IN入力機能選択の設定範囲

0:未使用	8:MS0	18:STOP	35:R3	43:R11	51:M3
1:FWD	9:MS1	24:ALM-RST%	36:R4	44:R12	52:M4
2:RVS	10:MS2	25:P-PRESET ※	37:R5	45:R13	53:M5
3:HOME	11:MS3	26:P-CLR*	38:R6	46:R14	
4:START	12:MS4	27:HMI	39:R7	47:R15	
5:SSTART	13:MS5	32:R0	40:R8	48:M0	
6:+JOG	16:FREE	33:R1	41:R9	49:M1	
7:-JOG	17:C-ON	34:R2	42:R10	50:M2	

※ 仕様変更前のドライバでは設定できません。詳細は8ページをご覧ください。

● NET-OUT出力機能選択の設定範囲

0:未使用	10:MS2_R	35:R3	45:R13	61:-LS_R	72:TIM
1:FWD_R	11:MS3_R	36:R4	46:R14	62:HOMES_R	73:AREA1
2:RVS_R	12:MS4_R	37:R5	47:R15	63:SLIT_R	74:AREA2
3:HOME_R	13:MS5_R	38:R6	48:M0_R	65:ALM	75:AREA3
4:START_R	16:FREE_R	39:R7	49:M1_R	66:WNG	80:S-BSY
5:SSTART_R	17:C-ON_R	40:R8	50:M2_R	67:READY	82:MPS*
6:+JOG_R	18:STOP_R	41:R9	51:M3_R	68:MOVE	
7:-JOG_R	32:R0	42:R10	52:M4_R	69:END	
8:MS0_R	33:R1	43:R11	53:M5_R	70:HOME-P	
9:MS1_R	34:R2	44:R12	60:+LS_R	71:TLC	

※ AC電源ドライバのみ

■ 通信パラメータ

パラメータ名	内容	初期値	反映
通信タイムアウト	RS-485通信の通信タイムアウトの発生条件を設定します。設定 値が0のときは監視しません。 【設定範囲】 0:監視なし 1~10,000 ms	0	A
通信異常アラーム	RS-485通信異常アラームの発生条件を設定します。設定した回 数だけRS-485通信異常が発生すると、通信異常アラームになり ます。 【設定範囲】 1~10回	3	A
通信パリティ	RS-485通信のパリティを設定します。 【設定範囲】 0:なし 1:偶数 2:奇数	1	D
通信ストップビット	RS-485通信のストップビットを設定します。 【設定範囲】 0:1ビット 1:2ビット	0	D
送信待ち時間	RS-485通信の送信待ち時間を設定します。 【設定範囲】 0~10,000(1=0.1 ms)	100	D

3 OPX-2Aの操作方法

OPX-2Aの概要や操作方法について説明します。

OPX-2Aのケーブルを抜き差しするときは、ドライバの電源を切ってください。

3-1 OPX-2Aの概要

OPX-2Aは、運転データやパラメータなどのデータを設定したり、モニタなどを実行できるデータ設定器です。また、ドラ イバのデータを**OPX-2A**に保存しておくこともできます。保存先(データバンク)は4つあります。

OPX-2Aは、次のような使い方ができます。

- ドライバのデータを設定できます。
- 通信時間や通信の状態をモニタできます。
- アラーム履歴を確認したり、履歴を削除できます。
- ドライバで設定したデータをOPX-2Aに保存しておくことができます。
- OPX-2Aに保存したデータを別のドライバにコピーできます。

表記について

本文内でキーを説明するときは、【^{MODE}】【SET】【**个】【↓】【↓】【→】**の記号を使用しています。 また、表示部やLED表示部は、図のように省略して表記しています。

8	8	8	8	8	8	8	8	8

■ 編集ロック機能

データの編集や消去を禁止するときは、編集ロック機能を有効にしてください。 編集ロック機能が有効になっている間は、変更・削除できなくなります。

● 編集ロック機能の設定

各操作モードのトップ画面で、【^{MODE}】を5秒以上押します。 「LocK」が表示され、編集ロック機能が有効になります。 LED表示部の「LOCK」LEDが点灯します。

Loch	
「LOCK」点	灯

● 編集ロック機能の解除

再度、トップ画面で【^{MODE}】を5秒以上押します。 「UnLocK」が表示され、編集ロック機能が解除されます。 LED表示部の「LOCK」LEDが消灯します。

Unloch	

3-2 各部の名称と機能

3-3 表示部の見方

表示部は7セグメントLEDです。(アラビア数字の[5]とアルファベットの[S]は同じ表示です。)

・アラビア数字

LED表示部の見方

モードが変わったり、アラームやワーニングが発生すると、LEDが点灯します。 また、モーターの運転中や、編集ロック機能を有効にしているときも、LEDが点灯します。

3-4 OPX-2Aのエラー表示

OPX-2Aに表示されるエラーの内容です。

エラー表示	内容	処置
E in Eolle I. I.	OPX-2A とドライバとの間 で、通信異常が発生しました。	 OPX-2Aが確実に接続されているか確認してください。 OPX-2Aのケーブルに断線や、キズなどの異常がないか確認してください。 OPX-2Aまたはドライバの通信部分が破損したおそれがあります。最寄りのお客様ご相談センターにお問い合わせください。

125

3-5 画面遷移

(memo) ・編集ロック機能が有効になっている間は、次の制限があります。

- ・データモード、パラメータモード:画面に表示されますが、操作はできません。
- アラームとワーニング履歴の消去、データクリア、位置プリセット、ティーチング、コピーモード: 画面に表示されません。
- HMI入力がOFFになっているときは、モニタモード、アップロード、照合、およびパラメータモードの 閲覧しかできません。

トップ画面から下の階層は、(MODE)を押すと1つ上の階層に戻る


```
トップ画面から下の階層は、 ( ) を押すと1つ上の階層に戻る
```

→ コピーモード

---- は、RS-485通信で内部処理を行なっているときは実行できません。 ^(SET)を押しても「mEm-bUSy」が表示されます。

トップ画面から下の階層は、 Mode を押すと1つ上の階層に戻る

---- は、RS-485通信で内部処理を行なっているときは実行できません。 (ser)を押しても「mEm-bUSy」が表示されます。

3-6 モニタモード

■ モニタモードの概要

動作状態のモニタ

モーターの速度、指令位置、運転中の運転データNo.、および選択されている運転データNo.をリアルタイムでモニタできま す。

(memo) OPX-2Aでモニタできる範囲は-19,999,999~19,999,999の最大8桁です。しかし、OPX-2Aの表示部に 表示できるのは7桁のため、モニタした値が8桁のときは下7桁だけが表示され、さらに表示部の右下に丸 印が付きます。

表示例

実際の値	-19,999,999	-10,000,001	-10,000,000	10,000,000	10,000,001	19,999,999
表示	-99999999.	-0000001.	-0000000.	0000000.	0000001.	99999999.

▶ アラーム・ワーニングの確認と履歴の消去、アラームの解除

- アラームやワーニングが発生した場合、アラームコードやワーニングコードが表示されるので、内容を確認できます。
- 最新のものから順に、10個のアラーム・ワーニング履歴を確認できます。また、履歴の消去もできます。
- 発生中のアラームを解除できます。

入出力信号の確認

ドライバの入出力信号のON/OFF状態を確認できます。

■ モニタ項目

速度

モーターの速度を確認できます(単位:r/min)。 CCW方向に回転中は「-」が表示されますが、絶対値で表示させているときは、回転方向を示す符号が付きません。数値の表 示形式は、「データ設定器速度表示」パラメータで選べます。

指令位置

原点を基準としたモーターの指令位置を確認できます。 分解能を設定しているときは、分解能に応じた値が動作したステップ数として表示されます。

運転番号

位置決め運転の運転データNo.を確認できます。

選択番号

選択されている運転データNo.を確認できます。

● アラーム

アラームが発生すると、アラームコードが表示されます。また、アラームを解除したり、アラーム履歴の確認と消去も実行 できます。アラームコードの詳細やアラームの解除方法については、148ページをご覧ください。

Ξ 臿

アラームを解除したり、アラーム履歴を消去している間(表示が点滅している間)はドライバの電源を切ら ないでください。データが破損するおそれがあります。

(**memo)**アラームの種類によっては、**OPX-2A**で解除できないものがあります。148ページ「アラーム一覧」で確認 してください。これらのアラームはドライバの電源を再投入して解除してください。

• ワーニング

ワーニングが発生すると、ワーニングコードが表示されます。また、ワーニング履歴を確認したり、ワーニング履歴を消去 できます。ワーニングコードの詳細は、154ページをご覧ください。

重

要 ワーニング履歴を消去している間(表示が点滅している間)はドライバの電源を切らないでください。デー タが破損するおそれがあります。

(memo) ワーニング履歴は、ドライバの電源を切っても自動で消去されます。

● ダイレクトI/Oモニタ

ドライバの入出力信号のON/OFF状態を確認できます。 7セグメントLEDがそれぞれの信号に対応しています。信号がONのときは点灯、OFFのときは消灯します。

•入力信号

• 出力信号

3-7 データモード

モーターの運転データを64個まで設定できます。設定した運転データはドライバのNVメモリに記憶されます。 OPX-2Aを ドライバから取り外しても、データが消えることはありません。

(memo)

- ・編集ロック機能やHMI入力で操作が制限されているときは、運転データを編集できません。
 - パラメータモードでIDを選択しても運転データを設定できます。
 - 設定範囲外の値を入力したときは、「Error」が1秒間表示されます。設定範囲内の数値を入力しなおして ください。
 - RS-485通信で内部処理を行なっているときに【SET】キーを押すと、「mEm-bUSy」が表示される場合 があります。「mEm-bUSy」が表示されるタイミングは、126ページ「3-5 画面遷移」で確認してくださ い。必ず内部処理が終了してから、【SET】キーを押してください。

設定項目

項目	初期値	設定範囲	内容
運転方式	0	0:インクリメンタル方式 1:アブソリュート方式	位置決め運転の位置(移動量)の指定方法(アブソリュート 方式またはインクリメンタル方式)を選択します。
位置	0	-8,388,608~+8,388,607 step	位置決め運転の位置(移動量)を設定します。
運転速度	1,000	1~1,000,000 Hz	位置決め運転と連続運転の運転速度を設定します。
運転機能	0	0:単独 1:連結 2:連結2 3:押し当て	位置決め運転の単独/連結/押し当てを設定します。
順送り位置決め	0	0:無効 1:有効	順送り位置決め運転の有効/無効を設定します。
加速※	1 000	0.001~1,000.000 ms/kHz	位置決め運転と連続運転の加速レートまたは時間を設定 します。
減速※	1.000	または0.001~1,000.000 s	位置決め運転と連続運転の減速レートまたは時間を設定 します。
押し当て電流	20.0	0.0~100.0 %	押し当て運転の電流値を設定します。
ドウェル時間	0.000	0.000~50.000 s	連結運転2で使用するドウェル時間を設定します。

※ 「加減速選択」パラメータが「独立」のときに有効となります。「共通」のときは、「共通加速」パラメータと「共通減速」パラ メータの値が使用されます。

● ドウェル時間の設定方法

「運転機能」で「連結2」を表示させ、【SET】を押すと、ドウェル時間を設定する画面が表示されます。 【个】【↓】【◆】【→】でドウェル時間を入力し、【SET】を押してください。

■ 設定例

ここでは、運転データNo.0の運転方式と位置を変更する方法を説明します。

- 運転方式:インクリメンタル方式をアブソリュート方式に変更する。
- 位置:0 stepを10,000 stepに変更する。
- 【^{MODE} ESC</sub>】でデータモードに移行します。
 [DATA]LEDが点灯します。
- データモードのトップ画面で【SET】を押します。
 運転データNo.0に移行します。
- 【SET】を押します。
 運転方式に移行します。
- 4. 再度、【SET】を押します。 運転方式の現在の設定値が点滅表示されます。
- 5. 【↓】を1回押して、「1」を選択します。
- SET】を押します。
 入力した値の点滅が早くなり、確定します。
 運転方式に戻ります。
- 【↓】を押します。
 位置に移行します。
- 8.【SET】を押します。 位置の現在の設定値が点滅表示されます。
- (个)【↓】【→】で「10,000」を入力します。 選択している桁だけが点滅表示されます。
- 【SET】を押します。
 入力した値の点滅が早くなり、確定します。
 位置に戻ります。
- 11. 【^{MODE} ESC</sub>】を押します。 運転データNo.0に戻ります。

■ 指定した運転データの初期化

指定した運転データNo.の設定値をすべて初期値に戻すことができます。データモードの「データクリア」を実行してください。操作は、127ページのデータモードの画面遷移でご確認ください。

■ 全運転データの初期化

ドライバに保存されているすべての運転データを初期値に戻すことができます。コピーモードの「運転データ初期化」を実行してください。操作は、130ページのコピーモードの画面遷移でご確認ください。

■ パラメーター覧

各パラメータには固有のIDがあります。OPX-2Aでは、IDを選択してパラメータを設定します。

● 運転データ

運転データは、データモードでも設定できます。

ID	名称	設定範囲	初期値	反映
640 ~ 703	運転方式No.0 ~ 運転方式No.63	0:インクリメンタル方式 1:アブソリュート方式	0	В
512 ~ 575	位置No.0 ~ 位置No.63	-8,388,608~+8,388,607 step	0	В
576 ~ 639	運転速度No.0 ~ 運転速度No.63	0∼1,000,000 Hz	1,000	В
704 ~ 767	運転機能No.0 ~ 運転機能No.63	0:単独 1:連結 2:連結2 3:押し当て	0	В
960 ~ 1023	順送り位置決めNo.0 ~ 順送り位置決めNo.63	0:無効 1:有効	0	В
768 ~ 831	加速No.0※ ~ 加速No.63※	0.001~1,000.000 ms/kHzまたは 0.001~1,000.000 s	1.000	В
832 ~ 895	減速No.0※ ~ 減速No.63※	0.001~1,000.000 ms/kHzまたは 0.001~1,000.000 s	1.000	В
896 ~ 959	押し当て電流No.0 ~ 押し当て電流No.63	0.0~100.0 %	20.0	В
1024 ~ 1087	ドウェル時間No.0 ~ ドウェル時間No.63	0.000~50.000 s	0.000	В

※ 「加減速選択」パラメータが「独立」のときに有効となります。「共通」のときは、「共通加速」パラメータと「共通減速」パラ メータの値が使用されます。

• パラメータ

ID	名称	設定範囲	初期値	反映
256	STOP入力停止方法	0:即停止 1:減速停止 2:即停止+カレントオフ 3:減速停止+カレントオフ	1	A
257	ハードウェアオーバートラベル	0:無効 1:有効	1	А
258	オーバートラベル動作	0:即停止 1:減速停止	0	А
259	位置決め完了出力幅	0.0~18.0°	1.8	A
260	位置決め完了出力オフセット	-1.8~1.8°	0.0	А
261	AREA1+方向位置			
262	AREA1-方向位置			
263	AREA2+方向位置		0	•
264	AREA2-方向位置	-8,388,608~8,388,607 step	0	A
265	AREA3+方向位置			
266	AREA3-方向位置			
267	MOVE出力最小時間	0~255 ms	0	А
268	LS接点設定			
269	HOMES接点設定	0:A接点(N.O.)	0	С
270	SLIT接点設定	1.0按点(N.C.)		
288	RUN電流	0.0~100.0 %	100.0	A
289	STOP電流	0.0~50.0 %	50.0	А
290	位置ループゲイン	1~50	10	A
291	速度ループゲイン	10~200	180	А
292	速度ループ積分時定数	10.0~200.0 ms	100.0	A
293	速度フィルタ	0~200 ms	1	В
294	移動平均時間	1~200 ms	1	В
320	共通加速	0.001~1,000.000 ms/kHz	1.000	P
321	共通減速	または0.001~1,000.000 s	1.000	В
322	起動速度	0~1,000,000 Hz	500	В
323	JOG運転速度	1~1,000,000 Hz	1,000	В
324	JOG加減速	0.001~1,000.000 ms/kHz または0.001~1.000.000 s	1.000	В
325	JOG起動速度	0~1,000,000 Hz	500	В
326	加減速選択	0:共通 1:独立	1	В
327	加減速単位	0:ms/kHz 1:s	0	С
352	原点復帰方法	0:2センサ方式 1:3センサ方式 2:押し当て方式	1	В
353	原点復帰運転速度	1~1,000,000 Hz	1,000	В
354	原点復帰加減速	0.001~1,000.000 ms/kHz または0.001~1,000.000 s	1.000	В
355	原点復帰起動速度	1~1,000,000 Hz	500	В
356	原点復帰オフセット	-8,388,608~8,388,607 step	0	В
357	原点復帰開始方向	O:一側 1:+側	1	В
358	原点復帰SLITセンサ検出	0:無効	0	
359	原点復帰TIM信号検出	1:有効	0	В
360	押し当て原点復帰運転電流	0.0~100.0 %	100.0	В
384	過負荷アラーム	0.1~30.0 s	5.0	A

ID	名称	設定範囲	初期値	反映
385	カレントオン時位置偏差過大 アラーム	0.01~300.00 rev	3.00	А
388	原点復帰未完了アラーム	0:無効 1:有効	0	С
416	過熱ワーニング	40~85 ℃	85	А
417	過負荷ワーニング	0.1~30.0 s	5.0	A
418	過速度ワーニング	1~5,000 r/min	4,500	А
419	過電圧ワーニング	AC電源ドライバ:120~450 V DC電源ドライバ:150~630 (1=0.1 V)	AC電源ドライバ:435 DC電源ドライバ:630	A
420	不足電圧ワーニング	AC電源ドライバ:120~280 V DC電源ドライバ:150~630 (1=0.1 V)	AC電源ドライバ:120 DC電源ドライバ:180	А
421	カレントオン時位置偏差過大 ワーニング	0.01~300.00 rev	3.00	А
448	電子ギヤA	10.65.525	1	C
449	電子ギヤB	1.00,000	I	C
450	モーター回転方向	0:+側=CCW 1:+側=CW	1	С
451	ソフトウェアオーバートラベル	0:無効 1:有効	1	А
452	+ソフトウェアリミット		8,388,607	
453	ーソフトウェアリミット	-8,388,608~8,388,607 step	-8,388,608	А
454	プリセット位置		0	
455	ラウンド設定	0:無効 1:有効	0	С
456	ラウンド設定範囲	1~8,388,607 step	1,000	С
480	データ設定器速度表示	0:符号あり 1:絶対値	0	А
482	アブソリュートバックアップ システム	0:無効 1:有効	0	С
2048	MSO運転No.選択		0	
2049	MS1運転No.選択		1	
2050	MS2運転No.選択	0.63	2	р
2051	MS3運転No.選択	0~63	3	В
2052	MS4運転No.選択		4	
2053	MS5運転No.選択		5	
2054	HOME-P出力機能選択	0:原点出力 1:原点復帰完了出力	0	А
2064	フィルタ選択	0:速度フィルタ 1:移動平均フィルタ	0	С
2065	速度差ゲイン1	0.500	45	
2066	速度差ゲイン2	0~500	45	A
2067	制御モード	0: ノーマルモード 1:電流制御モード	0	С
2068	スムースドライブ	0:無効	1	-
2080		1:有効	0	С
2081	自動復帰運転速度	1~1,000,000 Hz	1,000	В
2082	自動復帰加減速	0.001~1,000.000 ms/kHz または0.001~1,000.000 s	1.000	В
2083	自動復帰起動速度	0~1,000,000 Hz	500	В
2084	JOG移動量	1~8,388,607 step	1	B
2112	カレントオフ時位置偏差過大 アラーム	0.01~300.00 rev	100.00	А

ID	名称	設定範囲	初期値	反映
2176	INO入力機能選択		3:HOME	
2177	IN1入力機能選択		4:START	
2178	IN2入力機能選択		48:M0	
2179	IN3入力機能選択		49:M1	C
2180	IN4入力機能選択	່ທ。	50:M2	C
2181	IN5入力機能選択		16:FREE	
2182	IN6入力機能選択		18:STOP	
2183	IN7入力機能選択		24:ALM-RST	
2192	IN0入力接点設定			
2193	IN1入力接点設定			
2194	IN2入力接点設定			
2195	IN3入力接点設定	0:A接点(N.O.)	0	C
2196	IN4入力接点設定	1:B接点(N.C.)	0	C
2197	IN5入力接点設定			
2198	IN6入力接点設定			
2199	IN7入力接点設定			
2208	OUT0出力機能選択		70:HOME-P	
2209	OUT1出力機能選択		69:END	
2210	OUT2出力機能選択	- 141ページの表をご覧くださ	73:AREA1	C
2211	OUT3出力機能選択	່ບ。	67:READY	C
2212	OUT4出力機能選択		66:WNG	
2213	OUT5出力機能選択		65:ALM	
2224	NET-IN0入力機能選択		48:M0	
2225	NET-IN1入力機能選択		49:M1	
2226	NET-IN2入力機能選択		50:M2	
2227	NET-IN3入力機能選択		4:START	
2228	NET-IN4入力機能選択		3:HOME	
2229	NET-IN5入力機能選択		18:STOP	
2230	NET-IN6入力機能選択		16:FREE	
2231	NET-IN7入力機能選択	141ページの表をご覧くださ	0:未使用	C
2232	NET-IN8入力機能選択	່ບາ。	8:MS0	C
2233	NET-IN9入力機能選択		9:MS1	
2234	NET-IN10入力機能選択		10:MS2	
2235	NET-IN11入力機能選択		5:SSTART	
2236	NET-IN12入力機能選択		6:+JOG	
2237	NET-IN13入力機能選択		7:-JOG	
2238	NET-IN14入力機能選択		1:FWD	
2239	NET-IN15入力機能選択		2:RVS	
2240	NET-OUT0出力機能選択		48:M0_R	
2241	NET-OUT1出力機能選択		49:M1_R	
2242	NET-OUT2出力機能選択		50:M2_R	
2243	NET-OUT3出力機能選択		4:START_R	
2244	NET-OUT4出力機能選択		70:HOME-P	
2245	NET-OUT5出力機能選択		67:READY	
2246	NET-OUT6出力機能選択	141ページの表をご覧くださ	66:WNG	C
2247	NET-OUT7出力機能選択	່ ບາ _°	65:ALM	C
2248	NET-OUT8出力機能選択		80:S-BSY	
2249	NET-OUT9出力機能選択		73:AREA1	
2250	NET-OUT10出力機能選択		74:AREA2	
2251	NET-OUT11出力機能選択		75:AREA3	
2252	NET-OUT12出力機能選択		72:TIM	
2253	NET-OUT13出力機能選択		68:MOVE	

ID	名称	設定範囲	初期値	反映
2254	NET-OUT14出力機能選択	次事たご覧く ださい	69:END	C
2255	NET-OUT15出力機能選択	人衣をと見てたさい。	71:TLC	C
2304	通信タイムアウト	0:監視なし 1~10,000 ms	0	А
2305	通信異常アラーム	1~100	3	А
2563	通信パリティ	0:なし 1:偶数 2:奇数	1	С
2564	通信ストップビット	0:1ビット 1:2ビット	0	С
2565	送信待ち時間	0.0~1,000.0 ms	10.0	С

● 機能選択パラメータの設定範囲

IN入力機能選択パラメータ

0:未使用	7:-JOG	16:FREE	32:R0	39:R7	46:R14
1:FWD	8:MS0	17:C-ON	33:R1	40:R8	47:R15
2:RVS	9:MS1	18:STOP	34:R2	41:R9	48:M0
3:HOME	10:MS2	24:ALM-RST	35:R3	42:R10	49:M1
4:START	11:MS3	25:P-PRESET	36:R4	43:R11	50:M2
5:SSTART	12:MS4	26:P-CLR	37:R5	44:R12	51:M3
6:+JOG	13:MS5	27:HMI	38:R6	45:R13	52:M4
					53:M5

OUT出力機能選択パラメータ

0:未使用	10:MS2_R	35:R3	45:R13	61:-LS_R	72:TIM
1:FWD_R	11:MS3_R	36:R4	46:R14	62:HOMES_R	73:AREA1
2:RVS_R	12:MS4_R	37:R5	47:R15	63:SLIT_R	74:AREA2
3:HOME_R	13:MS5_R	38:R6	48:M0_R	65:ALM	75:AREA3
4:START_R	16:FREE_R	39:R7	49:M1_R	66:WNG	80:S-BSY
5:SSTART_R	17:C-ON_R	40:R8	50:M2_R	67:READY	82:MPS*
6:+JOG_R	18:STOP_R	41:R9	51:M3_R	68:MOVE	
7:-JOG_R	32:R0	42:R10	52:M4_R	69:END	
8:MS0_R	33:R1	43:R11	53:M5_R	70:HOME-P	
9:MS1_R	34:R2	44:R12	60:+LS_R	71:TLC	

※ AC電源ドライバのみ

NET-IN入力機能選択パラメータ

0:未使用	7:-JOG	16:FREE	32:R0	39:R7	46:R14
1:FWD	8:MS0	17:C-ON	33:R1	40:R8	47:R15
2:RVS	9:MS1	18:STOP	34:R2	41:R9	48:M0
3:HOME	10:MS2	24:ALM-RST **	35:R3	42:R10	49:M1
4:START	11:MS3	25:P-PRESET ※	36:R4	43:R11	50:M2
5:SSTART	12:MS4	26:P-CLR*	37:R5	44:R12	51:M3
6:+JOG	13:MS5	27:HMI	38:R6	45:R13	52:M4
					53:M5

※ 仕様変更前のドライバでは設定できません。詳細は8ページをご覧ください。

NET-OUT出力機能選択パラメータ

0:未使用	10:MS2_R	35:R3	45:R13	61:-LS_R	72:TIM
1:FWD_R	11:MS3_R	36:R4	46:R14	62:HOMES_R	73:AREA1
2:RVS_R	12:MS4_R	37:R5	47:R15	63:SLIT_R	74:AREA2
3:HOME_R	13:MS5_R	38:R6	48:M0_R	65:ALM	75:AREA3
4:START_R	16:FREE_R	39:R7	49:M1_R	66:WNG	80:S-BSY
5:SSTART_R	17:C-ON_R	40:R8	50:M2_R	67:READY	82:MPS*
6:+JOG_R	18:STOP_R	41:R9	51:M3_R	68:MOVE	
7:-JOG_R	32:R0	42:R10	52:M4_R	69:END	
8:MS0_R	33:R1	43:R11	53:M5_R	70:HOME-P	
9:MS1_R	34:R2	44:R12	60:+LS_R	71:TLC	

※ AC電源ドライバのみ

3-9 テストモード

■ テストモードの概要

● ダイレクトI/Oテスト

ドライバの入力信号のON/OFF状態を確認できます。また、**OPX-2A**で出力信号のON/OFFを切り替えられます。ドライ バの接続状態を確認するときに、ダイレクトI/Oテストを実行してください。

● JOG運転

OPX-2Aのキー操作で、モーターを運転できます。

- データNo.選択運転
 位置決め運転を実行できます。
- 原点復帰運転
 原点復帰運転を実行できます。
- 位置プリセット
 指令位置を設定した値にプリセットできます。
- ティーチング

OPX-2Aのキー操作でモーターを動かして、移動した位置を運転データに反映できます。

(memo) ・モーターの運転を停止してから、テストモードに切り替えてください。

- 項目選択画面から下の階層に移行すると、次の入力は無効になります。
 START、SSTART、HOME、±JOG、FWD、RVS、MS0~MS5
- ダイレクトI/Oテストでは、下の階層に移行すると、すべての入出力信号や動作が無効になります。
- RS-485通信で内部処理を行なっているときに【SET】キーを押すと、「mEm-bUSy」が表示される場合 があります。「mEm-bUSy」が表示されるタイミングは、126ページ「3-5 画面遷移」で確認してくださ い。必ず内部処理が終了してから、【SET】キーを押してください。
- データNo.選択運転、原点復帰運転、位置プリセット、およびティーチングを実行しようとしたときに [Error]が表示された場合は、アラームが発生していないか確認してください。
- HMI入力がOFFのときは、テストモードを実行できません。

```
● モーターの運転中に【SET】を押した場合
```

運転中は、テストモードのトップ画面から下の階層には移れません。 【SET】を押してもエラーになり、「oPE-Err」が表示されます。 必ずモーターの運転を停止してから、【SET】を押してください。

oPt-trr

ダイレクトI/Oテスト

ドライバの接続状態を確認するときに、ダイレクトI/Oテストを実行してください。 7セグメントLEDがそれぞれの信号に対応しています。 入力信号はONのとき点灯、OFFのとき消灯します。

出力信号は【个】【↓】でON/OFFを切り替えられ、ONのとき「」」、OFFのとき「-」になります。

• 入力信号

• 出力信号

■ JOG運転

OPX-2Aのキー操作で、モーターを運転できます。

【个】を1回押すと、正転方向へ1ステップ回転します。押し続けると、正転方向へ連続で回転します。

【↓】を1回押すと、逆転方向へ1ステップ回転します。押し続けると、逆転方向へ連続で回転します。

運転速度は、「JOG運転速度」パラメータで設定した値になります。

ただし「JOG起動速度」パラメータの値が、「JOG運転速度」パラメータよりも大きいときは、JOG起動速度で運転します。

) 運転中は、キーを押している間、設定された運転速度でモーターが回転します。装置の状態や周囲の状況 を考慮し、モーターの回転による危険がないことを十分確認してから実行してください。

■ データNo.選択運転

運転データNo.を選択して【SET】を押すと、位置決め運転を実行できます。

三要 運転中は、設定された運転速度でモーターが回転します。装置の状態や周囲の状況を考慮し、モーターの 回転による危険がないことを十分確認してから実行してください。

■ 原点復帰運転

原点復帰運転を実行できます。運転速度は、「原点復帰運転速度」パラメータで設定した値になります。

運転中は、設定された運転速度でモーターが回転します。装置の状態や周囲の状況を考慮し、モーターの 回転による危険がないことを十分確認してから実行してください。

指令位置を「プリセット位置」パラメータの値に書き換えてプリセットします。

(memo) 編集ロック機能で操作が制限されているときはプリセットできません。

■ ティーチング

OPX-2Aのキー操作でモーターを動かして、移動した位置を運転データに反映できます。 ティーチングで設定された位置データの運転方式はアブソリュート方式になります。 ティーチングの運転速度、加減速レート、および起動速度は、JOG運転と同じになります。

運転中は、設定された運転速度でモーターが回転します。装置の状態や周囲の状況を考慮し、モーターの 回転による危険がないことを十分確認してから実行してください。

(memo) 編集ロック機能で操作が制限されているときはティーチングを実行できません。

3-10 コピーモード

コピーモードの概要

• ダウンロード

OPX-2Aに保存されているデータをドライバにコピーします。 ダウンロードに異常があったときは、異常の内容が点滅表示さ れます。ダウンロードは実行されず、ダウンロードのトップ画 面に戻ります。異常の表示については145ページ「コピーモー ドの異常」をご覧ください。

• アップロード

ドライバに保存されているデータを**OPX-2A**にコピーします。

● 照合

OPX-2Aのデータと、ドライバのデータを照合します。 照合の結果、データが一致しているときは「Good」、一致していないときは「Error」が表示されます。 照合に異常があったときは、異常の内容が点滅表示されます。照合は実行されず、照合のトップ画面に戻ります。 異常の表示については145ページ「コピーモードの異常」をご覧ください。

● データの初期化

ドライバに保存されているデータを初期値に戻します。

● 編集ロック中に【SET】キーを押した場合

編集ロック中は、コピーモードのトップ画面から下の階層には移れません。【SET】キーを押してもエラーになり、「LocK-Err」が表示されます。必ず編集ロックを解除してから、 【SET】キーを押してください。編集ロックの解除方法は、122ページをご覧ください。

Loch-Err
■ コピーモードの異常

ダウンロードや照合に異常があったときは、異常の内容が点滅表示されます。 処理は実行されず、ダウンロードや照合のトップ画面に戻ります。

点滅表示	内容	対処
Prod-Err	処理先の製品が間違っています。	 製品を確認してください。 OPX-2AのデータバンクNo.を確認してください。
HERd-Err	加田中に異党がありました	再度、処理を実行してください。それでも同じエ ラーが発生するときは、OPX-2Aに保存されてい るデータが確場したおそれがあります。アップ
bcc - Err	処理中に共高がめりよりた。	ロードを行ない、 OPX-2A のデータを設定しなお してください。
no-dREA	指定したデータバンクNo.にデー タが存在しません。	データバンクNo.を確認してください。

) 処理中(表示が点滅している間)はドライバの電源を切らないでください。データが破損するおそれがあり ます。

(memo) ダウンロードによって、電源の再投入が必要なパラメータが変更されたときは、ドライバのDC電源を再 投入してください。

4-1 点検

モーターの運転後は、定期的に次の項目について点検することをおすすめします。異常があるときは使用を中止し、お客様 ご相談センターにお問い合わせください。

■ 点検項目

- モーターの取付ねじに緩みがないか確認してください。
- モーターの軸受部(ボールベアリング)などから異常な音が発生していないか確認してください。
- ケーブルに傷やストレスがないか確認してください。
- ケーブルとドライバの接続部に緩みがないか確認してください。
- 出力軸と負荷軸に心ズレが出ていないか確認してください。
- ドライバの開口部が目詰まりしていないか確認してください。
- ドライバの取付箇所に緩みがないか確認してください。
- ドライバに埃などが付着していないか確認してください。
- ドライバに異臭や異常がないか確認してください。

ドライバには半導体素子が使われています。静電気などによって半導体素子が破損するおそれがあるため、 取り扱いには注意してください。

4-2 保証

■ 製品の保証について

保証期間中、お買い求めいただいた製品に当社の責により故障を生じた場合は、その製品の修理を無償で行ないます。 なお、保証範囲は製品本体(回路製品については製品本体および製品本体に組み込まれたソフトウェアに限ります)の修理に 限るものといたします。納入品の故障により誘発される損害およびお客様側での機会損失につきましては、当社は責任を負 いかねます。

また、製品の寿命による故障、消耗部品の交換は、この保証の対象とはなりません。

| 保証期間

お買い求めいただいた製品の保証期間は、ご指定場所に納入後2年間といたします。

| 免責事由

次に該当する場合は、この保証の対象範囲から除外するものといたします。

- 1) カタログまたは別途取り交わした仕様書等にて確認された以外の不適切な条件・環境・取り扱いならびに使用による 場合
- 2) 故障の原因が納入品以外の事由による場合
- 3) 当社以外による改造または修理による場合
- 4) 製品本来の使い方以外の使用による場合
- 5) 当社出荷時の科学・技術の水準では予見できなかった事由による場合
- 6) その他天災、災害など当社側の責ではない原因による場合

以上の内容は、日本国内での取引および使用を前提としています。

4-3 廃棄

製品は、法令または自治体の指示に従って、正しく処分してください。

アラームとワーニング 5

ドライバには、温度上昇、接続不良、運転操作の誤りなどからドライバを保護するアラーム(保護機能)と、アラームが発生 する前に警告を出力するワーニング(警告機能)が備わっています。

5-1 アラーム

アラームが発生するとALM出力がOFFになり、モーターが停止します。同時にALM LED(またはALARM LED)が点滅しま す。LEDの点滅回数を数える、またはMEXE02、OPX-2A、RS-485通信のどれかで、発生中のアラームを確認できます。

例:過電圧のアラーム(点滅回数3回)

■ アラームの解除

必ず、アラームが発生した原因を取り除き、安全を確保してから、次のどれかの方法でアラームを解除してください。タイ ミングチャートは317ページをご覧ください。

- ALM-RST入力をONからOFFにする。(OFFエッジで有効です。)
- RS-485通信のアラームリセットを実行する。
- MEXE02またはOPX-2Aでアラームリセットを実行する。
- 電源を再投入する。

(memo) 絶対位置異常アラームは、P-CLR入力をONからOFFにするか、MEXE02、OPX-2A、RS-485通信の絶対 位置異常アラームのリセットを実行して解除してください。これらの方法以外では解除できません。

■ アラーム履歴

発生したアラームは、最新のものから順に10個までNVメモリに保存されます。次のどれかを行なうと、保存されているア ラーム履歴を取得・消去できます。

- RS-485通信のモニタコマンドでアラーム履歴を取得する。
- RS-485通信のメンテナンスコマンドでアラーム履歴を消去する。
- MEXE02またはOPX-2Aでアラーム履歴を取得・消去する。

■ アラーム一覧

※1 アラーム発生時のモーター励磁は、次のようになります。

無励磁:アラームが発生するとモーターの電流が遮断されて、モーターの保持力がなくなります。 電磁ブレーキ付モーターの場合は、電磁ブレーキが自動で保持されます。

- 励磁: アラームが発生してもモーターの電流は遮断されず、モーターの位置が保持されます。
- ※2 AC電源ドライバのみ
- ※3 仕様変更前のドライバでは、押し当て運転の最大速度は30 r/minになります。詳細は9ページをご覧ください。

コード	LED点滅数	アラームの種類	原因		
10h	А	位置偏差過大	 カレントオン時、指令位置と実位置の偏差が、出力軸で「カレントオン時位置偏差過大アラーム」パラメータの設定値を超えました。 負荷が大きい、または加減速が短すぎます。 		
12h		カレントオフ時位置偏差 過大	カレントオフ時位置偏差過大のワーニングが発生しているときに、C-ON入 力をONにしました。		
20h	5	過電流※2	モーター、ケーブル、およびドライバ出力回路が短絡しました。		
21h	2	主回路過熱	ドライバの内部温度が約85°Cに達しました。		
22h	3	過電圧	 ・電源の電圧が許容値を超えました。 ・大きな慣性負荷を急停止した、または昇降運転を行ないました。 		
23h		主電源オフ※2	主電源が遮断されているときに、モーターを起動しました。		
25h		不足電圧	電源が瞬間的に遮断された、または電圧が不足しました。		
27h	7	バックアップバッテリ 不足電圧	バッテリの電圧が規定値以下になりました。		
28h	8	センサ異常	モーターの回転中、センサに異常が発生しました。		
29h	9	CPU周辺回路異常	CPUで異常が発生しました。		
2Dh	5	主回路出力異常※2	モーターケーブルが断線しました。		
30h	2	過負荷	最大トルクを超える負荷が、「過負荷アラーム」パラメータの設定値を超える 時間、加わりました。		
31h	2	過速度	モーター出力軸の検出速度が4,500 r/minを超えました。		
33h	7	絶対位置異常	「アブソリュートバックアップシステム」パラメータが「有効」のときに、次の 条件を満たしました。 ・座標が未確定の状態で電源を投入しました。 ・バッテリが未接続のときに電源を投入しました。 ・多回転動作が可能な範囲を超えた状態で電源を投入しました。 バッテリで位置を管理しているときに、急激な負荷変動がありました。		
34h	2	指令パルス異常	指令パルスの周波数が仕様を超えました。		

処置	解除方法	モーター励磁 ※1
 負荷を軽くするか、加減速を長くしてください。 電流制限機能を使用しているときは、「RUN電流」パラメータの設定値を大きくしてください。 	• ALM-RST入力をON(1)からOFF(0)に する。	無励磁
 カレントオフ時位置偏差過大のワーニングが発生しているときは、カレントオン状態にしないでください。 「白動復帰動作」パラメータを「0・一冊効」に設定してください。 	 アラームリセットを実行する。 	無励磁
電源を切り、モーター、ケーブル、ドライバ出力回路が短絡していない か確認してから、電源を再投入してください。	電源を再投入する。	無励磁
筐体内の換気条件を見直してください。	 ALM-RST入力をON(1)からOFF(0)に する。 アラームリセットを実行する。 	無励磁
 ・電源の入力電圧を確認してください。 ・運転時に発生するときは、負荷を軽くするか、加減速を長くしてください。 	 ・電源を再投入する。 ・アラームリセットを実行する。(DC電 源ドライバのみ) 	無励磁
主電源が正常に投入されているか確認してください。 電源の入力電圧を確認してください。	● ALM-RST入力をON (1) からOFF (0) に する。	無励磁 無励磁
バッテリを充電してください。	• アラームリセットを実行する。	励磁
電源を切り、モーターケーブルとドライバの接続を確認してから、電源 を再投入してください。		無励磁
 バッテリを使用している場合は、電源を切ってからバッテリを抜いてください。その後、再びバッテリを接続して、電源を投入してください。アラームが出ていないことを確認したら、必ず原点復帰運転を行なってください。 バッテリを使用していない場合は、電源を再投入してください。その後、アラームが出ていないことを確認したら、必ず原点復帰運転を行なってください。 	電源を再投入する。	無励磁
電源を切り、モーターケーブルとドライバの接続を確認してから、電源 を再投入してください。		無励磁
 ●負荷を軽くするか、加減速を長くしてください。 ●電流制限機能を使用しているときは、「RUN電流」パラメータの設定値を大きくしてください。 ●電磁ブレーキの接続を確認してください。 	• ALM-RST入力をON (1) からOFF (0) に する。	無励磁
 「電子ギヤ」パラメータの設定を確認し、モーター出力軸の速度を 4,500 r/min未満に設定してください。 加速時にオーバーシュートが発生しているときは、加減速を長くしてく ださい。 	 ● アラームリセットを実行する。 	無励磁
 アラームを解除してから、P-PRESETまたは原点復帰運転を実行してください。 バッテリの接続を確認してください。またはバッテリを交換してください。 	 P-CLR入力をON(1)からOFF(0)にする。 絶対位置異常アラームのリセットを実行する。 	励磁
急激な負荷変動を与えないでください。		励磁
「電子ギヤ」パラメータの設定を確認し、モーター出力軸の速度を 4,500 r/min未満に設定してください。	 ALM-RST入力をON(1)からOFF(0)に する。 アラームリセットを実行する。 	無励磁

コード	LED点滅数	アラームの種類	原因
41h	9	EEPROM異常	ドライバの保存データが破損しました。
42h		初期時センサ異常	電源投入時、センサに異常が発生しました。
43h	8	初期時回転異常	電源投入時に出力軸が静止していませんでした。
45h		モーター組合せ異常	ドライバに対応していないモーターを接続しました。
4Ah	7	原点復帰未完了	座標が確定していない状態で位置決め運転を開始しました。
51h	2	回生抵抗器過熱※2	 ・回生抵抗が正しく接続されていません。 ・回生抵抗が異常に過熱しました。
60h		±LS同時入力	LS検出有効の設定のとき、+LS入力と-LS入力の両方が検出されました。
61h		±LS逆接続	3センサ方式または2センサ方式の原点復帰運転中、運転方向とは逆のリミットセンサが検出されました。
62h		原点復帰運転異常	原点復帰シーケンスを正常に終了できませんでした。
63h		HOMES未検出	3センサ方式の原点復帰運転で、+側リミットセンサと-側リミットセンサの間に機械原点センサが検出されませんでした。
64h	_	TIM、Z、SLIT信号異常	原点復帰運転中に、SLIT入力やTIM出力を検出できませんでした。
66h	/	ハードウェアオーバー トラベル	「ハードウェアオーバートラベル」パラメータが「有効」のとき、+LS入力また は-LS入力が検出されました。
67h		ソフトウェアオーバー トラベル	「ソフトウェアオーバートラベル」パラメータが「有効」のとき、ソフトウェア リミットに達しました。
6Ah		原点復帰運転 オフセット異常	原点復帰運転でオフセット移動しているときに、リミットセンサが検出され ました。
70h		運転データ異常	 ・連結運転で、回転方向が異なる運転データが連結されました。 ・運転データが5個以上連結されました。 ・運転速度が0 r/minの位置決め運転を行ないました。 ・押し当て運転の速度を500 r/minより大きい値に設定しました。※3
71h		電子ギヤ設定異常	「電子ギヤ」パラメータで設定した分解能が仕様の範囲外でした。
72h		ラウンド設定異常	分解能と「ラウンド設定範囲」パラメータが不整合でした。
81h		ネットワークバス異常	モーターの動作中、ネットワークコンバータの上位ネットワークが解列状態になりました。
83h		通信用スイッチ設定異常	通信速度設定スイッチ(SW2)が仕様外でした。

処置	解除方法	モーター励磁 ※1
すべてのパラメータを初期化してください。		無励磁
電源を切り、モーターケーブルの接続を確認してから、電源を再投入し てください。	•	無励磁
負荷を見直して、電源投入時に外力で出力軸が回らないようにしてくだ さい。	電源を再投入する。	無励磁
ドライバ品名とモーター品名を確認し、正しい組み合わせで使用してく ださい。		無励磁
位置プリセットまたは原点復帰運転を実行してください。	 ALM-RST入力をON(1)からOFF(0)に する。 アラームリセットを実行する。 	励磁
 ・電源を切り、次の項目を確認してから電源を再投入してください。 ・回生抵抗を使用しないときは、CN1のTH1端子とTH2端子を短絡してください。 ・回生抵抗を正しく接続してください。 ・回生抵抗の許容回生電力を超えています。負荷や運転条件を見直してください。 	●電源を再投入する。	無励磁
アラームを解除してから、設置したセンサの論理と、[LS接点設定]パラ メータを確認してください。		励磁
アラームを解除してから、リミットセンサの配線を確認してください。		励磁
 ・原点復帰運転中に、想定外の負荷が加わった可能性があります。負荷を 確認してください。 ・リミットセンサと機械原点センサの設置位置が近接している場合、原点 復帰運転の開始方向によっては、正常に終了しないことがあります。セ 		FhIX
ンサの設置位置と、開始方向を見直してください。 • +LS入力と-LS入力の両方が検出された状態で、原点復帰を実行した可 能性があります。設置したセンサの論理と、「LS接点設定」パラメータを 確認してください。		גצמיננמו
機械原点センサは、+側と-側のリミットセンサの間に設置してくださ い。		励磁
 HOMES入力がONの間に、TIM出力やSLIT入力がONになるよう、出力 軸と負荷軸の結合位置、または機械原点センサの位置を調整してください。 TIM出力やSLIT入力を使用しないときは、「原点復帰SLITセンサ検出」パ ラメータまたは「原点復帰TIM信号検出」パラメータを変更してください。 	 ALM-RST入力をON(1)からOFF(0)に する。 アラームリセットを実行する。 	励磁
アラームを解除してから、連続運転または原点復帰運転でリミットセン サから脱出してください。	-	励磁
単独運転のときは、データがソフトリミット値を超えていないか確認し てください。連結運転のときは、連結結果がソフトリミットを超えていな いか確認してください。		励磁
アラームを解除してから、オフセット値を確認してください。		励磁
アラームを解除してから、運転データを確認してください。		励磁
分解能が100~10,000 P/Rになるよう、「電子ギヤ」パラメータを正しく 設定し、電源を再投入してください。	雨広ち玉切りナス	無励磁
「ラウンド設定範囲」パラメータを正しく設定し、電源を再投入してくだ さい。	電源を再投入 🥑 る。 	無励磁
上位ネットワークのコネクタやケーブルを確認してください。	 ALM-RST入力をON(1)からOFF(0)に する。 アラームリセットを実行する。 	励磁
通信速度設定スイッチ(SW2)を確認してください。	電源を再投入する。	無励磁

コード	LED点滅数	アラームの種類	原因
84h		RS-485通信異常	RS-485通信の連続異常回数が「通信異常アラーム」パラメータの設定値に達しました。
85h	7	RS-485通信タイム アウト	「通信タイムアウト」パラメータに設定した時間を経過しても、上位システム との通信が行なわれませんでした。
8Eh		ネットワークコンバータ 異常	ネットワークコンバータでアラームが発生しました。
F0h	点灯	CPU異常	CPUが誤動作しました。

これらの処置を行なってもアラームが解除されないときは、ドライバが破損しているおそれがあります。 最寄りのお客様ご相談センター、または支店・営業所にお問い合わせください。

処置	解除方法	モーター励磁 ※1
 上位システムとの接続を確認してください。 RS-485通信の設定を確認してください。 	• ALM-RST λ カをON(1)からOFE(0)に	励磁
上位システムとの接続を確認してください。	する。	励磁
ネットワークコンバータのアラームコードを確認してください。		励磁
電源を再投入してください。	電源を再投入する。	無励磁

5-2 ワーニング

ワーニングが発生すると、WNG出力がONになります。モーターの運転は継続します。 ワーニングが発生した原因が取り除かれると、WNG出力は自動でOFFになります。

■ ワーニング履歴

発生したワーニングは、最新のものから順に10個までRAMに保存されます。次のどれかを行なうと、保存されているワーニ ング履歴を取得・消去できます。

- RS-485通信のモニタコマンドでワーニング履歴を取得する。
- RS-485通信のメンテナンスコマンドでワーニング履歴を消去する。
- MEXE02またはOPX-2Aでワーニング履歴を取得・消去する。

(memo) 電源を切っても、ワーニング履歴は消去されます。

■ ワーニング一覧

コード	ワーニングの種類	原因	処置
10h	位置偏差過大	 カレントオン時、指令位置と実位置の偏差が、出力軸で「カレントオン時位置偏差過大ワーニング」パラメータの設定値を超えました。 負荷が大きい、または加減速が短すぎます。 	 負荷を軽くするか、加減速を長くしてください。 電流制限機能を使用しているときは、 [RUN電流]パラメータの設定値を大きくしてください。
12h	カレントオフ時 位置偏差過大	カレントオフ時、指令位置と実位置の偏 差が、出力軸で「カレントオフ時位置偏差 過大アラーム」パラメータの設定値を超 えました。(「自動復帰動作」パラメータ が「1:有効」のときに出力されます。)	カレントオフ中の回転量を設定値以下にし てください。または設定値を変更してくだ さい。
21h	主回路過熱	ドライバの内部温度が「過熱ワーニング」 パラメータの設定値を超えました。	筐体内の換気状態を見直してください。
22h	過電圧	 電源の電圧が「過電圧ワーニング」パラメータの設定値を超えました。 大きな慣性負荷を急停止した、または昇降運転を行ないました。 	 ・電源の入力電圧を確認してください。 ・運転時に発生するときは、負荷を軽くするか、加減速を長くしてください。
25h	不足電圧	 電源の電圧が、「不足電圧ワーニング」 パラメータの設定値を下回りました。 電源が瞬間的に遮断された、または電圧 が不足しました。 	電源の入力電圧を確認してください。
30h	過負荷	 最大トルクを超える負荷が、「過負荷 ワーニング」パラメータで設定した時間 以上加わりました。 負荷が大きい、または加減速が短すぎま す。 	 負荷を軽くするか、加減速を長くしてください。 電流制限機能を使用しているときは、 「RUN電流」パラメータの設定値を大きくしてください。 運転時に電磁ブレーキが解放されているか確認してください。
31h	過速度	出力軸の検出速度が「過速度ワーニング」 パラメータの設定値を超えました。	 「電子ギヤ」パラメータの設定を確認し、出力軸の速度を設定値以下にしてください。 加速時にオーバーシュートが発生しているときは、加減速を長くしてください。
48h	バッテリ未接続	アブソリュートバックアップシステムが 有効の状態で、バッテリが接続されてい ませんでした。	バッテリを確認してください。
71h	電子ギヤ設定異常	「電子ギヤ」パラメータで設定した分解能 が仕様の範囲外でした。	分解能が100~10,000 P/Rになるよう、 「電子ギヤ」パラメータを正しく設定し、電 源を再投入してください。
72h	ラウンド設定異常	分解能と「ラウンド設定範囲」パラメータ が不整合でした。	「ラウンド設定範囲」パラメータを正しく設 定し、電源を再投入してください。

コード	ワーニングの種類	原因	処置
84h	RS-485通信異常	RS-485通信の異常が検出されました。	 上位システムとの接続を確認してください。 RS-485通信の設定を確認してください。

5-3 通信エラー

通信エラーは、最新のものから順に10個までRAMに保存され、MEXE02またはRS-485通信で確認できます。

■ 通信エラー履歴

通信エラーは、最新のものから順に10個までRAMに保存されます。次のどれかを行なうと、保存されている通信エラー履歴 を取得・消去できます。

- RS-485通信のモニタコマンドで通信エラー履歴を取得する。
- RS-485通信のメンテナンスコマンドで通信エラー履歴を消去する。
- MEXE02のステータスモニタで通信エラー履歴を取得・消去する。

(memo) 通信エラー履歴は、電源を切っても消去できます。

■ 通信エラー一覧

コード	通信エラーの種類	原因	処置
84h	RS-485通信異常	次の異常が検出されました。 ・フレーミングエラー ・BCCエラー	 上位システムとの接続を確認してください。 RS-485通信の設定を確認してください。
88h	コマンド未定義	マスタから要求されたコマンドは未定義 のため、実行できませんでした。	 コマンドの設定値を確認してください。 フレーム構成を確認してください。
89h	ユーザーI/F通信中の ため実行不可	MEXE02またはOPX-2Aとドライバが通 信中のため、マスタから要求されたコマ ンドを実行できませんでした。	MEXE02やOPX-2Aの処理が終了するまで お待ちください。
8Ah	NVメモリ処理中の ため実行不可	ドライバがNVメモリ処理中のため、実行 できませんでした。 ・内部処理中 (S-BSYがON) ・EEPROM異常のアラームが発生中	 内部処理が終了するまでお待ちください。 EEPROM異常のアラームが発生したときは、MEXE02、OPX-2A、およびRS-485通信のどれかでパラメータを初期化してください。
8Ch	設定範囲外	マスタから要求された設定データは範囲 外のため、実行できませんでした。	設定データを確認してください。
8Dh	コマンド実行不可	コマンドが実行できないときに、実行し ようとしました。	ドライバの状態を確認してください。

6 故障の診断と処置

モーターの運転時、設定や接続の誤りなどで、モーター、ドライバが正常に動作しないことがあります。 モーターの運転操作を正常に行なえないときは、この章をご覧になり、適切な処置を行なってください。 それでも正常に運転できないときは、最寄りのお客様ご相談センターにお問い合わせください。

現象	予想される原因	処置
 モーターが励磁しない。 	C-ON入力がOFFになっている。	C-ON入力をONにして、モーターが励磁され ることを確認してください。
 ● 手で出力軸を動かせる。 	FREE入力がONになっている。	FREE入力をOFFにしてください。
モーターを無励磁にしても保 持トルクがある。※	ダイナミックブレーキの影響。	C-ON入力やSTOP入力でモーターを無励磁に すると、ドライバ内部ではモーター巻線が短 絡された状態となり、電源遮断時よりも大きな 保持トルクが発生します(ダイナミックブレー キ)。ダイナミックブレーキを解除するには、電 源を遮断するか、FREE入力をONにしてください。
	電磁ブレーキ付モーターの場合、電 磁ブレーキが保持状態になっている。	電磁ブレーキの接続状態を確認してください。
	STOP入力がONになっている。	STOP入力をOFFにしてください。
モーターが回転しない。	位置決め運転のとき、運転データに 位置(移動量)が設定されていない。	運転データを確認してください。
	連続運転のとき、FWD入力とRVS入 力が同時にONになっている。	FWD入力またはRVS入力の片方をONにして ください。
出力軸が指定した方向とは逆 へ回転する。	「モーター回転方向」パラメータの設 定が間違っている。	「モーター回転方向」パラメータの設定を確認し てください。
ギヤ出力軸がモーター出力軸 とは逆方向へ回転する。	モーター出力軸と回転方向が逆にな るタイプのギヤを使用している。	 THギヤードタイプは、取付角寸法や減速比によってモーター出力軸に対する回転方向が異なります。詳細は20ページでご確認ください。 ハーモニックギャードタイプは、モーター出
		う軸とは逆方向へ回転します。
	モーターケーブルや電源ケーブルの 接続不良	モーターや電源の接続を確認してください。
モーターの動作が不安定	「RUN電流」または「STOP電流」パラ メータの設定値が小さすぎる。	「RUN電流」または「STOP電流」パラメータを初 期値に戻して、モーターの動作を確認してくだ さい。電流値が小さいとトルクも小さくなり、 動作が不安定になります。
振動が大きい。	負荷が小さい。	「RUN電流」パラメータで電流を下げてください。負荷に対してモーターの出力トルクが大きすぎると、振動が大きくなります。
電磁ブレーキが解放されない。	電磁ブレーキに電源が供給されてい ない。	電磁ブレーキの接続状態を確認してください。

※ DC電源ドライバのみ

(memo)

10) • アラームが発生しているときは、アラームの内容を確認してください。

 MEXE02、OPX-2A、およびRS-485通信で入出力信号をモニタできます。入出力信号の配線状態の確認 などにご利用ください。

5 運転の種類と設定

運転の詳細や、ドライバの機能を設定する方法について説明しています。

◆もくじ

1	ガイ	ダンス	.158
2	設定	と調整	.162
	2-1	分解能	. 162
	2-2	運転電流	. 163
	2-3	停止電流	. 163
	2-4	加減速レートと加減速時間	. 164
	2-5	スムースドライブ	. 164
	2-6	速度フィルタ	. 165
	2-7	移動平均フィルタ	. 166
	2-8	速度差ゲイン	. 166
	2-9	制御モード	. 167
	2-10	位置ループゲイン、速度ループゲイン、 速度ループ積分時定数	. 167
	2-11	アプソリュートバックアップシステム	. 168
3	運転	の種類と機能一覧	.169
4	位置	決め運転	.170
	4-1	運転データ	. 170
	4-2	位置決め運転の起動方法	. 172
	4-3	運転機能	. 176
	4-4	押し当て運転	. 180

5 原原	点復帰運転	
5-1	動作シーケンス	
5-2	位置プリセット	
6 連維	売運転	191
6-1	連続運転の起動方法	
6-2	変速運転	
7 その	の他の運転	
7-1	JOG運転	
7-2	テスト運転	
7-3	自動復帰動作	
7-4	停止動作	
8 座村	票管理	
8-1	座標位置管理	
8-2	ラウンド機能	

1 ガイダンス

はじめてお使いになるときはここをご覧になり、運転のながれについてご理解ください。 ここでは、MEXE02を使用して位置決め運転を実行する方法を説明します。

■出荷時設定の確認

設定内容	出荷時設定
分解能	1,000 P/R(0.36°/step)
運転電流	1,000(基本電流率100%)
速度フィルタ	1 ms
原点位置	電源投入時のモーター位置

モーターを動かすときは周囲の状況を確認し、安全を確保してから運転してください。

STEP 1 運転の準備をします

- 1. 図を参照して、ドライバに配線します。
- AC電源ドライバ

DC24 V電源は必ず接続してください。

※ 当社でご用意しています。別途お買い求めください。

● DC電源ドライバ

- ※1 当社でご用意しています。モーターケーブルの長さが足りないときに、別途お買い求めください。
- ※2 当社でご用意しています。別途お買い求めください。
- MEXE02を起動し、ドライバの主電源を投入します。
 MEXE02の起動方法や使い方については、「サポートソフトMEXE02 取扱説明書」をご覧ください。

STEP 2 MEXE02で運転データを設定します

1. MEXE02で、運転データNo.1の運転データを次のように設定します。

	運転方式	位置 [step]	運転速度 [Hz]	運転機能	押し当て電流 <mark>[%]</mark>	ドウェル時間 [s]	順送り位置決め	加速 [ms/kHz] or [s]	減速 [ms/kHz] or [s]
No.0	INC(インクリメンタル)	0	1000	単独	20.0	0.000	無効	1.000	1.000
No.1	INC(インクリメンタル)	8500	2000	単独	20.0	0.000	無効	1.500	1.500

 直面左側にあるショートカットボタンから、[ティーチング・リモート運転]をクリックします。

 ティーチング・リモート運転のウィンドウが表示されます。

3. [ティーチング・リモート運転を開始する]をクリックし、警告ウィンドウの[はい]をクリックします。

⚠️ 新規1 - ティーチング・リモート運転	(ma)	
- 「 ティーチング・リモート 運転を開始する	21日 22日 23日 23日 23日 23日 23日 23日 23日 23日 23	
ドライハステータス 指令位置(CPOS)	 ティーチング・リモート運転を開始します。 よろしいですか? 	UТРUТ Пагм
検出位置	(はい(Y) いいえ(N)	MOVE
検出速度	U [t/min]	_

編集したデータをドライバに書き込みます。
 「全データの書き込み(PC→製品)」をクリックし、[OK]をクリックしてください。
 運転データNo.1の内容がドライバに書き込まれます。

同期方法選択
同期方法を選択してください。
 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
 差分データの書き込み(PC -> 製品)
OK ++v/tz/l

5. 運転データNo.1を選択します。

運転データNo.	1 🚔	運転方式	INC(インクリメンタル)
		位置 [step]	850
		運転速度 [Hz]	2000
位置決め運転開始		押し当て電流 [%]	20.0
		加速 [ms/kHz] or [s]	1.50
		減速 [ms/kHz] or [s]	1.50

STEP 3 モーターを運転します

[位置決め運転開始]をクリックします。
 警告ウィンドウが表示されるので、[はい]をクリックしてください。
 モーターが位置決め運転を行ないます。

指令位置と検出位置が8,500になっていることを確認します。
 8,500になっていたら、位置決め運転が正しく行なわれています。

1	新規1* - ティーチング・リモート運転			
ſ	▼ ティーチング・リモート 運転を開始する			
	指令位置(CPOS)	8500 (st	tep] INPUT	
	検出位置	8500 [st	tep] FREE	MOVE
	検出速度	0 [r/i	/min]	

- 3. 「ティーチング・リモート運転を開始する」のチェックを外して、ティーチング・リモート運転を終了します。
- 以上で、位置決め運転は終了です。

2 設定と調整

モーター、ドライバの機能を調整・設定する方法について説明します。パラメータを変更したときに、変更した値が反映されるタイミングはパラメータによって異なります。詳細は112ページをご覧ください。

2-1 分解能

ギヤードモーターやアクチュエータなど、機構と組み合わせて使用するときに、分解能を設定してください。 「電子ギヤA」「電子ギヤB」パラメータを設定すると、モーター出力軸1回転あたりの分解能を設定できます。 算出して得られた値は、次の設定範囲に収めてください。 分解能の設定範囲:100~10,000 P/R

```
分解能 = 1,000 × <u>電子ギヤB</u>
電子ギヤA
```

関連するパラメータ

MEXE02 ツリー表示	パラメータ名	内容	初期値
		電子ギヤの分母を設定します。	
应抽	電子ギヤA	【設定範囲】 1~65,535	1
座惊		電子ギヤの分子を設定します。	
	電子ギヤB	【設定範囲】 1~65,535	1

・範囲外の値を設定すると、電子ギヤ設定異常のワーニングが発生します。電子ギヤ設定異常のワーニングが発生している状態で電源を再投入またはConfigurationを実行すると、電子ギヤ設定異常のアラームが発生します。

- アブソリュートバックアップシステムが有効の状態で分解能を変更したときは、原点復帰運転または P-PRESETを実行してください。
- TIM出力を使用するときは、「電子ギヤ」パラメータで分解能を50の整数倍に設定してください。

■ 電子ギヤA/Bの算出方法

ここでは、ボールねじと回転テーブルを例として、電子ギヤA/Bの算出方法を説明します。

● 例)ボールねじの場合

ボールねじのリート 最小移動量 減速比	* :12 m :0.01 :1 (モ・	nm mm ーターとボー	ルねじ間に洞	城速機構がな	いものとします。)
メカ上の分解能 = 1	,000 × -	電子ギヤB 電子ギヤA	= <u>ボール</u> ね 最小	<u>いのリード</u> 移動量	×減速比
この例では 1	,000 × -	電子ギヤB 電子ギヤA	$=\frac{12 \text{ mm}}{0.01 \text{ mm}}$	— × 1	
よって	-	電子ギヤB 電子ギヤA	$=\frac{12}{10}$		

したがって、電子ギヤA=10、電子ギヤB=12となり、分解能は1,200 P/Rになります。

例)回転テーブルの場合

1回転の移動量	:360°			
最小移動量	:0.01°			
減速比	:10(減速)	比が10のギヤ	ァードモーターを使用])
メカ上の分解能 =	1,000 × -	電子ギヤB 電子ギヤA	= 1回転の移動量 最小移動量	- × 減速比
この例では	1,000 × -	電子ギヤB 電子ギヤA	$=\frac{360^{\circ}}{0.01^{\circ}}\times\frac{1}{10}$	
よって	-	電子ギヤB 電子ギヤA	$=\frac{36}{10}$	

したがって、電子ギヤA=10、電子ギヤB=36となり、分解能は3,600 P/Rになります。

2-2 運転電流

[RUN電流]パラメータを設定すると、ドライバの出力最大電流を変更できます。負荷が軽く、トルクに余裕があるときは、 運転電流を小さくすることでモーターの温度上昇を抑えることができます。

関連するパラメータ

MEXE02 ツリー表示	パラメータ名	内容	初期値
モーター	RUN電流	定格電流を100 %として、モーターの運転電流率を 設定します。 【設定範囲】 0~1,000(1=0.1 %)	1,000

運転電流が低すぎると、モーターの起動や位置の保持に支障が出ることがあります。必要以上に低くしないでください。

2-3 停止電流

モーターが停止するとカレントダウン機能がはたらいて、モーターの電流が停止電流まで下がります。 停止電流は、定格電流(100%)に[STOP電流]パラメータの設定値を乗じた値です。[RUN電流]パラメータを変更しても、 停止電流は変わりません。

関連するパラメータ

MEXE02 ツリー表示	パラメータ名	内容	初期値
モーター	STOP電流	定格電流を100 %として、モーター停止時の電流を 定格電流に対する割合で設定します。 【設定範囲】 0~500(1=0.1 %)	500

■ 加減速の単位

「加減速単位」パラメータで、加減速の単位を設定できます。 設定できる単位は加減速レート (ms/kHz)と加減速時間(s)です。

関連するパラメータ

MEXE02ツリー表示	パラメータ名	内容	初期値
運転	加減速単位	加減速の単位を設定します。 【設定範囲】 0:ms/kHz 1:s	0

加減速の共通設定と独立設定

「加減速選択」パラメータで、位置決め運転と連続運転における加減速を次のように設定できます。 独立:運転データNo.に設定された加減速に従います。

共通:「共通加速」と「共通減速」パラメータの設定値に従います。

- 連結運転中は、「加減速選択」パラメータが「独立」に設定されていても、連結運転を開始した運転データ No.の加減速が採用されます。
 - 変速運転中の加減速については194ページを参照してください。

関連するパラメータ

MEXE02ッリー表示	パラメータ名	内容	初期値
運転	加減速選択	共通加減速、または運転データの加減速のどちらを使 用するか設定します。 【設定範囲】 0:共通 1:独立	1

2-5 スムースドライブ

スムースドライブ機能を使用すると、モーターの振動を抑えることができます。

スムースドライブ機能を使用しないときは、低速域での振動が大きくなる場合があります。通常は「有効」に設定しておいて ください。

関連するパラメータ

MEXE02 ツリー表示	パラメータ名	内容	初期値
モーター	スムースドライブ	スムースドライブ機能の有効/無効を設定します。 【設定範囲】 0:無効 1:有効	1

2-6 速度フィルタ

[フィルタ選択]パラメータを「速度フィルタ」に設定すると、「速度フィルタ」パラメータでモーターの応答性を調整できます。

速度フィルタを高くすると、低速運転時の振動を抑えたり、起動・停止時のモーターの動きが滑らかになります。 ただし、値を高くしすぎると、指令に対する同期性は低下します。負荷や用途に合わせて、適切な値を設定してください。

関連するパラメータ

MEXE02ツリー表示	パラメータ名	内容	初期値
モーター	フィルタ選択	モーターの応答性を調整するためのフィルタ機能を 設定します。 【設定範囲】 0:速度フィルタ 1:移動平均フィルタ	0
	速度フィルタ	モーターの応答性を調整します。 【設定範囲】 0~200 ms	1

5 運転の種類と設定

2-7 移動平均フィルタ

「フィルタ選択」パラメータを「移動平均フィルタ」に設定すると、「移動平均時間」パラメータでモーターの応答性を調整で きます。また、位置決め運転時の残留振動を抑制して、位置決め時間を短縮できます。

「移動平均時間」パラメータは、負荷や運転条件によって最適値が異なります。負荷や運転条件に合わせて、適切な値を設定 してください。

関連するパラメータ

MEXE02ツリー表示	パラメータ名	内容	初期値
モーター	フィルタ選択	モーターの応答性を調整するためのフィルタ機能を 設定します。 【設定範囲】 0:速度フィルタ 1:移動平均フィルタ	0
	移動平均時間	移動平均フィルタの時定数を設定します。 【設定範囲】 1~200 ms	1

2-8 速度差ゲイン

運転時や加減速時の振動を抑えます。

関連するパラメータ

MEXE02 ツリー表示	パラメータ名	内容	初期値
モーター	速度差ゲイン1	運転時の振動を調整します。 【設定範囲】 0~500	45
	速度差ゲイン2	加減速時の振動を調整します。 【設定範囲】 0~500	45

2-9 制御モード

ドライバには、ノーマルモードと電流制御モードの2種類の制御モードがあります。 高速回転のときに騒音がしたり、振動が気になるときは、電流制御モードに切り替えると効果的です。 なお、負荷の状態によっては、ノーマルモードよりもわずかに遅れが生じる場合があります。 通常はノーマルモードでお使いください。

関連するパラメータ

MEXE02 ツリー表示	パラメータ名	内容	初期値
		ドライバの制御モードを設定します。	
モーター	制御モード	【設定範囲】 0:ノーマルモード 1:電流制御モード	0

2-10 位置ループゲイン、速度ループゲイン、速度ループ積分時定数

電流制御モードで有効です。

加減速時や停止時の振動を最適な値に調整できます。(装置や運転条件によって最適値は異なります。)

関連するパラメータ

MEXE02ツリー表示	パラメータ名	内容	初期値
モーター	位置ループゲイン	位置偏差に対する追従性を調整します。値を高くすると、 指令位置と実位置の偏差が小さくなります。値が高すぎ ると、モーターのオーバーシュートが大きくなったり、 ハンチングを起こす原因になります。 【設定範囲】 1~50	10
	速度ループゲイン	速度偏差に対する追従性を調整します。値を高くすると、 指令速度と実速度の偏差が小さくなります。値が高すぎ ると、モーターのオーバーシュートが大きくなったり、 ハンチングを起こす原因になります。 【設定範囲】 10~200	180
	速度ループ積分時定数	速度ループゲインでは調整できない偏差を調整します。 値が高すぎると、モーターの動きが緩やかになります。 逆に低すぎると、ハンチングを起こす原因になります。 【設定範囲】 100~2,000(1=0.1 ms)	1,000

2-11 アブソリュートバックアップシステム

当社のバッテリBAT01Bを取り付けて使用します。停電時やドライバの電源を切った後も絶対位置の情報を記憶させておく ことができるため、電源投入時の原点復帰が不要になります。

関連するパラメータ

MEXE02 ツリー表示	パラメータ名	内容	初期値
共通	アブソリュートバックアップ システム	アブソリュートバックアップシステムの有効/無 効を設定します。 【設定範囲】 0:無効 1:有効	0

▌ アブソリュートバックアップシステムの設定方法

- 1. ドライバの主電源とDC電源を切り、バッテリをドライバのバッテリコネクタ(AC電源ドライバ:CN10、DC電源ドラ イバ:CN4)に接続します。
- 2. ドライバの主電源とDC電源を投入します。
- 3. 「アブソリュートバックアップシステム」パラメータを「有効」に設定します。
- 4. ドライバの主電源とDC電源をいったん切り、再投入します。
- 5. 絶対位置異常のアラームが発生するので、次のどちらかの方法でアラームを解除します。
 - ・P-CLR入力をONからOFFにする。(OFFエッジで有効です。)
 - ・RS-485通信、MEXE02、OPX-2Aのどれかで絶対位置異常アラームリセットを実行する。
- 6. 原点復帰運転またはP-PRESETを実行します。

● 原点復帰運転またはP-PRESETが完了する前にドライバの電源を切らないでください。次回、電源を投入したときに、絶対位置異常のアラームが発生する場合があります。

アブソリュートバックアップシステムを使用していても、モーターケーブルを外すと絶対位置がずれる場合があります。主電源とDC電源を切り、いったんバッテリを取り外してから、上記の手順で設定しなおしてください。

▌ アブソリュートバックアップシステムの仕様

バックアップ時間	15日間(周囲温度20 ℃、満充電、停止状態)
充電時間	32時間(周囲温度20 ℃)
多回転動作の可能範囲	-167,772~167,772回転
最大応答回転速度	5,000 r/min
許容角加速度	$1.00 \times 10^2 \text{ rad/s}^2$

3 運転の種類と機能一覧

運転

【運転データとパラメータで設定】

4 位置決め運転

位置決め運転とは、モーターの運転速度や位置(移動量)などを運転データに設定して実行する運転です。位置決め運転を実 行すると、モーターは起動速度で立ち上がり、運転速度になるまで加速します。運転速度に達すると速度は一定になり、停 止位置に近づくと起動速度まで減速して停止します。

運転データには、運転機能も設定できます。運転機能とは、連続する運転データ(例:運転データNo.0、No.1、No.2)の制 御方法のことです。

4-1 運転データ

位置決め運転に必要な運転データは、次のとおりです。運転データは、最大64点(No.0~63)まで設定できます。

MEXE02 ツリー表示	項目	内容	初期値
	位置	位置決め運転の位置(移動量)を設定します。 【設定範囲】 -8,388,608~+8,388,607 step	0
	運転速度	位置決め運転の運転速度を設定します。 【設定範囲】 0~1,000,000 Hz	1,000
	加速	位置決め運転の加速レート(加速時間)を設定します。 【設定範囲】 1~1,000,000(1=0.001 ms/kHzまたは1=0.001 s)	1,000
	減速	位置決め運転の減速レート(減速時間)を設定します。 【設定範囲】 1~1,000,000(1=0.001 ms/kHzまたは1=0.001 s)	1,000
運転データ	運転方式	位置決め運転の位置(移動量)の指定方法を設定します。 【設定範囲】 0:INC(インクリメンタル) 1:ABS(アブソリュート)	0
	運転機能	位置決め運転の実行方式を設定します。 【設定範囲】 0:単独 1:連結 2:連結2 3:押し当て	0
	ドウェル時間	連結運転2の停止待ち時間を設定します。 【設定範囲】 0~50,000(1=0.001 s)	0
	押し当て電流	押し当て運転の電流比率を設定します。 【設定範囲】 0~1,000(1=0.1 %)※	200
	順送り位置決め	順送り位置決め運転の有効/無効を設定します。 【設定範囲】 0:無効 1:有効	0

※ 仕様変更前のドライバでは、設定範囲が0~500(1=0.1%)になります。詳細は8ページをご覧ください。

● 位置、運転速度、加速、減速

位置決め運転における加速と減速は、「加減速選択」パラメータで次のように設定できます。 独立:運転データに設定した値で運転します(加速、減速ともに64点ずつ)。 共通:「共通加速」「共通減速」パラメータの値で運転します(加速、減速ともに1点ずつ)。

● 運転方式

運転方式には次の2種類があります。

アブソリュート(ABS)方式

原点からの位置(移動量)を設定します。[絶対位置決め]	-3,000	原点	ā 開始点	3,000
例:開始位置を1,000、移動位置を+3,000と-3,000に設定して位	I	0 0	1,000	
置決め運転した場合		移動量-4,000	移	動量2,000

インクリメンタル(INC)方式

移動した先を、次の移動の開始点とします。同じ位置(移動量)を繰り返す運転に適しています。[相対位置決め] 例:開始位置を1,000、移動位置を+3,000と-3,000に設定して位 置決め運転した場合

-2,(000	原点 0	開始点 1,000		4,000
	<	移動量-3,000		移動量3,000	

● 運転機能、ドウェル時間

運転機能には次の4種類があります。

項目	内容	参照先
単独運転	1つの運転データで位置決め運転を実行します。	176ページ
連結運転	複数の運転データを連結して、多段変速位置決め運転を実行します。	177ページ
連結運転2	運転データと運転データの間にドウェル時間(停止待ち時間)があります。 回転方向が異なる運転データも連結できます。	178ページ
押し当て運転	位置決め運転中に負荷に押し当たった場合、連続して加圧する運転です。	180ページ

4-2 位置決め運転の起動方法

起動方法には次の3種類があります。

項目	内容
運転データNo.選択方式	M0~M5入力で運転データNo.を選択し、START入力をONにすると、位置決め運転を 実行します。
ダイレクト位置決め	MS0~MS5入力のどれかをONにすると、それぞれの入力に対応した運転データNo.の位置決め運転を実行します。
順送り位置決め	SSTART入力を入力するたびに、次の運転データNo.の位置決め運転を実行します。

|運転データNo.選択方式

運転データは、M0~M5入力のON/OFFを組み合わ せて選択します。詳細は95ページをご覧ください。

運転データNo.	M5	M4	М3	M2	M1	MO
0	OFF	OFF	OFF	OFF	OFF	OFF
1	OFF	OFF	OFF	OFF	OFF	ON
2	OFF	OFF	OFF	OFF	ON	OFF
•	•	•			•	
	•	•	•	•	•	•
•	•	•	•	•	•	•
61	ON	ON	ON	ON	OFF	ON
62	ON	ON	ON	ON	ON	OFF
63	ON	ON	ON	ON	ON	ON

運転方法

- 1) READY出力がONであることを確認します。
- 2) M0~M5入力で運転データNo.を選択し、START入力をONにします。
- 3) モーターが位置決め運転を始めます。
- 4) READY出力がOFFになったことを確認し、START入力をOFFにします。
- 5) 位置決め運転が終わると、READY出力がONになります。

■ ダイレクト位置決め

MS0~MS5入力のどれかをONにすると、それぞれの入力に対応した運転データNo.の位置決め運転を行ないます。MS0 ~MS5入力のどれかをONにするだけで位置決め運転を行なえるため、運転データNo.を選択する操作が省けます。MS0~ MS5入力に割り当てる運転データは、パラメータで設定します。

関連するパラメータ

MEXE02 ツリー表示	名称	内容	初期値
	MS0運転No.選択		0
	MS1運転No.選択	MS0~MS5入力に対応させる運転データNo.を設定	1
	MS2運転No.選択	します。	2
1/0	MS3運転No.選択	【設定範囲】	3
	MS4運転No.選択	0~63	4
	MS5運転No.選択		5

運転方法

- 1) READY出力がONであることを確認します。
- 2) MSO入力をONにします。
- 3) モーターが位置決め運転を始めます。
- 4) READY出力がOFFになったことを確認し、MS0入力をOFFにします。
- 5) 位置決め運転が終わると、READY出力がONになります。

順送り位置決め運転

順送り位置決め運転では、SSTART入力をONにするたびに、次の運転データNo.の位置決め運転を実行します。運転データNo.を選択する操作が省けるため、位置決めを順番に行ないたいときに便利な機能です。 運転データの「順送り位置決め」が「無効」に設定されているデータNo.まで進むと、順送り位置決め運転を行なう前に選択した運転データNo.に戻り、そこから順送り運転を再開します。

また、M0~M5入力やMS0~MS5入力で順送り運転の起点を変更すると、複数のパターンで順送り運転を設定できます。 ワークごとに異なる運転パターンを設定したいときに便利です。

運転パターンが1種類の場合

- 1) SSTART入力をONにして、運転データNo.0の位置決め運転を行ないます。
- 2) ①の運転が終了後、再度SSTART入力をONにすると、運転データNo.1の位置決め運転を行ないます。
- 3) ②の運転が終了後、再度SSTART入力をONにすると、運転データNo.2の位置決め運転を行ないます。
- 4) ③の運転が終了後、再度SSTART入力をONにすると、運転データNo.3の順送り位置決めが「無効」のため、運転データNo.0に戻って位置決め運転を行ないます。

設定例

● 運転パターンが複数の場合

- 1) 順送り位置決めの起点となる運転データNo.3を選び、START入力をONにして位置決め運転を実行します。
- 2) ①の運転が終了後、再度SSTART入力をONにすると、運転データNo.4の位置決め運転を行ないます。
- 3) ②の運転が終了後、再度SSTART入力をONにすると、運転データNo.5の位置決め運転を行ないます。
- 4) ③の運転が終了後、再度SSTART入力をONにすると、運転データNo.6の順送り位置決めが「無効」のため、運転データNo.3に戻って位置決め運転を行ないます。
- 5) ④の運転が終了後、運転データNo.7を選び、START入力をONにして位置決め運転を実行します。
- 6) 運転データNo.7が新しい順送り位置決め運転の起点となります。
- 7) ⑤の運転が終了後、再度SSTART入力をONにすると、運転データNo.8の位置決め運転を行ないます。
- 8) ⑥の運転が終了後、再度SSTART入力をONにすると、運転データNo.9の順送り位置決めが「無効」のため、運転データNo.7に戻って位置決め運転を行ないます。

設定例

თ

● 運転方法

- 1) READY出力がONであることを確認します。
- 2) SSTART入力をONにします。
- 3) モーターが位置決め運転を始めます。
- 4) READY出力がOFFになったことを確認し、SSTART入力をOFFにします。
- 5) 位置決め運転が終わると、READY出力がONになります。

● 順送り位置決め運転のポイント

順送り位置決め運転の実行中に次の操作を行なうと、順送りの起点が運転データNo.0に変わってしまいます。 また、現在の運転データNo.は[-1]に設定されます。

- DC電源を投入したとき
- 位置決め運転以外の運転を実行したとき
- アラームが発生し、そのアラームをリセットしたとき
- STOP入力をONにしたとき
- FREE入力やC-ON入力など、モーターが無励磁になる信号を入力したとき
- P-PRESETを実行したとき
- Configurationを実行したとき

(memo) 「運転機能」で「連結」または「連結2」を設定した運転データを順送り位置決めするときも、「順送り位置決 め]を「有効」にしてください。

4-3 運転機能

■ 単独運転

1つの運転データで、1回だけ位置決め運転を実行します。

● 単独運転の例

	運転方式	位置 [step]	運転速度 [Hz]	運転機能	押し当て電流 [%]	ドウェル時間 [s]	順送り位置決め	加速 [ms/kHz] or [s]	減速 [ms/kHz] or [s]
No.0	INC(インクリメンタル)	0	1000	単独	20.0	0.000	無効	1.000	1.000
No.1	INC(インクリメンタル)	5000	5000	単独	20.0	0.000	無効	1000.000	1000.000

運転イメージ

運転方法

- 1) READY出力がONであることを確認します。
- 2) M0入力をONにして運転データNo.1を選択し、START入力をONにします。
- 3) モーターが運転データNo.1の位置決め運転を始めます。
- 4) READY出力がOFFになったことを確認し、START入力をOFFにします。
- 5) 位置決め運転が終わると、READY出力がONになります。

■ 連結運転

運転データの運転機能を「連結」に設定すると、モーターを止めずに、次のデータNo.も続けて位置決めします。 途中で「単独」または「押し当て」を設定した運転データがあると、その運転データまで位置決めして、モーターを停止させま す。

連結できる運転データは4個までで、モーターの回転方向が同じものに限ります。

(memo) • 回転方向が異なる運転データは連結できません。運転時に運転データ異常のアラームが発生します。

- 運転データは4個まで連結できます。連結運転と連結運転2を組み合わせたときも、合計数を4個以下にしてください。5個以上の運転データを連結すると、運転の実行時に運転データ異常のアラームが発生します。
- データNo.63に「連結」を設定しても、No.0には連結しません。No.63の単独運転として処理されます。
- •連結運転の加減速には、連結運転を開始した運転データNo.の加減速が採用されます。
- 最後に連結した運転データが「押し当て」のときは、押し当て速度が起動速度として採用されます。

● 連結運転の例

	運転方式	位置 [step]	運転速度 [Hz]	運転機能	押し当て電流 [%]	ドウェル時間 [s]	順送り位置決め	加速 [ms/kHz] or [s]	減速 [ms/kHz] or [s]
No.0	INC(インクリメンタル)	0	1000	単独	20.0	0.000	無効	1.000	1.000
No.1	INC(インクリメンタル)	5000	5000	連結	20.0	0.000	無効	1000.000	1000.000
No.2	INC(インクリメンタル)	20000	10000	単独	20.0	0.000	無効	1.000	1.000

運転イメージ

運転方法

- 1) READY出力がONであることを確認します。
- 2) MO入力をONにして運転データNo.1を選択し、START入力をONにします。
- 3) モーターが運転データNo.1とNo.2を連結した位置決め運転を始めます。
- 4) READY出力がOFFになったことを確認し、START入力をOFFにします。
- 5) 位置決め運転が終わると、READY出力がONになります。

■ 連結運転2

運転データの運転機能を「連結2」に設定すると、回転方向が異なる運転データを連結できます。位置決め運転が終了した後、 ドウェル時間だけ停止してから、次の運転データを運転します。途中で「単独」または「押し当て」を設定した運転データがあ ると、その運転データまで位置決め運転を行ない、モーターを停止させます。

 ・運転データは4個まで連結できます。連結運転と連結運転2を組み合わせたときも、合計数を4個以下にしてください。5個以上の運転データを連結すると、運転の実行時に運転データ異常のアラームが発生します。

• データNo.63に「連結2」を設定しても、No.0には連結しません。No.63の単独運転として処理されます。

● 連結運転2の例

	運転方式	位置 [step]	運転速度 [Hz]	運転機能	押し当て電流 [%]	ドウェル時間 [s]	順送り位置決め	加速 [ms/kHz] or [s]	減速 [ms/kHz] or [s]
No.0	INC(インクリメンタル)	0	1000	単独	20.0	0.000	無効	1.000	1.000
No.1	INC(インクリメンタル)	5000	5000	連結2	20.0	1.000	無効	1000.000	1000.000
No.2	INC(インクリメンタル)	-3000	3000	単独	20.0	0.000	無効	1000.000	1000.000

運転イメージ

運転方法

- 1) READY出力がONであることを確認します。
- 2) M0入力をONにして運転データNo.1を選択し、START入力をONにします。
- 3) モーターが運転データNo.1の位置決め運転を始めます。
- 4) READY出力がOFFになったことを確認し、START入力をOFFにします。
- 5) ③の位置決め運転が終わると、MOVE出力がOFFになります。
- 6) ドウェル時間が経過すると、運転データNo.2の位置決め運転が自動で始まります。同時にMOVE出力がONになります。
- 7) 運転データNo.2の位置決め運転が終わると、READY出力がONになります。

● 連結運転2の例:連結運転と連結2運転を組み合わせた場合

	運転方式	位置 [step]	運転速度 [Hz]	運転機能	押し当て電流 [%]	ドウェル時間 [s]	順送り位置決め	加速 [ms/kHz] or [s]	減速 [ms/kHz] or [s]
No.0	INC(インクリメンタル)	0	1000	単独	20.0	0.000	無効	1.000	1.000
No.1	INC(インクリメンタル)	5000	3000	連結	20.0	0.000	無効	1000.000	1000.000
No.2	INC(インクリメンタル)	10000	5000	連結	20.0	0.000	無効	1.000	1.000
No.3	INC(インクリメンタル)	25000	7000	連結 <mark>2</mark>	20.0	1.000	無効	1.000	1.000
No.4	ABS(アブソリュート)	0	7000	単独	20.0	0.000	無効	1000.000	1000.000

運転イメージ

運転方法

- 1) READY出力がONであることを確認します。
- 2) M0入力をONにして運転データNo.1を選択し、START入力をONにします。
- 3) モーターが運転データNo.1~No.3を連結した位置決め運転を始めます。
- 4) READY出力がOFFになったことを確認し、START入力をOFFにします。
- 5) ③の位置決め運転が終わると、MOVE出力がOFFになります。
- 6) ドウェル時間が経過すると、運転データNo.4の位置決め運転が自動で始まります。同時にMOVE出力がONになります。
- 7) 運転データNo.4の位置決め運転が終わると、READY出力がONになります。

4-4 押し当て運転

当て電流値になります。

運転データの運転機能を「押し当て」に設定すると、負荷に押し当たったとき、連続して加圧する運転を行ないます。押し当 て運転では、選択した運転データNo.の運転速度で一定速運転を行ない、加速・減速は反映されません。 負荷に押し当たると押し当て状態となり、TLC出力とREADY出力がONになります。また、モーター電流は設定された押し

押し当て状態にならずに移動が完了したときは、モーターは停止し、END出力とREADY出力がONになります。停止状態 でのモーター電流は、設定された押し当て電流値になります。

STOP入力をONにすると、モーターは押し当て運転を停止し、END出力とREADY出力がONになります。停止状態でのモーター電流は、停止電流になります。

要 ギヤードモーターでは押し当て運転を行なわないでください。モーターやギヤ部が破損する原因になります。

- 押し当て運転の最大速度は、分解能に関係なく500 r/minです。500 r/minよりも大きい速度を設定して 押し当て運転を開始すると、運転データ異常のアラームが発生します。仕様変更前のドライバでは、押し 当て運転の最大速度は30 r/minになります。詳細は9ページをご覧ください。
 - 押し当て電流が大きい状態で長時間の押し当て運転を行なうと、ドライバの発熱が大きくなり、主回路過 熱のアラームが発生する場合があります。

押し当て運転の例:負荷に押し当たった場合

	運転方式	位置 [step]	運転速度 [Hz]	運転機能	押し当て電流 [%]	ドウェル時間 [s]	順送り位置決め	加速 [ms/kHz] or [s]	減速 [ms/kHz] or [s]
No.0	INC(インクリメンタル)	0	1000	単独	20.0	0.000	無効	1.000	1.000
No.1	INC(インクリメンタル)	5000	500	押し当て	50.0	0.000	無効	1.000	1.000

運転イメージ

運転方法

- 1) READY出力がONであることを確認します。
- 2) M0入力をONにして運転データNo.1を選択し、START入力をONにします。
- 3) モーターが運転データNo.1の位置決め運転を始めます。
- 4) READY出力がOFFになったことを確認し、START入力をOFFにします。
- 5) モーターが押し当て状態になると、TLC出力がONになり、その後READY出力がONになります。

● 押し当て運転の例:負荷に押し当たらなかった場合

運転イメージ

運転方法

- 1) READY出力がONであることを確認します。
- 2) M0入力をONにして運転データNo.1を選択し、START入力をONにします。
- 3) モーターが運転データNo.1の位置決め運転を始めます。
- 4) READY出力がOFFになったことを確認し、START入力をOFFにします。
- 5) モーターが目標位置に到達すると運転を停止し、READY出力がONになります。モーターが押し当て状態にならなかったため、TLC出力はOFFのままです。

※ ダイレクトI/Oのときは、M0~M5入力を確定してからSTART入力をONにしてください。 リモートI/Oのときは、M0~M5入力とSTART入力が同時にONになっても、運転を行ないます。

● 押し当て運転の例:連結運転と押し当て運転を組み合わせた場合

	運転方式	位置 [step]	運転速度 [Hz]	運転機能	押し当て電流 [%]	ドウェル時間 [s]	順送り位置決め	加速 [ms/kHz] or [s]	減速 [ms/kHz] or [s]
No.0	INC(インクリメンタル)	0	1000	単独	20.0	0.000	無効	1.000	1.000
No.1	INC(インクリメンタル)	5000	5000	連結	20.0	0.000	無効	1000.000	1000.000
No.2	INC(インクリメンタル)	5000	500	押し当て	50.0	0.000	無効	1.000	1.000

運転イメージ

運転方法

- 1) READY出力がONであることを確認します。
- 2) M0入力をONにして運転データNo.1を選択し、START入力をONにします。
- 3) モーターが運転データNo.1とNo.2を連結した位置決め運転を始めます。
- 4) READY出力がOFFになったことを確認し、START入力をOFFにします。
- 5) モーターが押し当て状態になると、TLC出力がONになり、その後READY出力がONになります。

※ ダイレクトI/Oのときは、M0~M5入力を確定してからSTART入力をONにしてください。 リモートI/Oのときは、M0~M5入力とSTART入力が同時にONになっても、運転を行ないます。

5 原点復帰運転

原点復帰運転とは、位置決め運転を行なう際に開始点となる位置(原点)を確定する運転です。 電源投入時、および位置決め運転の終了時に、原点へ復帰させるときに実行します。 原点復帰運転には次の4種類があります。

項目	内容	特徴
3センサ方式	原点復帰運転速度で運転します。HOMEセンサのONエッジを検出すると停止し、その位置を原点とします。	 外部にセンサが3つ必要※3 運転速度が高速(原点復帰運転速度)
2センサ方式	原点復帰起動速度で運転します。リミットセンサを検出 するとモーターは反転し、リミットセンサから脱出しま す。脱出後、200 step移動して停止し、その位置を原点と します。※2	 外部にセンサが2つ必要 運転速度が低速(原点復帰起動速度)
押し当て方式※1	原点復帰起動速度で運転します。機械上のストッパなど に押し当たるとモーターは反転します。その後200 step 移動して停止し、その位置を原点とします。※2	 外部センサが不要 運転速度が低速(原点復帰起動速度)
位置プリセット	モーターが停止している位置でP-PRESETを実行すると、 指令位置が「プリセット位置」パラメータの値になります。 原点を任意に設定することもできます。	 外部センサが不要 ・任意の位置を原点にできます。

※1 ギヤードモーターでは押し当て方式の原点復帰運転を行なわないでください。

※2 分解能に関係なく200 step移動します。そのため、分解能によっては実際の移動量が変わる場合があります。

※3 外部センサが1つでも原点を検出できます。その場合は、HOMEセンサだけを接続してください。

■ 付加機能

項目	3センサ方式 2センサ方式 押し当て方式	位置プリセット	関連するパラメータ
原点オフセット	可能	不可	原点復帰オフセット
しませい (信号)の 体山	司能	কল	 ● 原点復帰SLITセンサ検出
外部センリ(信号)の快击			 ●原点復帰TIM信号検出
原点復帰後の指令位置	0になります	任意の位置	プリセット位置

● 原点オフセット

原点復帰運転後に、パラメータで設定したオフセット量だけ位置決め運転を行ない、停止した位置を原点とする機能です。 オフセットによって決定した原点は、通常の原点とは区別して「電気原点」と呼びます。 オフセット量が0のときは、原点と機械原点が同じ位置になります。

外部センサ(信号)の検出

SLIT入力やTIM信号を併用すると、より正確な原点を検出できます。

(memo) TIM出力を使用するときは、分解能を50の整数倍に設定してください。

原点復帰後の指令位置

モーターが停止している位置でP-PRESETを実行すると、指令位置が「プリセット位置」パラメータに設定した値になります。

Λ

■ 原点復帰運転に関するパラメータ

AEXE02 ツリー表示	パラメータ名	内容	初期値
	原点復帰方法	原点復帰方法を設定します。 【設定範囲】 0:2センサ方式 1:3センサ方式 2:押し当て方式	1
	原点復帰運転速度	原点復帰運転の運転速度を設定します。 【設定範囲】 1~1,000,000 Hz	1,000
	原点復帰加減速	原点復帰運転の加減速レート(加減速時間)を設定し ます。 【設定範囲】 1~1,000,000 (1=0.001 ms/kHzまたは1=0.001 s)	1,000
	原点復帰起動速度	原点復帰運転の起動速度を設定します。 【設定範囲】 1~1,000,000 Hz	500
原点復帰	原点復帰オフセット	原点からのオフセット量を設定します。 【設定範囲】 -8,388,608~8,388,607 step	0
	原点復帰開始方向	原点検出の開始方向を設定します。 【設定範囲】 0:-側 1:+側	1
	原点復帰SLITセンサ検出	原点復帰時にSLIT入力を併用するかを設定します。 【設定範囲】 0:無効 1:有効	0
	原点復帰TIM信号検出	原点復帰時にTIM信号を併用するかを設定します。 【設定範囲】 0:無効 1:有効	0
	押し当て原点復帰運転電流	定格電流を100 %として、押し当て原点復帰の運転 電流率を設定します。 【設定範囲】 0~1,000(1=0.1 %)	1,000

● 運転イメージ(3センサ方式の場合)

移動量で見たときの動作シーケンス

● 運転方法

- 1) READY出力がONであることを確認します。
- 2) HOME入力をONにします。
- 3) 原点復帰運転が始まります。
- 4) READY出力がOFFになったことを確認し、HOME入力をOFFにします。
- 5) 原点復帰運転が終わると、HOME-P出力がONになります。

動作シーケンス 5-1

- 3センサ方式
- 記号の説明

VS:原点復帰起動速度

VR:原点復帰運転速度

VL:最終原点出し速度(VS<500 Hzのとき:VS、VS≧500 Hzのとき:500 Hz)

---は、原点オフセットを設定した場合です。

原点復帰運転の開始位置	原	京点復	夏帰運転の開始方向]:+側		原点復	帰運転の開始方向	:一側
	-	-LS	HOMES	+LS		-LS	HOMES	+LS
-LS	+側	K		— VR — VS	+側	\mathbf{r}		— VR — VS
	一側			— VS — VR	一側			— VS — VR
	-	-LS	HOMES	+LS		-LS	HOMES	+LS
+LS	+側			— VR — VS	+側	L		— VR — VS
	一側			- VS - VR	一側			- VS - VR
	-	-LS	HOMES	+LS		-LS	HOMES	+LS
HOMES	+側			— VR — VS	+側		n ÷	— VR — VS
HOMES	一側		↑ []] `/	— VS — VR	一側			— VS — VR
	-	-LS	HOMES	+LS		-LS	HOMES	+LS
HOMESと-LSの間	+側			— VR — VS	+側	\mathbf{r}		— VR — VS
	一側		↑ []]	— VS — VR	一側			— VS — VR
	-	-LS	HOMES	+LS		-LS	HOMES	+LS
HOMESと+LSの間	+側			-VR -VS	+側			— VR — VS
	一側			- VS - VR	一側			J – vs – vr

● HOMEセンサだけを使用する場合

リミットセンサを使用しない場合は、次のシーケンスになります。

原点復帰運転の開始位置	原点復帰運転の開始方向:+側			原点	原復帰運転の開始方[句:一側
		HOMES	HOMES HOMES			
HOMES	+側		— VR — VS	+側		— VR — VS
	一側	↑ U	— VS — VR	一側		— VS — VR
		HOMES			HOMES	
HOMES以外	+側	VL	— VR — VS	+側		— VR — VS
	一側		— VS — VR	一側		— VS — VR

国 要)「原点復帰加減速」パラメータの設定値によっては、HOMEセンサを検出した後に、HOMEセンサを越え て減速停止することがあります。メカ端とHOMEセンサの距離が近いと接触するおそれがあるため、十分 に距離をとってください。

● SLIT入力やTIM信号を併用する場合

HOMEセンサのONエッジを検出後、外部センサ(信号)が検出されるまで原点復帰運転を継続します。HOMEセンサがONの間に外部センサ(信号)が検出されると、原点復帰運転が完了します。

原点検出信号	原点復	帰運転の開始方向	:+側	原点復	帰運転の開始方向:	一側
	-LS +側		+LS — VR — VS	-LS +側	HOMES	+LS — VR — VS
SLIT入力	一側		- VS - VR	一側	↑, ↓ VL	— VS — VR
	SLIT ON OFF —			SLIT ON OFF —		
	-LS +側		+LS — VR — VS	_LS +側	HOMES	+LS — VR — VS
TIM信号	一側		— VS — VR	一側	↑, , , , , , , , , , , , , , , , , , ,	— VS — VR
_	TIM ON OFF			TIM ON OFF —		
	-LS +側		+LS — VR — VS	-LS +側	HOMES	+LS — VR — VS
SLIT入力と	一側		— VS — VR	一側	↑, , ↓ VL	— VS — VR
	SLIT ON OFF —			SLIT ON OFF —		
	TIM ON OFF			TIM ON OFF		

HOMEセンサのONエッジを検出した後の動作シーケンス

■ 2センサ方式

●記号の説明

VS:原点復帰起動速度 VR:原点復帰運転速度

VL:最終原点出し速度(VS<500 Hzのとき:VS、VS≥500 Hzのとき:500 Hz) --- は、原点オフセットを設定した場合です。

^{※ ±}LSから脱出した後、200 step移動します。

● SLIT入力やTIM信号を併用する場合

リミットセンサを検出するとモーターは反転し、リミットセンサから脱出します。脱出後、200 step移動して停止し、外部 センサ(信号)が検出されるまで運転を継続します。外部センサ(信号)が検出されると、原点復帰運転が完了します。

リミットセンサのONエッジを検出した後の動作シーケンス

※ ±LSから脱出した後、200 step移動します。

■ 押し当て方式

記号の説明

VS:原点復帰起動速度

VR:原点復帰運転速度

VL:最終原点出し速度(VS<500 Hzのとき:VS、VS≧500 Hzのとき:500 Hz) ---は、原点オフセットを設定した場合です。

※ メカ端から200 step移動します。

● SLIT入力やTIM信号を併用する場合

機械上のストッパなどに押し当たるとモーターは反転します。その後200 step移動して停止し、外部センサ(信号)が検出 されるまで運転を継続します。外部センサ(信号)が検出されると、原点復帰運転が完了します。

※ メカ端から200 step移動します。

重要

ギヤードモーターでは押し当て方式の原点復帰運転を行なわないでください。モーターが破損する原因になります。

• 押し当て方式の最大速度は、分解能に関係なくモーター出力軸上で500 r/minです。500 r/minよりも 大きい速度を設定して原点復帰運転を開始すると、モーターが破損する原因になります。

5-2 位置プリセット

P-PRESETを実行すると、指令位置が「プリセット位置」パラメータに設定した値になります。 ただし、次の場合はプリセットは実行されません。

- モーターの動作中
- アラームの発生中
- 関連するパラメータ

MEXE02ッリー表示	パラメータ名	内容	初期値
座標	プリセット位置	プリセット位置を設定します。 【設定範囲】 -8,388,608~8,388,607 step	0

● 運転方法

- 1) READY出力がONであることを確認します。
- 2) P-PRESET入力をONにします。
- 3) ドライバの内部処理が終了すると、HOME-P出力がONになります。
- 4) HOME-P出力がONになったことを確認し、P-PRESET入力をOFFにします。

6 連続運転

FWD入力またはRVS入力がONになっている間、モーターは連続して運転します。

FWD入力、RVS入力ともに、選択されている運転データNo.の運転速度で運転します。連続運転中に運転データNo.を変更 すると変速します。

FWD入力またはRVS入力をOFFにすると、モーターは減速停止します。減速中、同じ回転方向の信号をONにすると、モーターは再加速して連続運転を続けます。

FWD入力とRVS入力が両方ともONになると、モーターは減速停止します。

■ 運転データ

連続運転に必要な運転データは、次のとおりです。

MEXE02ツリー表示	項目	内容	初期値
	連続運転の運転速度を設定します。 運転速度 【設定範囲】 1~1,000,000 Hz		1,000
運転データ	加速	連続運転の加速レート(加速時間)を設定します。※ 【設定範囲】 1~1,000,000(1=0.001 ms/kHzまたは1=0.001 s)	1,000
	減速	連続運転の減速レート(減速時間)を設定します。※ 【設定範囲】 1~1,000,000(1=0.001 ms/kHzまたは1=0.001 s)	1,000

※ 連続運転における加速と減速は、「加減速選択」パラメータで次のように設定できます。 独立:運転データに設定した値で運転します(加速、減速ともに64点ずつ)。 共通:「共通加速」「共通減速」パラメータの値で運転します(加速、減速ともに1点ずつ)。

6-1 連続運転の起動方法

運転データNo.を選択してFWD入力またはRVS入力 をONにすると、連続運転を開始します。 運転データは、M0~M5入力のON/OFFを組み合わ せて選択します。詳細は95ページをご覧ください。

運転データNo.	M5	M4	M3	M2	M1	MO
0	OFF	OFF	OFF	OFF	OFF	OFF
1	OFF	OFF	OFF	OFF	OFF	ON
2	OFF	OFF	OFF	OFF	ON	OFF
•	•		•	•	•	•
	•		•	•	•	•
•	•	•	•	•	•	•
61	ON	ON	ON	ON	OFF	ON
62	ON	ON	ON	ON	ON	OFF
63	ON	ON	ON	ON	ON	ON

● 運転方法

- 1) READY出力がONであることを確認します。
- 2) M0~M5入力で運転データNo.を選択し、FWD入力をONにします。
- 3) モーターが連続運転を始めます。READY出力がOFFになります。
- 4) MO入力をONにして、運転データNo.1を選択します。運転データNo.1の運転速度まで加速します。
- 5) MO入力をOFFにして、運転データNo.0を選択します。運転データNo.0の運転速度まで減速します。
- 6) FWD入力をOFFにします。
- 7) モーターが減速停止し、READY出力がONになります。

※ ダイレクトI/Oのときは、M0~M5入力を確定してからFWD入力またはRVS入力をONにしてください。 リモートI/Oのときは、M0~M5入力とFWD(RVS)入力が同時にONになっても、運転を行ないます。

● 運転方法:FWD入力とRVS入力を組み合わせた場合

- 1) READY出力がONであることを確認します。
- 2) M0~M5入力で運転データNo.を選択し、FWD入力をONにします。
- 3) モーターが連続運転を始めます。READY出力がOFFになります。
- 4) FWD入力をOFFにします。モーターが減速します。
- 5) モーターの減速中にFWD入力をONにします。モーターが再加速します。
- 6) FWD入力をOFFにします。モーターが減速します。
- 7) モーターの減速中にRVS入力をONにします。モーターがいったん停止した後、逆方向へ回転します。
- 8) RVS入力がONの間にFWD入力をONにすると、モーターが減速します。
- 9) モーターが減速停止し、MOVE出力がOFFになります。
- 10) FWD入力とRVS入力をどちらもOFFにすると、READY出力がONになります。

※ ダイレクトI/Oのときは、M0~M5入力を確定してからFWD入力またはRVS入力をONにしてください。 リモートI/Oのときは、M0~M5入力とFWD(RVS)入力が同時にONになっても、運転を行ないます。 6-2 変速運転

■ 加減速が「独立」の場合

● 加減速単位:ms/kHz

• 記号の説明

VS:起動速度(Hz) VR1:運転データNo.1の運転速度(Hz) VR2:運転データNo.2の運転速度(Hz) TA1:運転データNo.1の加速レート (ms/kHz) TA2:運転データNo.2の加速レート (ms/kHz) •加減速レートの算出方法

TD2:運転データNo.2の減速レート(ms/kHz)	TAR1 = (VR1 - VS) / TA1
TAR1:運転データNo.1の加速レート(Hz/s)	TAR2 = (VR2 - VS) / TA2
TAR2:運転データNo.2の加速レート(Hz/s)	TDR2 = (VR2 - VS) / TD2
TDR2:運転データNo.2の減速レート(Hz/s)	

● 加減速単位:s

記号の説明

VS:起動速度(Hz) VR1:運転データNo.1の運転速度(Hz) VR2:運転データNo.2の運転速度(Hz) TA1:運転データNo.1の加速時間(s) TA2:運転データNo.2の加速時間(s) TD2:運転データNo.2の減速時間(s) TAR1:運転データNo.1の加速レート(Hz/s) TAR2:運転データNo.2の加速レート(Hz/s) TDR2:運転データNo.2の減速レート(Hz/s)

•加減速レートの算出方法

TAR1 = (VR1 - VS) / TA1 TAR2 = (VR2 - VS) / TA2 TDR2 = (VR2 - VS) / TD2

■ 加減速が「共通」の場合

● 加減速単位:ms/kHz

• 記号の説明

VS:起動速度(Hz) VR1:運転データNo.1の運転速度(Hz) VR2:運転データNo.2の運転速度(Hz) TAC:共通加速レート(ms/kHz) TDC:共通減速レート(ms/kHz) TAR1:運転データNo.1の加速レート(Hz/s) TAR1 TAR2:運転データNo.2の加速レート(Hz/s) TAR2 TDR2:運転データNo.2の減速レート(Hz/s) TDR2

加減速レートの算出方法
 TAR1 = (VR1 – VS) / TAC

TAR2 = (VR2 - VS) / TACTDR2 = (VR2 - VS) / TACTDR2 = (VR2 - VS) / TDC

● 加減速単位:s

加速するとき VR2 VR2 VR1 TAR2 TAR2 TDR2 TDR2

• 記号の説明

VS:起動速度(Hz) VR1:運転データNo.1の運転速度(Hz) VR2:運転データNo.2の運転速度(Hz) TAC:共通加速時間(s) TDC:共通減速時間(s) TAR1:運転データNo.1の加速レート (Hz/s) TAR2:運転データNo.2の加速レート (Hz/s) TDR2:運転データNo.2の減速レート (Hz/s) ● 加減速レートの算出方法 TAR1 = (VR1 – VS) / TAC TAR2 = (VR2 – VS) / TAC

TDR2 = (VR2 - VS) / TDC

ഗ

7-1 JOG運転

JOG運転とは、「JOG移動量」パラメータに設定した移動量だけ位置決め運転する機能です。 +JOG入力をONにすると+方向、-JOG入力をONにすると-方向へJOG運転を行ないます。 位置を微調整するときなどに便利な機能です。

関連するパラメータ

MEXE02ツリー表示	パラメータ名	内容	初期値
	JOG運転速度	JOG運転の運転速度を設定します。 【設 定範囲】 1~1,000,000 Hz	1,000
海中	JOG加減速	JOG運転の加減速レート(加減速時間)を設定します。 【設定範囲】 1~1,000,000(1=0.001 ms/kHzまたは1=0.001 s)	1,000
JET HU	JOG起動速度	JOG運転の起動速度を設定します。 【設定範囲】 0~1,000,000 Hz	500
	JOG移動量	JOG運転の移動量を設定します。 【設定範囲】 1~8,388,607 step	1

● 運転イメージ

運転方法

- 1) READY出力がONであることを確認します。
- 2) +JOG入力をONにします。
- 3) モーターが位置決め運転を始めます。
- 4) READY出力がOFFになったことを確認し、+JOG入力をOFFにします。
- 5) 位置決め運転が終わると、READY出力がONになります。

7-2 テスト運転

テスト運転は、MEXE02またはOPX-2Aで実行します。JOG運転とティーチングを実行できます。 MEXE02の詳細は「サポートソフト MEXE02 取扱説明書」を、OPX-2Aの詳細は122ページをご覧ください。

JOG運転

JOG運転によって、モーターとドライバの配線状態や動作状態を確認できます。

例:OPX-2AでJOG運転する場合

■ ティーチング

ティーチングは、MEXE02またはOPX-2Aでモーターを動かして、現在位置を運転データの位置(移動量)に設定する機能で す。ティーチングで位置(移動量)を設定すると、運転方式は必ずアブソリュート方式になります。 ティーチングの運転速度、加減速、および起動速度は、JOG運転と同じです。

(memo) ティーチングは、座標が確定しているときに行なってください。座標の確定については201ページをご覧 ください。

7-3 自動復帰動作

無励磁中、外力によってモーターの位置がずれても、停止していた位置に自動復帰できる機能です。主電源を投入し、C-ON 入力をONまたはFREE入力をOFFにしてモーターを励磁すると、自動復帰動作が行なわれます。 自動復帰は、次のタイミングで実行されます。

- 主電源を投入したとき
- C-ON入力をOFFからONにしたとき
- FREE入力をONからOFFにしたとき

関連するパラメータ

MEXE02ッリー表示	パラメータ名	内容	初期値
運転	自動復帰動作	自動復帰動作の有効/無効を設定します。 【設定範囲】 0:無効 1:有効	0
	自動復帰運転速度	自動復帰動作の運転速度を設定します。 【設定範囲】 1~1,000,000 Hz	1,000
	自動復帰加減速	自動復帰動作の加減速レート(加減速時間)を設定します。 【設定範囲】 1~1,000,000(1=0.001 ms/kHzまたは1=0.001 s)	1,000
	自動復帰起動速度	自動復帰動作の起動速度を設定します。 【設定範囲】 0~1,000,000 Hz	500

自動復帰の例

DC電源を投入した直後、およびConfigurationコマンドを発行した直後は、自動復帰動作を行ないません。 無励磁中にアラームが発生すると、正常に自動復帰しません。

7-4 停止動作

■ STOP動作

モーターの動作中にSTOP入力またはRS-485通信のSTOPをONに すると、モーターが停止します。 モーターの停止方法は、「STOP入力停止方法」パラメータの設定に 従います。 例として、「STOP入力停止方法」パラメータを「減速停止」にしたと きの動作を右図に示します。

※ 減速時間は、運転データの「減速」の設定に従います。

■ ハードウェアオーバートラベル

ハードウェアオーバートラベルは、リミットセンサ(±LS)を移動範囲の上下限に設置して、移動範囲を限定する機能です。 「ハードウェアオーバートラベル]パラメータを「有効」に設定すると、リミットセンサの検出時にモーターを停止させるこ とができます。モーターの停止方法は、「オーバートラベル動作」パラメータの設定に従います。 動作例を下図に示します。

関連するパラメータ

MEXE02 ツリー表示	パラメータ名	内容	初期値
1/0	ハードウェアオーバー トラベル	±LS入力によるハードウェアオーバートラベル検出 の有効/無効を設定します。 【設定範囲】 0:無効 1:有効	1
170	オーバートラベル動作	オーバートラベルが発生したときのモーターの停止 方法を設定します。 【設定範囲】 0:即停止 1:減速停止	0

[オーバートラベル動作]パラメータを減速停止にするときは、減速を開始してから停止するまでの距離を 考慮し、負荷が機構の端に接触しないようにしてください。

■ ソフトウェアオーバートラベル

ソフトウェアオーバートラベルは、パラメータで移動範囲の上下限を設定して、移動範囲を限定する機能です。 「ソフトウェアオーバートラベル」パラメータを「有効」に設定すると、ソフトウェアリミットでモーターを停止させること ができます。モーターの停止方法は、「オーバートラベル動作」パラメータの設定に従います。たとえば、「オーバートラベ ル動作」パラメータを「減速停止」に設定すると、減速レートに従って減速し、ソフトウェアリミットでモーターを停止させ ることができます。

運転中にソフトウェアリミットを超える運転を開始したときの動作パターンを図に示します。

即停止の場合

減速停止の場合

関連するパラメータ

MEXE02 ツリー表示	パラメータ名	内容	初期値
Ι/Ο	オーバートラベルが発生したときのモーターの停止 方法を設定します。 【設定範囲】 0:即停止 1:減速停止		0
	ソフトウェアオーバー トラベル	ソフトウェアリミットによるソフトウェアオーバー トラベル検出の有効/無効を設定します。 【設定範囲】 0:無効 1:有効	1
座標	+ソフトウェアリミット	+方向のソフトウェアリミットを設定します。 【設定範囲】 -8,388,608 ~8,388,607 step	8,388,607
	ーソフトウェアリミット	ー方向のソフトウェアリミットを設定します。 【設定範囲】 –8,388,608 ~8,388,607 step	-8,388,608

(memo) • ソフトウェアオーバートラベルは、座標が確定しているときに動作します。座標の確定については201 ページをご覧ください。

モーターの動作中にソフトウェアリミット値が変更されたときは、「オーバートラベル動作」パラメータの設定に従って停止します。

■ リミットからの脱出動作

+方向のリミットが検出されたときは-方向、-方向のリミットが検出されたときは+方向へ脱出できます。 リミットから脱出できる運転の種類を表に示します。

運転の種類	リミットセンサ(±LS)	ソフトウェアリミット
位置決め運転	運転不可(脱出できません)	
連続運転 テスト運転 原点復帰運転	運転可能(脱出できます)	運転可能(脱出できます)

8 座標管理

8-1 座標位置管理

ドライバはモーターの位置情報を管理しています。当社のバッテリBAT01Bを接続して、アブソリュートバックアップシス テムでお使いになると、電源を切っても位置情報が保持されます。

■ ドライバの座標確定

● アブソリュートバックアップシステムが無効の場合

次のどちらかを実行すると座標が確定します。

- 原点復帰運転を実行する。
- P-PRESETを実行する。

● アブソリュートバックアップシステムが有効の場合

アブソリュートバックアップシステムが有効のため、いったん座標を確定すれば、電源を切っても座標を確定しなおす必要 がありません。ただし絶対位置異常のアラームが発生すると、絶対位置情報は失われます。その場合はP-CLR入力で絶対位 置異常のアラームを解除してから、次のどちらかを実行して、座標を確定してください。

- 原点復帰運転を実行する。
- P-PRESETを実行する。

■ 座標が未確定のとき

「原点復帰未完了アラーム」パラメータを「有効」に設定すると、座標が確定していない状態での位置決め運転を禁止できます。座標が確定していない状態でSTART入力、SSTART入力、MS0〜MS5入力をONにすると、原点復帰未完了のアラームが発生します。アラームについては148ページをご覧ください。

関連するパラメータ

MEXE02ッリー表示	パラメータ名	内容	初期値
アラーム	原点復帰未完了 アラーム	座標が確定していない状態で位置決め運転を開始したと きに、アラームを発生させるかを設定します。 【設定範囲】 0:無効 1:有効	0

8-2 ラウンド機能

ラウンド機能は、指令位置が「ラウンド設定範囲」パラメータの設定値を超えると、指令位置や多回転データを0に戻す機能 です。多回転データも0に戻るため、アブソリュートバックアップシステムを使用した、同一方向の連続回転動作が可能に なります。

指令位置は、「0~(ラウンド設定値-1)」の範囲で変化します。

関連するパラメータ

MEXE02 ツリー表示	パラメータ名	内容	初期値
座標	ラウンド設定	ラウンド機能の有効/無効を設定します。 【設定範囲】 0:無効 1:有効	0
	ラウンド設定範囲	ラウンド設定範囲を設定します。 【設定範囲】 1~8,388,607 step	1,000

- (memo)
 ・「ラウンド設定」パラメータを「有効」にすると、ソフトウェアオーバートラベルは無効になります。(「ソ フトウェアオーバートラベル」パラメータが「有効」に設定されていても無効になります。)
 - 「アブソリュートバックアップシステム」パラメータが「有効」の状態で「ラウンド設定」パラメータや「ラ ウンド設定範囲」パラメータを変更すると、絶対位置がずれる可能性があります。変更したときは原点復 帰運転またはP-PRESETを実行してください。

■ ラウンド機能の設定条件

条件①: - 電子ギヤB × 1,000 電子ギヤA × 50 = 整数であること

条件②: ラウンド設定値 × 電子ギヤA × 50 電子ギヤB × 1,000 = 整数であること

これらの式を満たさないときは、ラウンド設定異常のワーニングが発生します。

(memo) 「ラウンド設定」パラメータが「有効」の状態で、これらの式を満たさないときは、ラウンド設定異常の ワーニングが発生します。ラウンド設定異常のワーニングが発生している状態で電源を再投入または Configurationを実行すると、ラウンド設定異常のアラームが発生します。

■ ラウンド機能の例

次の条件で位置決め運転を行なったときの動作例を示します。

- ラウンド設定:3,600
- 分解能:1,000 P/R(電子ギヤA=1、電子ギヤB=1)
- 指令位置:900

条件①: $\frac{電子ギャB \times 1,000}{電子ギャA \times 50} = \frac{1 \times 1,000}{1 \times 50} = 20$ 条件②: ラウンド設定値 × $\frac{電子ギャA \times 50}{電子ギャB \times 1,000} = 3,600 \times \frac{1 \times 50}{1 \times 1,000} = 180$

2つの式の計算結果が整数なので、設定条件を満たしています。 指令位置が900 stepから位置決め運転を行なうと、次のようになります。

5 運転の種類と設定

6 Modbus RTU制御 (RS-485通信)

RS-485通信で上位システムから制御する方法について説明しています。RS-485通信で使用するプロトコルは、Modbusプロトコルです。

◆もくじ

1	ガイダンフ	206
2	通信仕様	212
3	スイッチの設定	215
3-1	1 AC電源ドライバの設定	215
3-2	2 DC電源ドライバの設定	217
4	RS-485通信の設定	219
5	通信方式と通信タイミング	220
5-1	1 通信方式	220
5-2	2 通信タイミング	220
6	メッセージ	221
6-1	1 クエリ	221
6-2	2 レスポンス	223
7	ファンクションコード	225
7-′	1 保持レジスタの読み出し(03h)	225
7-2	2 保持レジスタへの書き込み(06h)	226
7-3	3 診断(08h)	227
7-4	4 複数の保持レジスタへの書き込み(10	h) 228

8 レシ	ジスタアドレス一覧	229
8-1	動作コマンド	
8-2	メンテナンスコマンド	
8-3	モニタコマンド	
8-4	パラメータR/Wコマンド	
9 グル	ッープ送信	242
10 運動	の設定例	244
10-1	位置決め運転	
10-2	連続運転	
10-3	原点復帰運転	
11 通信	異常の検出	250
11-1	通信エラー	
11-2	アラームとワーニング	
12	′ミングチャート	251

ガイダンス 1

はじめてお使いになるときはここをご覧になり、運転方法のながれについてご理解ください。 ここで紹介する例は、上位システムで運転データやパラメータを設定して、モーターを運転する方法です。

モーターを動かすときは周囲の状況を確認し、安全を確保してから運転してください。

- STEP 1 設置と接続を確認します
- AC電源ドライバ

※ 当社でご用意しています。別途お買い求めください。

※1 当社でご用意しています。モーターケーブルの長さが足りないときに、別途お買い求めください。※2 当社でご用意しています。別途お買い求めください。

STEP 2 スイッチを設定します

スイッチで表の内容を設定してください。設定すると、図のようになります。

■ AC電源ドライバ

設定内容	スイッチ	出荷時設定
プロトコル:Modbusプロトコル	SW4のNo.2をON	OFF
	SW4のNo.1をOFF、IDを1	SW4のNo.1:OFF、ID:0
通信速度:115,200 bps	SW2を4	7
終端抵抗:ON	TERM.のNo.1とNo.2をON	OFF

● ドライバ正面

●ドライバ底面

■ DC電源ドライバ

設定内容	スイッチ	出荷時設定
プロトコル:Modbusプロトコル	SW3のNo.2をON	OFF
	SW3のNo.1をOFF、SW1を1	SW3のNo.1:OFF、SW1:0
通信速度:115,200 bps	SW2を4	7
終端抵抗:ON	SW3のNo.4をON	OFF

ドライバ正面

No.1:OFF

No.2:ON

No.3:OFF No.4:ON

STEP 3 電源を投入し、通信パラメータを設定します

MEXE02で、次の通信パラメータを確認してください。

通信が確立できないときは、ドライバの通信パラメータを見直してください。

MEXE02ッリー表示	パラメータ名
	通信パリティ[初期値:1(偶数)]
通信	通信ストップビット[初期値:0(1ビット)]
	送信待ち時間[初期値:100(10.0 ms)]

(memo` マスタから送信されるフレームの送信間隔は、ドライバのサイレントインターバルよりも長く設定してく ださい。通信速度が115,200 bpsの場合、ドライバのサイレントインターバルは2.5 msです。

STEP 4 電源を再投入します

ドライバのスイッチや通信パラメータは、電源の再投入後に有効になります。

STEP 5 メッセージを送信して、モーターを運転します

例として、次の位置決め運転を実行する方法を説明します。

1. 次の5つのクエリを送信して、運転データを設定します。

•運転データNo.0の運転方式

	フィールド名称	データ	内容	
スレーブアドレス		01h	スレーブアドレス1	
ファンクシ	/ョンコード	06h	保持レジスタへの書き込み	
データ	レジスタアドレス(上位)	05h	- 運転方式No.0 (0501h) - インクリメンタル (0000h)	
	レジスタアドレス (下位)	01h		
	ライト値(上位)	00h		
	ライト値(下位)	00h		
エラーチェック(下位)		D8h	CDC 16の計管は田	
エラーチェック(上位)		C6h	CRC-100月昇結末	

運転データNo.0の位置

フィールド名称		データ	内容	
スレーブアドレス		01h	スレーブアドレス1	
ファンクションコード		06h	保持レジスタへの書き込み	
	レジスタアドレス (上位)	04h	位罢No 0(0401b)	
データ	レジスタアドレス(下位)	01h	位间10.0(04011)	
	ライト値(上位)	21h	9 E00 ctop (2124h)	
ライト値(下位)		34h	0,500 Step (215411)	
エラーチェック(下位)		C0h	CDC 16の計管対田	
エラーチェック(上位)		BDh	したし-10011昇和未	

• 運転データNo.0の運転速度

フィールド名称		データ	内容	
スレーブアドレス		01h	スレーブアドレス1	
ファンクションコード		06h	保持レジスタへの書き込み	
-" 7	レジスタアドレス(上位)	04h	(運転) 市底 (0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0	
	レジスタアドレス(下位)	81h) 建料述反NO.0 (040 III)	
) — 9	ライト値(上位)	07h		
ライト値(下位)		D0h	2,000 H2 (07 D0H)	
エラーチェック(下位)		DBh	CDC 16の計管対用	
エラーチェック(上位)		7Eh		

• 運転データNo.0の加速

フィールド名称		データ	内容	
スレーブアドレス		01h	スレーブアドレス1	
ファンクションコード		06h	保持レジスタへの書き込み	
	レジスタアドレス (上位)	06h	加速No 0(0601b)	
	レジスタアドレス (下位)	01h	///迷い0.0(000111/	
) —9	ライト値(上位)	05h	1 E mc/kHz(0EDCh)	
	ライト値(下位)	DCh		
エラーチェック(下位)		DAh	CPC 16の計筒4日	
エラーチェック(上位)		4Bh		

• 運転データNo.0の減速

フィールド名称		データ	内容	
スレーブアドレス		01h	スレーブアドレス1	
ファンクションコード		06h	保持レジスタへの書き込み	
	レジスタアドレス(上位)	06h	减速No.0 (0681h)	
-" 7	レジスタアドレス (下位)	81h		
) —9	ライト値(上位)	05h		
ライト値(下位)		DCh		
エラーチェック(下位)		DBh	CDC 16の計管対田	
エラーチェック(上位)		A3h		

- 2. 次の2つのクエリを送信して、運転を実行します。
 - START入力 ON (運転No.0 運転開始)

フィールド名称		データ	内容	
スレーブアドレス		01h	スレーブアドレス1	
ファンクションコード		06h	保持レジスタへの書き込み	
	レジスタアドレス(上位)	00h		
-" 7	レジスタアドレス (下位)	7Dh		
テータ ライト値(上位)		00h		
ライト値(下位)		08h		
エラーチェック (下位)		18h	CDC 16の計管対田	
エラーチェック(上位)		14h	したし-10の計算和未	

• START入力 OFF

フィールド名称		データ	内容	
スレーブアドレス		01h	スレーブアドレス1	
ファンクションコード		06h	保持レジスタへの書き込み	
	レジスタアドレス (上位)	00h	ドニノバン 七七今(00706)	
-" 7	レジスタアドレス (下位)	7Dh		
テータ ライト値(上位)		00h		
ライト値(下位)		00h	START OFF (00001)	
エラーチェック(下位)		19h	CDC 16の計管対田	
エラーチェック(上位)		D2h	CKC-100月 昇結未	

3. モーターが設定どおり回ることを確認します。

STEP 6 運転できましたか?

いかがでしたか。うまく運転できたでしょうか。モーターが動かないときは、次の点を確認してください。

- アラームが発生していませんか?
- 電源、モーター、RS-485通信ケーブルは確実に接続されていますか?
- スレーブアドレス、通信速度、終端抵抗の設定は正しいですか?
- C-DAT/C-ERR LEDが消灯していませんか?または赤色に点灯していませんか?(通信エラーが発生しています。)

2 通信仕様

電気的特性	EIA-485準拠、ストレートケーブル ツイストペア線 (TIA/EIA-568B CAT5e以上を推奨)を使用し、総延長距離を50 mまでとする。※
通信方式	半二重通信 調歩同期方式(データ:8ビット、ストップビット:1ビット/2ビット、パリティ:なし/偶数/奇数)
伝送速度	9,600 bps、19,200 bps、38400 bps、57600 bps、115,200 bpsから選択
プロトコル	Modbus RTUモード
接続形態	上位システム1台に対して最大31台まで接続できます。

※ 配線・配置によりモーターケーブルや電源ケーブルから発生するノイズが問題になる場合は、シールドするかフェライトコアを使用してください。

■接続例

図は、AC電源ドライバの場合です。

内部回路図

● AC電源ドライバ

- ※1 終端抵抗120Ω
- ※2 終端抵抗(TERM.-No.1、No.2)をONにします。

| 6 Modbus RTU制御(RS-485通信)

● DC電源ドライバ

- ※1 終端抵抗120Ω
- ※2 終端抵抗(SW3-No.4)をONにします。
- ※3 CN1のGNDと共通です(非絶縁)。

スイッチの設定 3

AC電源ドライバとDC電源ドライバではスイッチが異なります。正しく設定してください。

AC電源ドライバの設定 3-1

図は、出荷時設定の状態です。

●ドライバ正面

スイッチを設定するときは、ドライバの主電源とDC24 V電源を切り、CHARGE LEDが消灯してから行 なってください。残留電圧によって感電するおそれがあります。

(memo 設定したスイッチはDC24 V電源の再投入後に有効になります。

■ プロトコル

機能設定スイッチ(SW4)のNo.2をONにします。Modbusプロトコルが選択されます。

OFF 出荷時設定

SW4-No.2	プロトコル
ON	Modbus RTUモード
OFF	ネットワークコンバータに接続

通信速度

通信速度設定スイッチ(SW2)で通信速度を設定します。 通信速度は、上位システムの通信速度と同じ値を設定してください。

出荷時設定 7

SW2	通信速度(bps)	SW2	通信速度(bps)
0	9,600	4	115,200
1	19,200	5、6	使用しません
2	38,400	7	ネットワークコンバータ
3	57,600	8~F	使用しません

(memo`

5、6、および8~Fの目盛りは設定しないでください。

■ 号機番号(スレーブアドレス)

号機設定スイッチ(ID)と機能設定スイッチ(SW4)のNo.1を併用して、号機番号(スレーブアドレス)を設定します。号機番号(スレーブアドレス)は重複しないように設定してください。号機番号(スレーブアドレス)0はブロードキャストで予約されているので、使用しないでください。

出荷時設定 ID:0、SW4-No.1:OFF

ID	SW4-No.1	号機番号 (スレーブアドレス)	ID	SW4-No.1	号機番号 (スレーブアドレス)
0		使用しません	0		16
1		1	1		17
2		2	2		18
3		3	3		19
4		4	4		20
5		5	5		21
6	OFF	6	6		22
7		7	7		23
8		8	8	ON	24
9		9	9		25
А		10	А		26
В		11	В		27
С		12	С		28
D		13	D		29
E		14	E		30
F		15	F		31

■ 終端抵抗

上位システムから一番離れた位置(終端)にあるドライバは、RS-485通信の終端抵抗(120 Ω)を設定します。 終端抵抗設定スイッチ(TERM.-No.1、No.2)を両方ともONにして、RS-485通信の終端抵抗(120 Ω)を設定してください。

出荷時設定 No.1、No.2ともにOFF(終端抵抗なし)

TERMNo.1、No.2	終端抵抗(120 Ω)	
両方ともOFF	なし	
両方ともON	あり	

(memo) No.1、No.2の片方だけをONにすると、通信エラーが発生する場合があります。

3-2 DC電源ドライバの設定

図は、出荷時設定の状態です。

(memo) スイッチを設定するときは、必ずドライバの電源を切ってください。電源が投入されている状態で設定しても、有効になりません。

■ プロトコル

機能設定スイッチ(SW3)のNo.2をONにします。Modbusプロトコルが選択されます。

出荷時設定 OFF

SW3-No.2	プロトコル
ON	Modbus RTUモード
OFF	ネットワークコンバータに接続

通信速度

通信速度設定スイッチ(SW2)で通信速度を設定します。 通信速度は、上位システムの通信速度と同じ値を設定してください。

出荷時設定 7

SW2	通信速度(bps)
0	9,600
1	19,200
2	38,400
3	57,600
4	115,200
5、6	使用しません
7	ネットワークコンバータ
8~F	使用しません

(memo) 5、6、および8~Fの目盛りは設定しないでください。

■ 号機番号(スレーブアドレス)

号機設定スイッチ(SW1)と機能設定スイッチ(SW3)のNo.1を併用して、号機番号(スレーブアドレス)を設定します。号機 番号(スレーブアドレス)は重複しないように設定してください。号機番号(スレーブアドレス)0はブロードキャストで予約 されているので、使用しないでください。

出荷時設定	SW1:0、	SW3-No.1:OFF

SW1	SW3-No.1	号機番号 (スレーブアドレス)	SW1	SW3-No.1	号機番号 (スレーブアドレス)
0		使用しません	0		16
1		1	1		17
2		2	2		18
3		3	3		19
4		4	4		20
5		5	5		21
6		6	6		22
7		7	7		23
8		8	8	ON	24
9		9	9		25
А		10	А		26
В		11	В		27
С		12	С		28
D		13	D		29
E		14	E		30
F		15	F		31

■ 終端抵抗

上位システムから一番離れた位置(終端)にあるドライバは、RS-485通信の終端抵抗(120 Ω)を設定します。 機能設定スイッチ(SW3-No.4)をONにして、RS-485通信の終端抵抗(120 Ω)を設定してください。

出荷時設定	OFF(終端抵抗なし)
-------	-------------

SW3-No.4	終端抵抗(120 Ω)
OFF	なし
ON	あり

※ CN1のGNDと共通です(非絶縁)。

4 RS-485通信の設定

事前にRS-485通信に必要なパラメータを設定してください。

パラメータを変更したときに、変更した値が反映されるタイミングはパラメータによって異なります。各パラメータの反映 タイミングは、121ページ「通信パラメータ」をご覧ください。

MEXE02またはOPX-2Aで設定するパラメータ

RS-485通信では設定できないため、MEXE02またはOPX-2Aで次のパラメータを設定してください。

MEXE02ツリー表示	パラメータ名	内容	初期値
通信	通信パリティ	RS-485通信のパリティを設定します。 【設定範囲】 0:なし 1:偶数 2:奇数	1
	通信ストップビット	RS-485通信のストップビットを設定します。 【設定範囲】 0:1ビット 1:2ビット	0
	送信待ち時間	RS-485通信の送信待ち時間を設定します。 【設定範囲】 0~10,000(1=0.1 ms)	100

RS-485通信でも設定できるパラメータ

MEXE02、OPX-2A、およびRS-485通信のどれかで、次のパラメータを設定してください。

MEXE02 ツリー表示	パラメータ名	内容	初期値
∽∈	通信タイムアウト	RS-485通信の通信タイムアウトの発生条件を設定します。 設定値が0のときは監視しません。 【設定範囲】 0:監視なし 1~10,000 ms	0
地后	通信異常アラーム	RS-485通信異常アラームの発生条件を設定します。設定した 回数だけRS-485通信異常が発生すると、通信異常アラームに なります。 【設定範囲】 1~10回	3

5 通信方式と通信タイミング

5-1 通信方式

Modbusプロトコルの通信方式は、シングルマスタ/マルチスレーブ方式です。マスタだけがクエリ(問い合わせ)を発行で きます。スレーブはクエリで要求された処理を実行し、応答メッセージを返信します。 ARシリーズは、伝送モードとしてRTUモードだけをサポートしています。ASCIIモードはサポートしていません。 メッセージの送信方法には2種類あります。

• ユニキャストモード

マスタはスレーブ1台に対してクエリを送信します。 スレーブは処理を実行し、レスポンスを返信します。

• ブロードキャストモード

マスタでスレーブアドレス0を指定すると、すべてのスレーブに対してク エリを送信できます。スレーブは処理を実行しますが、レスポンスは返信 しません。

マスタ クエリ スレーブ レスポンスなし

5-2 通信タイミング

ドライバが監視している通信時間、およびマスタの通信タイミングは、次のとおりです。

記号	名称	内容
Tb1	通信タイムアウト (ドライバ)	ドライバは受信したクエリの間隔を監視しています。「通信タイムアウト」パラ メータで設定した時間を過ぎてもドライバがクエリを受信できなかったときは、 通信タイムアウトのアラームが発生します。他のスレーブ宛のメッセージを含め て、正常なメッセージを受信したときは、通信タイムアウトは発生しません。
Tb2	送信待ち時間(ドライバ)	ドライバがマスタからクエリを受信した後、レスポンスの送信を開始するまでの 時間です。「送信待ち時間」パラメータで設定します。
Tb3	ブロードキャスト間隔 (マスタ)	ブロードキャストの場合、マスタが次のクエリを送信するまでの時間です。 サイレントインターバル(C3.5)+5 ms以上の時間が必要です。
Tb4	送信待ち時間(マスタ)	マスタがレスポンスを受信してから、次のクエリを送信するまでの時間です(マ スタ側の設定)。サイレントインターバル(C3.5)の時間よりも長くなるように設 定してください。
C3.5	サイレントインターバル	クエリやレスポンスのメッセージの終了を判断するための時間です。メッセージ が終了するときは、サイレントインターバル(C3.5)以上の間隔を空ける必要が あります。送信待ち時間については、次表をご覧ください。

サイレントインターバル(C3.5)の送信待ち時間

通信速度(bps)	サイレントインターバル	マスタのフレーム間隔(目安)
9,600	4 ms以上	5.0 ms以上
19,200、38,400 57,600、115,200	2.5 ms以上	3.0 ms以上

6 メッセージ

メッセージのフォーマットを示します。

6-1 クエリ

クエリのメッセージ構成を示します。

スレーブアドレス	ファンクションコード	データ	エラーチェック
8ビット	8ビット	N×8ビット	16ビット

🔳 スレーブアドレス

スレーブアドレスを指定します(ユニキャストモード)。 スレーブアドレスを0に設定すると、すべてのスレーブに対してクエリを送信できます(ブロードキャストモード)。

ファンクションコード

ドライバがサポートしているファンクションコードとメッセージ長は、次のとおりです。

ファンクション	松松台に	メッセ	ブロード	
コード	加及用匕	クエリ	レスポンス	キャスト
03h	保持レジスタからの読み出し	8	7~37	不可
06h	保持レジスタへの書き込み	8	8	可
08h	診断	8	8	不可
10h	複数の保持レジスタへの書き込み	11~41	8	可

■ データ

ファンクションコードに関連するデータを設定します。ファンクションコードによってデータ長は変化します。

📕 エラーチェック

Modbus RTUモードのエラーチェックはCRC-16方式を採用しています。スレーブは受信したメッセージのCRC-16を計算して、メッセージに含まれるエラーチェックの値と比較します。CRC-16の計算値とエラーチェックが一致していれば、正常なメッセージと判断します。

CRC-16の計算方法

- 1. 初期値をFFFFhとし、FFFFhとスレーブアドレス(8ビット)の排他的論理和(XOR)を計算します。
- 2. 手順1の結果を1 bit右へシフトします。このシフトはあふれたビットが「1」になるまで行ないます。
- 3. あふれたビットが「1」になったら、手順2の結果とA001hのXORを計算します。
- 4. シフトが8回になるまで、手順2と手順3を繰り返します。
- 手順4の結果とファンクションコード(8ビット)のXORを計算します。 すべてのバイトに対して、手順2から4を繰り返します。 最後の結果がCRC-16の計算結果になります。

• CRC-16の計算例

表は、1バイト目のスレーブアドレスを02h、2バイト目のファンクションコードを07hとした場合の計算例です。 実際のCRC-16の計算結果は、3バイト目以降のデータも含めて計算されます。

内容	結果		
CRCレジスタ初期値FFFFh	1111 1111 1111 1111	-	
先頭バイト02h	0000 0000 0000 0010	-	
初期値FFFFhとXOR	1111 1111 1111 1101	-	
右シフト1回目	0111 1111 1111 1110	1	
A001hとXOR	1010 0000 0000 0001 1101 1111 1111 1111	-	
右シフト2回目	0110 1111 1111 1111	1	
A001hとXOR	1010 0000 0000 0001 1100 1111 1111 1110	-	
右シフト3回目	0110 0111 1111 1111	0	
右シフト4回目	0011 0011 1111 1111	1	
A001hとXOR	1010 0000 0000 0001 1001 0011 1111 1110	-	
右シフト5回目	0100 1001 1111 1111	0	
右シフト6回目	0010 0100 1111 1111	1	
A001hとXOR	1010 0000 0000 0001 1000 0100 1111 1110	-	
右シフト7回目	0100 0010 0111 1111	0	
右シフト8回目	0010 0001 0011 1111	1	
A001hとXOR	1010 0000 0000 0001 1000 0001 0011 1110	-	
次のバイト07hとXOR	0000 0000 0000 0111 1000 0001 0011 1001	-	
右シフト1回目	0100 0000 1001 1100	1	
A001hとXOR	1010 0000 0000 0001 1110 0000 1001 1101	-	
右シフト2回目	0111 0000 0100 1110	1	
A001hとXOR	1010 0000 0000 0001 1101 0000 0100 1111	-	
右シフト3回目	0110 1000 0010 0111	1	
A001hとXOR	1010 0000 0000 0001 1100 1000 0010 0110	-	
右シフト4回目	0110 0100 0001 0011	0	
右シフト5回目	0011 0010 0000 1001	1	
A001hとXOR	1010 0000 0000 0001 1001 0010 0000 1000	_	
右シフト6回目	0100 1001 0000 0100	0	
右シフト7回目	0010 0100 1000 0010	0	
右シフト8回目	0001 0010 0100 0001	0	
CRC-16の結果	0001 0010 0100 0001	_	

6-2 レスポンス

スレーブから返信されるレスポンスには、正常応答、無応答、および例外応答の3種類があります。 レスポンスのメッセージ構成はクエリと同じです。

スレーブアドレス	ファンクションコード	データ	エラーチェック
8ビット	8ビット	N×8ビット	16ビット

■ 正常応答

マスタからクエリを受信すると、スレーブは要求された処理を実行し、ファンクションコードに対応したレスポンスを返 信します。

■ 無応答

マスタがクエリを送信しても、スレーブがレスポンスを返信しない場合があります。この状態を無応答といいます。 無応答になる原因を示します。

伝送異常の場合

スレーブは次の伝送異常を検出すると、クエリを破棄し、レスポンスを返信しません。

伝送異常の原因	内容
フレーミングエラー	ストップビット0が検出されました。
パリティエラー	設定したパリティとの不一致が検出されました。
CRC不一致	CRC-16の計算値とエラーチェックが不一致でした。
メッセージ長不正	メッセージの長さが256バイトを超えました。

● 伝送異常ではない場合

伝送異常が検出されなくても、レスポンスを返信しない場合があります。

原因	内容
ブロードキャスト	ブロードキャストで通信している場合、要求された処理は実行しますが、レスポンスは 返信しません。
スレーブアドレス不一致	クエリのスレーブアドレスとドライバのスレーブアドレスが一致しませんでした。

■ 例外応答

スレーブがクエリで要求された処理を実行できないときに、例外応答を返信します。レスポンスには、処理できない原因を 示す例外コードが付加されます。例外応答のメッセージ構成は次のとおりです。

スレーブアドレス	ファンクションコード	例外コード	エラーチェック
8ビット	8ビット	8ビット	16ビット

• ファンクションコード

例外応答のファンクションコードは、クエリのファンクションコードに80hを加算した値になります。

クエリのファンクションコード	例外応答
03h	83h
06h	86h
08h	88h
10h	90h

● 例外応答の例

マスタ			クエリ	スレーブ
スレー	ブアドレス	01h	`	スレーブアドレス
ファング	フションコード	10h	レスポンス	ファンクションコード
	レジスタアドレス(上位)	02h		データ 例外コード
	レジスタアドレス(下位)	42h		エラーチェック(下位)
	レジスタ数(上位)	00h		エラーチェック(上位)
	レジスタ数(下位)	02h		
データ	バイト数	04h		
	レジスタアドレスのライト値(上位)	00h		
	レジスタアドレスのライト値(下位)	00h		
	レジスタアドレス+1のライト値(上位)	03h		
	レジスタアドレス+1のライト値(下位)	20h		
エラー	チェック(下位)	6Eh		
エラー	チェック(上位)	0Eh		

● 例外コード

処理できない原因を示します。

例外コード	通信エラーコード	原因	内容
01h	88b	不正ファンクション	ファンクションコードが不正のため実行できませんでした。 ・未対応のファンクションコード ・診断 (08h) のサブファンクションコードが00h以外
02h	0011	不正データアドレス	データアドレスが不正のため実行できませんでした。 ・未対応のレジスタアドレス (0000h~1FFFh以外) ・レジスタアドレスとレジスタ数の和が2000h以上
03h	8Ch	不正データ	データが不正のため実行できませんでした。 ・レジスタ数が0、または17以上 ・バイト数がレジスタ数×2以外の値 ・データ長が範囲外
04h	89h 8Ah 8Ch 8Dh	スレーブエラー	 スレーブでエラーが発生したため、実行できませんでした。 ・ユーザーI/Fと通信中(89h) ・MEXE02でダウンロードまたは初期化中 ・OPX-2Aでダウンロード、初期化、またはティーチング中 ・NVメモリ処理中(8Ah) ・内部処理中(S-BSYがON) ・EEPROM異常のアラームが発生中 ・パラメータ設定範囲外(8Ch) ・ライト値が設定範囲外 ・コマンド実行不可(8Dh)

01h 90h 04h 4Dh C3h

7 ファンクションコード

ARシリーズ ドライバがサポートしているファンクションコードについて説明します。 ここで紹介している以外のファンクションコードを送信しても実行できませんので、ご注意ください。

7-1 保持レジスタの読み出し(03h)

レジスタ(16 bit)を読み出します。連続するレジスタを最大16個まで(16×16 bit)読み出せます。 データは上位と下位を同時に読み出してください。同時に読み出さないと、値が不正になる場合があります。 複数の保持レジスタを読み出すときは、レジスタアドレスの順に実行されます。

■ 読み出しの例

スレーブアドレス1の運転データの位置No.1とNo.2を読み出します。

内容	レジスタアドレス	読み出される値	10進数の表示
運転データの位置No.1(上位)	0402h	0000h	10000
運転データの位置No.1(下位)	0403h	2710h	10000
運転データの位置No.2(上位)	0404h	FFFFh	10000
運転データの位置No.2(下位)	0405h	D8F0h	-10000

• クエリ

	フィールド名称	データ	内容		
スレーブア	' ドレス	01h	スレーブアドレス1		
ファンクシ	/ ョンコード	03h	保持レジスタからの読み出し		
	レジスタアドレス (上位)	04h	言み出しの記点となるし、ジフタフドレフ		
-" 7	レジスタアドレス (下位)	02h	読み出しの起点となるレンスダアトレス		
) —9	テータ レジスタ数(上位) 00h 起点のレジ	起点のレジスタアドレスから読み出すレジスタの数			
	レジスタ数(下位)	04h	(4個=0004h)		
エラーチェック(下位)		E4h	CDC 16の計管対用		
エラーチェ	ニック(上位)	F9h			

● レスポンス

	フィールド名称	データ	内容	
スレーブア	' ドレス	01h	クエリと同じ値	
ファンクシ	リョンコード	03h	クエリと同じ値	
	データバイト数	08h	クエリのレジスタ数の2倍の値	
	レジスタアドレスのリード値(上位)	00h	しいごフタフドレフ04006の詰み山し店	
	レジスタアドレスのリード値(下位)	00h	レシスタアドレス04021100読み出し値	
レジスタアドレス+1のリード値(上位)		27h	しぶフタマドレフ0402bの詰み出し店	
データ	レジスタアドレス+1のリード値(下位)	10h	レシスタアドレス040311の読み出し値	
	レジスタアドレス+2のリード値(上位)			
	レジスタアドレス+2のリード値(下位)	FFh	レシスタアトレス040411の読み出し値	
	レジスタアドレス+3のリード値(上位)	D8h		
	レジスタアドレス+3のリード値(下位)	F0h	レシスタアドレス040511の読み出し値	
エラーチェック(下位)		08h		
エラーチェ	ニック(上位)	A3h	CKC-1000al 昇結末 	

7-2 保持レジスタへの書き込み(06h)

データを指定のレジスタに書き込みます。

ただし、上位と下位を合わせた結果がデータ範囲外になる場合があるため、できるだけ「複数の保持レジスタへの書き込み (10h)」を使用して、上位と下位を同時に書き込んでください。

■ 書き込みの例

スレーブアドレス2の速度フィルタに80(50h)を書き込みます。

内容	レジスタアドレス	書き込む値	10進数の表示
速度フィルタ	024Bh	50h	80

• クエリ

	フィールド名称	データ	内容
スレーブアドレス		02h	スレーブアドレス2
ファンクションコード		06h	保持レジスタへの書き込み
-" -	レジスタアドレス (上位)	02h	またいみた行たらしパフタマドレフ
	レジスタアドレス (下位)	4Bh	音さ込みを1」なフレンスラアドレス
) —9	ライト値(上位)	00h	し、ジフタフドレフに書き込む店
	ライト値(下位)	50h	レシスダアトレスに書き込む値
エラーチェック(下位)		F8h	CPC 16の計管結用
エラーチェ	ニック(上位)	6Bh	

● レスポンス

	フィールド名称	データ	内容		
スレーブア	' ドレス	02h	クエリと同じ値		
ファンクシ	/ ョンコード	06h	クエリと同じ値		
="	レジスタアドレス (上位)	02h	クエリトロド店		
	レジスタアドレス (下位)	4Bh	クエリと回し値		
) —9	ライト値(上位)	00h	クエリトロド店		
	ライト値(下位)	50h	クエリと回し10		
エラーチェック(下位)		F8h	CDC 16の計管対用		
エラーチェ	ニック(上位)	6Bh	CRC-100計昇結末		

7-3 診断(08h)

マスタとスレーブ間の通信を診断します。任意のデータを送信し、返信されたデータで通信が正常かを判断します。サブファ ンクションは00h(クエリの返信)だけになります。

■ 診断の例

任意のデータ(1234h)をスレーブに送信して、診断を行ないます。

• クエリ

	フィールド名称	データ	内容
スレーブア	?ドレス	03h	スレーブアドレス3
ファンクシ	ノョンコード	08h	診断
-" -	サブファンクションコード (上位)	00h	クエリデータの海信
	サブファンクションコード (下位)	00h	クエリアータの返信
5-9	データ値(上位)	12h	(1224b)
	データ値(下位)	34h	[[[1234]]]
エラーチュ		ECh	
エラーチュ	ニック(上位)	9Eh	

• レスポンス

	フィールド名称	データ	内容	
スレーブア	'ドレス	03h クエリと同じ値		
ファンクシ	>コンコード	08h	クエリと同じ値	
	サブファンクションコード (上位)	00h	クエリと同じ値	
="	サブファンクションコード (下位)	00h	ノエリと回し値	
) — 9	データ値(上位)	12h	クエリと同じ店	
	データ値(下位)	34h	クエリと回し値	
エラーチェ	:ック(下位)	ECh	クエリトロド店	
エラーチェ	:ック(上位)	9Eh	フエリと回し値	

7-4 複数の保持レジスタへの書き込み(10h)

複数の連続するレジスタにデータを書き込みます。最大16個のレジスタに書き込むことができます。 データは上位と下位を同時に書き込んでください。同時に書き込まないと、値が不正になる場合があります。 書き込みは、レジスタアドレスの順に実行されます。範囲外のデータなど、一部のデータによって例外応答が返信されたと きでも、他のデータは正常に書き込まれている場合があります。

■ 書き込みの例

次のデータをスレーブアドレス4の運転データの加速No.2~No.4に設定します。

内容	四容 レジスタアドレス 書き		10進数の表示
運転データの加速No.2(上位)	0604h	0000h	10000
運転データの加速No.2(下位)	0605h	2710h	10000
運転データの加速No.3(上位)	0606h	0000h	20000
運転データの加速No.3(下位)	0607h	4E20h	20000
運転データの加速No.4(上位)	0608h	0007h	50000
運転データの加速No.4(下位)	0609h	A120h	500000

• クエリ

	フィールド名称	データ	内容
スレーブア	? ドレス	04h	スレーブアドレス4
ファンクシ	ノョンコード	10h	複数の保持レジスタへの書き込み
	レジスタアドレス (上位)	06h	まき込みの起点となるしジフタマドレフ
	レジスタアドレス (下位)	04h	者さ込みの起点となるレジスラゲトレス
	レジスタ数(上位)	00h	起点のレジスタアドレスから書き込む
	レジスタ数(下位)	06h	レジスタの数(6個=0006h)
	バイト数	0Ch	クエリのレジスタ数の2倍の値
	レジスタアドレスのライト値(上位)	00h	しいごフタフドレフ06046の書き込み値
	レジスタアドレスのライト値(下位)	00h	レジスジアドレス080411の書き込み値
	レジスタアドレス+1のライト値(上位)	27h	し、ジフタフドレフ06056の書き込み値
データ	レジスタアドレス+1のライト値(下位)	10h	レジスジアドレス000511の書き込み値
	レジスタアドレス+2のライト値(上位)	00h	しぶつ タマドレフ 06066の書き込み値
	レジスタアドレス+2のライト値(下位)	00h	
	レジスタアドレス+3のライト値(上位)	4Eh	し ぶつ タフドレフ 06 07 かのまきい み彼
	レジスタアドレス+3のライト値(下位)	20h	レジスジアドレス080711の書き込み値
	レジスタアドレス+4のライト値(上位)	00h	しいごフタフドレフ06096の書き込み店
	レジスタアドレス+4のライト値(下位)	07h	レジスジアドレス0000100音さ込み値
	レジスタアドレス+5のライト値(上位)	A1h	しいごフタフドレフ 06 00 りのまたい み彼
	レジスタアドレス+5のライト値(下位)	20h	レンスラアドレス0009110音で込み値
エラーチュ	:ック(下位)	1Dh	CPC 16の計算結果
エラーチュ	ニック(上位)	A9h	

レスポンス

	フィールド名称	データ	内容
スレーブア	'ドレス	04h	クエリと同じ値
ファンクシ	'ヨンコード	10h	クエリと同じ値
="	レジスタアドレス (上位)	06h	クエリトロド店
	レジスタアドレス (下位)	04h	クエリと回し値
) — 9	レジスタ数(上位)	ルド名称 データ 04h クコ レード 10h クコ スタアドレス(上位) 06h スタアドレス(下位) 04h スタ数(上位) 00h スタ数(下位) 06h た位) 01h 上位) 17h CR	クエリトロド店
	レジスタ数(下位)	06h	クエリと回し値
エラーチェック(下位)		01h	CDC 16の計管対田
エラーチェ	ック(上位)	17h	

8 レジスタアドレス一覧

ドライバで使用するデータはすべて32 bit幅です。Modbusプロトコルではレジスタは16 bit幅のため、2個のレジスタで1 つのデータを表わしています。

アドレス配置はビッグエンディアンとなっているため、偶数アドレスが上位、奇数アドレスが下位になります。

8-1 動作コマンド

モーターの動作に関するコマンドです。動作コマンドの内容はNVメモリには保存されません。

レジスタアドレス		夕妆	内容	READ/	設定範囲	
Dec	Hex			WRITE	設た型出	
48	0030h	グループ (上位)	グループのアドレスを設	P/\//	-1:個別(グループを指定しません。) 1~31:グループのアドレス(組スレーブ	
49	0031h	グループ(下位)	定します。	1.7 V V	の号機番号)	
124	007Ch	ドライバ入力指令(上位)	ドライバへの入力指令を		なるという思想であった。	
125	007Dh	ドライバ入力指令(下位)	設定します。	K/ V V	次ハーンの説明をこ見ください。	
126	007Eh	ドライバ出力指令(上位)	ドライバの出力状態を読	D	なるジの説明なご覧ください	
127	007Fh	ドライバ出力指令(下位)	み込みます。	R	次ハーシの説明をこ見ください。	

■ グループ(0030h/0031h)

複数のスレーブでグループを組んで、クエリを一斉送信できます。グループについては242ページをご覧ください。 初期値は-1です。グループを設定するときの読み出しと書き込みは、上位と下位を同時に行なってください。

アドレス (Hex)		アドレスの内容※						
	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
00206				[FFf	Fh]			
0030h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
				[FFF	-Fh]			

※ []内は初期値です。

アドレス (Hex)		アドレスの内容※								
	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8		
0021h		1~31:グループのアドレスを設定[FFFFh]								
005111	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
			1~31:グ	ループのア	ドレスを設定	E[FFFFh]				

※ []内は初期値です。

ドライバ入力指令(007Ch/007Dh)

RS-485通信でアクセスできるドライバの入力信号です。各入力信号については94ページをご覧ください。

アドレス (Hex)				アドレス	スの内容			
007Ch	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
	-	-	-	-	-	-	-	-
	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
	_	-	-	_	-	-	-	-

アドレス (Hex)		アドレスの内容※							
007Dh	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	
	NET-IN15 [RVS]	NET-IN14 [FWD]	NET-IN13 [-JOG]	NET-IN12 [+JOG]	NET-IN11 [SSTART]	NET-IN10 [MS2]	NET-IN9 [MS1]	NET-IN8 [MS0]	
	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
	NET-IN7 [未使用]	NET-IN6 [FREE]	NET-IN5 [STOP]	NET-IN4 [HOME]	NET-IN3 [START]	NET-IN2 [M2]	NET-IN1 [M1]	NET-INO [M0]	

※ []内は初期値です。

ドライバ出力指令(007Eh/007Fh)

RS-485通信で取得できるドライバの出力信号です。各出力信号については100ページをご覧ください。

アドレス (Hex)	アドレスの内容									
007Eh	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8		
	-	-	-	-	-	-	-	-		
	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
	_	_	_	-	_	_	-	-		

アドレス (Hex)	アドレスの内容※									
007Fh	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8		
	NET- OUT15 [TLC]	NET- OUT14 [END]	NET- OUT13 [MOVE]	NET- OUT12 [TIM]	NET- OUT11 [AREA3]	NET- OUT10 [AREA2]	NET-OUT9 [AREA1]	NET-OUT8 [S-BSY]		
	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
	NET-OUT7	NET-OUT6	NET-OUT5	NET-OUT4	NET-OUT3	NET-OUT2	NET-OUT1	NET-OUT0		
	[ALM]	[WNG]	[READY]	[HOME-P]	[START_R]	[M2_R]	[M1_R]	[M0_R]		

※ []内は初期値です。

8-2 メンテナンスコマンド

アラームやワーニングを解除したり、NVメモリの一括処理を行ないます。 すべてWRITEになります。0から1へ書き込むと実行されます。

レジスタ	アドレス	夕称		設定範囲
Dec	Hex			設化型出
384	0180h	アラームのリセット (上位)	発生中のアラームを解除します。アラームの種類に	
385	0181h	アラームのリセット (下位)	よっては解除できないものがあります。	
386	0182h	絶対位置異常アラームのリセット(上位)	統対位署界党のマラールを解除します	
387	0183h	絶対位置異常アラームのリセット(下位)	一把対位直共吊りアノームを解除しより。	
388	0184h	アラーム履歴クリア(上位)		
389	0185h	アラーム履歴クリア(下位)	アノーム腹腔をノリアしより。	
390	0186h	ワーニング履歴クリア(上位)		
391	0187h	ワーニング履歴クリア(下位)	ノーニノノ腹腔をノリアしより。	
392	0188h	通信エラー履歴クリア(上位)	通信エラー 唇麻をクリマレキオ	
393	0189h	通信エラー履歴クリア(下位)	通信エノー履歴をノリアしより。	
394	018Ah	P-PRESET実行(上位)	と今位署をプロセットします	0.1
395	018Bh	P-PRESET実行(下位)	宿中位値をノリビットしより。	
396	018Ch	Configuration (上位)	パラメータの再計質とセットアップを実行します	
397	018Dh	Configuration (下位)		
398	018Eh	全データ初期化(上位)※	NVメモリに保存されているパラメータを初期値に戻	
399	018Fh	全データ初期化(下位)※	します。	
400	0190h	NVメモリー括読み出し(上位)	NVメモリに保存されているパラメータをRAMに読み出します。 RAMに保存されていた運転データとパ	
401	0191h	NVメモリー括読み出し(下位)	ラメータはすべて上書きされます。	
402	0192h	NVメモリー括書き込み(上位)	RAMIC保存されているパラメータをNVメモリに書 キジみます NVメモリの書き込み可能回答け	
403	0193h	NVメモリー括書き込み(下位)	約10万回です。	

※ 通信パリティ、通信ストップビット、および送信待ち時間は初期化されません。MEXE02またはOPX-2Aで初期化してく ださい。

Configuration (018Ch/018Dh)

Configurationは、次の条件がすべて満たされると実行できます。

- アラームが発生していない
- モーターが動作していない
- MEXE02がI/Oテスト、テスト運転、ティーチング、およびダウンロードを行なっていない
- OPX-2Aがテストモードまたはコピーモード以外

Configuration実行前後のドライバの状態を示します。

項目	Configurationが 可能な状態	Configurationの 実行中	Configurationの 実行後
AC電源ドライバ:PWR LED DC電源ドライバ:POWER LED	点灯	点灯	
AC電源ドライバ:ALM LED DC電源ドライバ:ALARM LED	消灯	消灯	ドライバの状態 によります。
電磁ブレーキ	保持/解放	保持	
モーター励磁	励磁/無励磁	無励磁	
出力信号	有効	不定	有効
入力信号	有効	無効	有効
センサ入力	有効	無効	有効

(memo)

• Configurationの実行中にモニタを行なっても、正常なモニタ値が返らない場合があります。

• 「自動復帰動作」パラメータが「有効」で、自動復帰動作の条件を満たしていても、Configurationの実行 直後は自動復帰動作を行ないません。

8-3 モニタコマンド

指令位置、指令速度、アラーム・ワーニング履歴などをモニタします。 すべてREADになります。

レジスタ	アドレス	حم ال ا	由穴	答田	
Dec	Hex	 		■●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●	
128	0080h	現在のアラーム(上位)			
129	0081h	現在のアラーム(下位)	充生中のアラームコートを示します。		
130	0082h	アラーム履歴1(上位)			
131	0083h	アラーム履歴1(下位)			
132	0084h	アラーム履歴2(上位)			
133	0085h	アラーム履歴2(下位)			
134	0086h	アラーム履歴3(上位)			
135	0087h	アラーム履歴3(下位)			
136	0088h	アラーム履歴4(上位)			
137	0089h	アラーム履歴4(下位)			
138	008Ah	アラーム履歴5(上位)			
139	008Bh	アラーム履歴5(下位)	マラー / 唇厥1~10をテレます		
140	008Ch	アラーム履歴6(上位)			
141	008Dh	アラーム履歴6(下位)			
142	008Eh	アラーム履歴7(上位)			
143	008Fh	アラーム履歴7(下位)			
144	0090h	アラーム履歴8(上位)			
145	0091h	アラーム履歴8(下位)			
146	0092h	アラーム履歴9(上位)			
147	0093h	アラーム履歴9(下位)			
148	0094h	アラーム履歴10(上位)			
149	0095h	アラーム履歴10(下位)			
150	0096h	現在のワーニング(上位)	登生中のワーニングコードを示します		
151	0097h	現在のワーニング(下位)		0011~FF11	
152	0098h	ワーニング履歴1(上位)			
153	0099h	ワーニング履歴1(下位)			
154	009Ah	ワーニング履歴2(上位)			
155	009Bh	ワーニング履歴2(下位)			
156	009Ch	ワーニング履歴3(上位)			
157	009Dh	ワーニング履歴3(下位)			
158	009Eh	ワーニング履歴4(上位)			
159	009Fh	ワーニング履歴4(下位)			
160	00A0h	ワーニング履歴5(上位)			
161	00A1h	ワーニング履歴5(下位)	ワーニング履歴1~10を示します。		
162	00A2h	ワーニング履歴6(上位)			
163	00A3h	ワーニング履歴6(下位)			
164	00A4h	ワーニング履歴7(上位)			
165	00A5h	ワーニング履歴7(下位)			
166	00A6h	ワーニング履歴8(上位)			
167	00A7h	ワーニング履歴8(下位)			
168	00A8h	ワーニング履歴9(上位)			
169	00A9h	ワーニング履歴9(下位)			
170	00AAh	ワーニング履歴10(上位)			
171	00ABh	ワーニング履歴10(下位)			
172	00ACh	通信エラーコード(上位)	前回受信した通信エラーコードを示します。		
173	00ADh	通信エラーコード (下位)			

レジスタ	アドレス	67.5F	中卒	44 m	
Dec	Hex	る初		■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■	
174	00AEh	通信エラーコード履歴1(上位)			
175	00AFh	通信エラーコード履歴1(下位)			
176	00B0h	通信エラーコード履歴2(上位)			
177	00B1h	通信エラーコード履歴2(下位)			
178	00B2h	通信エラーコード履歴3(上位)			
179	00B3h	通信エラーコード履歴3(下位)			
180	00B4h	通信エラーコード履歴4(上位)			
181	00B5h	通信エラーコード履歴4(下位)			
182	00B6h	通信エラーコード履歴5(上位)			
183	00B7h	通信エラーコード履歴5(下位)	これまでに発生した通信エラーコード履歴		
184	00B8h	通信エラーコード履歴6(上位)	1~10を示します。	00n~FFn	
185	00B9h	通信エラーコード履歴6(下位)			
186	00BAh	通信エラーコード履歴7(上位)			
187	00BBh	通信エラーコード履歴7(下位)			
188	00BCh	通信エラーコード履歴8(上位)			
189	00BDh	通信エラーコード履歴8(下位)			
190	00BEh	通信エラーコード履歴9(上位)			
191	00BFh	通信エラーコード履歴9(下位)			
192	00C0h	通信エラーコード履歴10(上位)			
193	00C1h	通信エラーコード履歴10(下位)			
194	00C2h	現在の選択データNo.(上位)		0 (2	
195	00C3h	現在の選択データNo.(下位)	選択されている運転テークNO.を示します。	0~63	
196	00C4h	現在の運転データNo.(上位)	位置決め運転中の運転データNo.を示します。 連結運転と順送り位置決め運転で使用します。	1- 62	
197	00C5h	現在の運転データNo.(下位)	ます。電源を投入してから位置決め運転が実 行されるまでは、[-1]が表示されます。	-1.005	
198	00C6h	指令位置(上位)	ド会位署をテレキオ	-2,147,483,648~	
199	00C7h	指令位置(下位)	指市位直を小しより。	2,147,483,647 step	
200	00C8h	指令速度(上位)	現在の指令速度を示します。	-4,500~+4,500 r/min +:正転	
201	00C9h	指令速度(下位)		-·逆転 0:停止	
204	00CCh	検出位置(上位)	検出位置を示します。電子ギヤで設定した内	-2,147,483,648~	
205	00CDh	検出位置(下位)	容を反映した値が表示されます。 	2,147,483,647 step	
206	00CEh	検出速度(上位)	 検出速度を示します。	-4.500~+4.500 r/min	
207	00CFh	検出速度(下位)		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
210	00D2h	ドウェルの残り時間(上位)	連結運転2で使用するドウェル時間の残りを	0∼50.000 ms	
211	00D3h	ドウェルの残り時間(下位)	示します。		
212	00D4h	ダイレクトI/O、電磁ブレーキの 状態 (上位)	ダイレクトI/Oと電磁ブレーキの状態を示し	次表をご覧ください。	
213	00D5h	ダイレクトI/O、電磁ブレーキの 状態(下位)	ます。	次衣をこ覚くたさい。 	

■ ダイレクトI/O、電磁ブレーキの状態(00D4h/00D5h)

アドレス	(Hex)	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
00D4h	上位	-	-	-	-	-	-	-	MB
	下位	-	-	OUT5	OUT4	OUT3	OUT2	OUT1	OUT0
00D5h	上位	-	-	IN7	IN6	IN5	IN4	IN3	IN2
	下位	IN1	IN0	_	_	SLIT	HOMES	–LS	+LS

8-4 パラメータR/Wコマンド

パラメータの読み出しや書き込みを行ないます。

すべてWRITE/READになります。パラメータの詳細は112ページをご覧ください。

■ 運転データ

データを変更すると、運転の停止後に再計算とセットアップが行なわれます。

レジスタアドレス		々批	シークの日	初期値	
Dec	Hex		設た単出日	初舟恒	
1024 1025 ~	0400h 0401h \sim	位置No.0 (上位) 位置No.0 (下位) ~	-8 388 608~8 388 607 sten	0	
1150 1151	047Eh 047Fh	位置No.63 (上位) 位置No.63 (下位)	0,000,000 0,000,007 step		
1152 1153 ~	0480h 0481h \sim	運転速度No.0(上位) 運転速度No.0(下位) ~	0∼1.000.000 Hz	1.000	
1278 1279	04FEh 04FFh	運転速度No.63(上位) 運転速度No.63(下位)			
1280 1281 ~ 1406	0500h 0501h ~ 057Eh	運転方式No.0 (上位) 運転方式No.0 (下位) ~ 運転方式No.63 (上位) 運転方式No.63 (上位)	0:インクリメンタル 1:アブソリュート	0	
1407 1408 1409 ~ 1534 1535	057Fh 0580h 0581h ~ 05FEh 05FFh	運転労10.03(下位) 運転機能No.0(下位) ~ 運転機能No.63(上位) 運転機能No.63(下位)	0:単独 1:連結 2:連結2 3:押し当て	0	
1536 1537 ~ 1662 1663	0600h 0601h ~ 067Eh 067Fh	加速No.0(上位) 加速No.0(下位) ~ 加速No.63(上位) 加速No.63(下位)	1~1,000,000 (1=0.001 ms/kHzまたは 1=0.001 s)※1※2	1,000	
1664 1665 ~ 1790 1791	0680h 0681h ~ 06FEh 06FFh	減速No.0(上位) 減速No.0(下位) ~ 減速No.63(上位) 減速No.63(下位)	1~1,000,000 (1=0.001 ms/kHzまたは 1=0.001 s)※1※2	1,000	
1792 1793 ~ 1918 1919	0700h 0701h ~ 077Eh 077Fh	押し当て電流No.0(上位) 押し当て電流No.0(下位) ~ 押し当て電流No.63(上位) 押し当て電流No.63(下位)	0~1,000(1=0.1 %) %3	200	
1920 1921 ~ 2046 2047	0780h 0781h ~ 07FEh 07FFh	順送り位置決めNo.0(上位) 順送り位置決めNo.0(下位) ~ 順送り位置決めNo.63(上位) 順送り位置決めNo.63(下位)	0:無効 1:有効	0	
2048 2049 ~ 2174 2175	0800h 0801h ~ 087Eh 087Fh	ドウェル時間No.0 (上位) ドウェル時間No.0 (下位) ~ ドウェル時間No.63 (上位) ドウェル時間No.63 (下位)	0∼50,000(1=0.001 s)	0	

※1 「加減速選択」パラメータが「独立」のときに有効です。「共通」のときは、「共通加速」「共通減速」パラメータの設定値 が使用されます(初期値:独立)。

※2 「加減速単位」パラメータで、加減速レート(ms/kHz)か加減速時間(s)を選択できます(初期値:加減速レート)。

※3 仕様変更前のドライバでは、設定範囲が0~500(1=0.1%)になります。詳細は8ページをご覧ください。

■ ユーザーパラメータ

パラメータを変更したときに、変更した値が反映されるタイミングはパラメータによって異なります。反映タイミングの詳細は、112ページ「表記の規則」でご確認ください。

レジスタ	アドレス	در ب لد در ب لد	シークな田	571世/古	三帅
Dec	Hex	- 名称	設定範囲		反映
512	0200h	STOP入力停止方法(上位)	0:即停止 1:減速停止	1	A
513	0201h	STOP入力停止方法(下位)	2:即停止+カレントオフ 3:減速停止+カレントオフ		
514	0202h	ハードウェアオーバートラベル (上位)	0:無効	1	А
515	0203h	ハードウェアオーバートラベル (下位)	1:有効		
516	0204h	オーバートラベル動作(上位)	0:即停止	0	Δ
517	0205h	オーバートラベル動作(下位)	1:減速停止		
518	0206h	位置決め完了出力幅(上位)	$0 \sim 180(1=0.1^{\circ})$	18	Δ
519	0207h	位置決め完了出力幅(下位)		10	
520	0208h	位置決め完了出力オフセット (上位)	-18~18(1=0 1°)	0	Δ
521	0209h	位置決め完了出力オフセット (下位)	10 10(1-0.1)	U	
522	020Ah	AREA1+方向位置(上位)			Λ
523	020Bh	AREA1+方向位置(下位)			A
524	020Ch	AREA1-方向位置(上位)			Δ
525	020Dh	AREA1-方向位置(下位)		0 -	
526	020Eh	AREA2+方向位置(上位)			Δ
527	020Fh	AREA2+方向位置(下位)	$-8388608 \approx 8388607$ step		
528	0210h	AREA2-方向位置(上位)	0,300,000 0,300,007 step		Δ
529	0211h	AREA2-方向位置(下位)			
530	0212h	AREA3+方向位置(上位)			А
531	0213h	AREA3+方向位置(下位)			
532	0214h	AREA3-方向位置(上位)			А
533	0215h	AREA3-方向位置(下位)			
534	0216h	MOVE出力最小時間(上位)	$0 \sim 255 \text{ ms}$	0	А
535	0217h	MOVE出力最小時間(下位)			
536	0218h	LS接点設定(上位)			C
537	0219h	LS接点設定(下位)			
538	021Ah	HOMES接点設定(上位)	0:A接点(N.O.)	0	C
539	021Bh	HOMES接点設定(下位)	1:B接点(N.C.)	Ŭ	
540	021Ch	SLIT接点設定(上位)			C
541	021Dh	SLIT接点設定(下位)			
576	0240h	RUN電流(上位)	$0 \sim 1.000(1=0.1\%)$	1.000	А
577	0241h	RUN電流(下位)		.,	
578	0242h	STOP電流(上位)	0~500(1=0.1 %)	500	А
579	0243h	STOP電流(下位)			
580	0244h	位置ループゲイン(上位)	1~50	10	А
581	0245h	位置ループゲイン(下位)			
582	0246h	速度ループゲイン(上位)	10~200	180	А
583	0247h	速度ループゲイン(下位)			
584	0248h	速度ループ積分時定数(上位)	100~2,000 (1=0.1 ms)	1,000	А
585	0249h	速度ループ積分時定数(下位)			
586	024Ah	速度フィルタ(上位)	0~200 ms	1	В
587	024Bh	速度フィルタ(下位)			

レジスタ	アドレス		乳白茶田	577世9 <i>1</i> 声	Euch
Dec	Hex	一一个小	□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□	初期但	
588	024Ch	移動平均時間(上位)	1- 200 mc	1	P
589	024Dh	移動平均時間(下位)	1~200 ms	I	D
640	0280h	共通加速(上位)	1~1,000,000(1=0.001 ms/kHz	1 000	D
641	0281h	共通加速(下位)	または1=0.001 s) ※	1,000	D
642	0282h	共通減速(上位)	1~1,000,000(1=0.001 ms/kHz	1 000	D
643	0283h	共通減速(下位)	または1=0.001 s) ※	1,000	D
644	0284h	起動速度(上位)	0~1 000 000 Hz	500	D
645	0285h	起動速度(下位)	0~1,000,000 H2	500	D
646	0286h	JOG運転速度(上位)	1-1 000 000 Hz	1 000	D
647	0287h	JOG運転速度(下位)	1~1,000,000 HZ	1,000	D
648	0288h	JOG加減速(上位)	1~1,000,000(1=0.001 ms/kHz	1 000	D
649	0289h	JOG加減速(下位)	または1=0.001 s) ※	1,000	D
650	028Ah	JOG起動速度(上位)	0-1 000 000 Hz	FOO	D
651	028Bh	JOG起動速度(下位)	0~1,000,000 HZ	500	D
652	028Ch	加減速選択(上位)	0:共通	1	D
653	028Dh	加減速選択(下位)	1:独立	I	D
654	028Eh	加減速単位(上位)	0:ms/kHz	0	C
655	028Fh	加減速単位(下位)	1:s	0	C
704	02C0h	原点復帰方法(上位)	0:2センサ方式		
705	02C1h	 「「「「」」」 「」」「」」」 「」」」	- 1:3センサ方式	1	В
703	02011		2:押し当て方式		
706	02C2h		1∼1,000,000 Hz	1,000	В
707	02C3h				
708	02C4h		$1 \sim 1,000,000 (1=0.001 \text{ ms/kHz})$	1,000	В
709	02C5h		\$72181-0.001 \$7%		
/10	02C6h		1∼1,000,000 Hz	500	В
711	02C/h				
712	02C8h		-8,388,608~8,388,607 step	0	В
713	02C9h				
714	02CAn	原上復帰開始方向(上位)	0:一側 1:上側	1	В
715	02CBn				
/16	02CCh	原見復帰SLITセンサ検出(上位)	0:無効	0	В
717	02CDn		1.有効		
718	02CEN		0:無効	0	В
719	02CFN				
720	02D00	押しヨと原原復帰連転電流(上位)	0~1000(1=0.1 %)	1,000	В
721	02011				
760	02016		1~300(1=0.1 s)	50	А
769	030111				
770	0302h	カレノドオノ时位直備左処人 アラーム(上位)			
		カレントオン時位置偏差過大	1~30,000(1=0.01 rev)	300	А
771	0303h	アラーム(下位)			
776	0308h	原点復帰未完了アラーム(上位)	0:無効	0	6
777	0309h	原点復帰未完了アラーム(下位)	1:有効	0	C
832	0340h	過熱ワーニング(上位)		05	~
833	0341h	過熱ワーニング(下位)	40~85 ℃	85	A
834	0342h	過負荷ワーニング(上位)	1 200(1-0.1-)	50	•
835	0343h	過負荷ワーニング(下位)	$1 \sim 300(1=0.1 \text{ s})$	50	A
836	0344h	過速度ワーニング(上位)	1 5 000 */***	4.500	
837	0345h	過速度ワーニング(下位)	1~5,000 r/min	4,500	A

レジスタ	アドレス	勾批	きんや谷田	切扣店	医吻
Dec	Hex	る例	設 定 創 出	10月11月11日	反映
838	0346h	過電圧ワーニング(上位)	AC電源ドライバ:120~450 V DC電源ドライバ:150~630	AC電源ドライバ:435	Δ
839	0347h	過電圧ワーニング(下位)	(1=0.1 V)	DC電源ドライバ:630	
840	0348h	不足電圧ワーニング(上位)	AC電源ドライバ:120~280 V DC電源ドライバ:150~630	AC電源ドライバ:120	А
841	0349h	不足電圧ワーニング(下位)	(1=0.1 V)	DC電源ドライハ:180	
842	034Ah	カレントオン時位置偏差過大 ワーニング(上位)	1 - 20.000(1 - 0.01 row)	200	٨
843	034Bh	カレントオン時位置偏差過大 ワーニング (下位)	1~30,000(1=0.01100)	300	A
896	0380h	電子ギヤA (上位)	1- 65 525	1	C
897	0381h	電子ギヤA(下位)	1~05,555	I	C
898	0382h	電子ギヤB(上位)	1- 65 525	1	C
899	0383h	電子ギヤB(下位)	1~65,535	I	C
900	0384h	モーター回転方向(上位)	0:+側=CCW	1	C
901	0385h	モーター回転方向(下位)	1:+側=CW	1	C
902	0386h	ソフトウェアオーバートラベル (上位)	0:無効	1	
903	0387h	ソフトウェアオーバートラベル (下位)	1:有効	I	A
904	0388h	+ソフトウェアリミット(上位)	8 288 608 . 8 288 607 stop	8 388 607	Δ
905	0389h	+ソフトウェアリミット(下位)	-0,300,000~0,300,007 step	0,300,007	A
906	038Ah	-ソフトウェアリミット(上位)	9 299 609 - 9 299 607 ctop	0 200 600	Δ
907	038Bh	-ソフトウェアリミット(下位)	-0,300,000~0,300,007 step	-0,500,000	A
908	038Ch	プリセット位置(上位)	0.200.000 0.200.007 store	0	٨
909	038Dh	プリセット位置(下位)	0,300,000~0,300,007 Step	0	A
910	038Eh	ラウンド設定(上位)	0:無効	0	6
911	038Fh	ラウンド設定(下位)	1:有効	0	C
912	0390h	ラウンド設定範囲(上位)	1 0 200 CO7 stars	1.000	6
913	0391h	ラウンド設定範囲(下位)	1~8,388,607 step	1,000	C
960	03C0h	データ設定器速度表示(上位)	0:符号あり		
961	03C1h	データ設定器速度表示(下位)	1:絶対値	0	A
962	03C2h	データ設定器編集(上位)	0:無効		
963	03C3h	データ設定器編集(下位)	1:有効	1	A
964	03C4h	アブソリュートバックアップ			
501	0000	システム(上位)	0:無効	0	С
965	03C5h	アブソリュートバックアップ シュニュ (工作)	1:有効		-
1000	10006				
4096	1000h		_	0	В
4097	10010				
4098	1002h		0~63	1	В
4099	1003h				
4100	1004h			2	В
4101	1005h				
4102	1006h			3	В
4103	100/h	NIS3理転INO.選択(下位)			
4104	1008h	/////////////////////////////////////	0~63	4	В
4105	1009h	/VIS4建転INO.選択(卜位)			
4106	100Ah			5	В
4107	TOOBh	/////////////////////////////////////			
4108	100Ch	HOME-P出力機能選択(上位)	0:原点出力	0	А
4109	100Dh	HOME-P出力機能選択(下位)	1. 原点復帰元 了出刀		

レジスタ	アドレス	夕妆	記字筋囲	切扣佔	豆叶
Dec	Hex			初約世	反映
4128	1020h	フィルタ選択(上位)	0:速度フィルタ	0	C
4129	1021h	フィルタ選択(下位)	1:移動平均フィルタ	0	C
4130	1022h	速度差ゲイン1(上位)	0- 500	45	۸
4131	1023h	速度差ゲイン1(下位)	0~500	45	A
4132	1024h	速度差ゲイン2(上位)	0. 500	45	٨
4133	1025h	速度差ゲイン2(下位)	0~500	45	A
4134	1026h	制御モード(上位)	0:ノーマルモード	0	6
4135	1027h	制御モード(下位)	1:電流制御モード	0	C
4136	1028h	スムースドライブ(上位)	0:無効	1	6
4137	1029h	スムースドライブ (下位)	1:有効	I	C
4160	1040h	自動復帰動作(上位)	0:無効	0	C
4161	1041h	自動復帰動作(下位)	1:有効	0	C
4162	1042h	自動復帰運転速度(上位)	1 1 000 000 11-	1.000	P
4163	1043h	自動復帰運転速度(下位)	1~1,000,000 Hz	1,000	В
4164	1044h	自動復帰加減速(上位)	1~1,000,000(1=0.001 ms/kHz	1.000	D
4165	1045h	自動復帰加減速(下位)	または1=0.001 s) ※	1,000	В
4166	1046h	自動復帰起動速度(上位)	0 1 000 000 11-	500	P
4167	1047h	自動復帰起動速度(下位)	0~1,000,000 HZ	500	В
4168	1048h	JOG移動量(上位)	1 0 200 CO7 store	1	
4169	1049h	JOG移動量(下位)	1~8,388,607 step	I	В
4224	1080h	カレントオフ時位置偏差過大 アラーム (上位)	- 1~30,000(1=0.01 rev)	10,000	
4225	1081h	カレントオフ時位置偏差過大 アラーム (下位)			A
4352	1100h	IN0入力機能選択(上位)			6
4353	1101h	IN0入力機能選択(下位)		3. HOIVIE	C
4354	1102h	IN1入力機能選択(上位)			6
4355	1103h	IN1入力機能選択(下位)		4.31AK1	C
4356	1104h	IN2入力機能選択(上位)		49.140	6
4357	1105h	IN2入力機能選択(下位)		40.1/10	C
4358	1106h	IN3入力機能選択(上位)		40.141	6
4359	1107h	IN3入力機能選択(下位)		49.111	C
4360	1108h	IN4入力機能選択(上位)	241ハーンの表をと見くたさい。	E0:M2	C
4361	1109h	IN4入力機能選択(下位)		50.1112	C
4362	110Ah	IN5入力機能選択(上位)		16.EDEE	C
4363	110Bh	IN5入力機能選択(下位)		TOTINE	
4364	110Ch	IN6入力機能選択(上位)			C
4365	110Dh	IN6入力機能選択(下位)		10.510	
4366	110Eh	IN7入力機能選択(上位)			C
4367	110Fh	IN7入力機能選択(下位)		24.700-101	C
4384	1120h	IN0入力接点設定(上位)			C
4385	1121h	IN0入力接点設定(下位)			
4386	1122h	IN1入力接点設定(上位)			C
4387	1123h	IN1入力接点設定(下位)			
4388	1124h	IN2入力接点設定(上位)	0:A接点(N.O.)	0	C
4389	1125h	IN2入力接点設定(下位)	1:B接点(N.C.)	U	
4390	1126h	IN3入力接点設定(上位)			C
4391	1127h	IN3入力接点設定(下位)			
4392	1128h	IN4入力接点設定(上位)			6
4393	1129h	IN4入力接点設定(下位)			C

レジスタ	レジスタアドレス				
Dec	Hex	名称	設定範囲	初期値	反映
4394	112Ah	IN5入力接点設定(上位)			6
4395	112Bh	IN5入力接点設定(下位)			C
4396	112Ch	IN6入力接点設定(上位)	0:A接点(N.O.)	0	C
4397	112Dh	IN6入力接点設定(下位)	1:B接点(N.C.)	0	C
4398	112Eh	IN7入力接点設定(上位)			C
4399	112Fh	IN7入力接点設定(下位)			
4416	1140h	OUT0出力機能選択(上位)		70:HOME-P	C
4417	1141h	OUT0出力機能選択(下位)			
4418	1142h	OUT1出力機能選択(上位)		69:FND	C
4419	1143h	OUT1出力機能選択(下位)			
4420	1144h	OUT2出力機能選択(上位)		73:AREA1	С
4421	1145h	OUT2出力機能選択(下位)	241ページの表をご覧ください。	-	
4422	1146h	OUT3出力機能選択(上位)		67:READY	С
4423	1147h	OUT3出力機能選択(下位)			
4424	1148h	OUT4出力機能選択(上位)		66:WNG	С
4425	1149h				
4426	114Ah	OUI5出力機能選択(上位)		65:ALM	С
4427	114Bh				
4448	1160N	NET-INO入力機能選択(上位)		48:M0	С
4449	1167h		-		
4450	1162h			49:M1	С
4451	1164h				
4452	1165h			50:M2	С
4454	1166h	NFT-IN3入力機能選択(上位)			
4455	1167h	NFT-IN13入力機能選択(下位)		4:START	С
4456	1168h	NFT-IN4入力機能選択(十位)			
4457	1169h	NFT-IN4入力機能選択(下位)		3:HOME	С
4458	116Ah	NET-IN5入力機能選択(上位)			
4459	116Bh	NET-IN5入力機能選択(下位)		18:STOP	С
4460	116Ch	NET-IN6入力機能選択(上位)			
4461	116Dh	NET-IN6入力機能選択(下位)		16:FREE	C
4462	116Eh	NET-IN7入力機能選択(上位)		 	6
4463	116Fh	NET-IN7入力機能選択(下位)		0:木使用	C
4464	1170h	NET-IN8入力機能選択(上位)	241ページの表をこ見くたさい。	8.VVCO	C
4465	1171h	NET-IN8入力機能選択(下位)		0.1050	C
4466	1172h	NET-IN9入力機能選択(上位)		9.1121	C
4467	1173h	NET-IN9入力機能選択(下位)			
4468	1174h	NET-IN10入力機能選択(上位)		10:MS2	C
4469	1175h	NET-IN10入力機能選択(下位)			
4470	1176h	NET-IN11入力機能選択(上位)		5:SSTART	C
4471	1177h	NET-IN11入力機能選択(下位)			<u> </u>
4472	1178h	NET-IN12入力機能選択(上位)		6:+JOG	С
4473	1179h	NET-IN12入力機能選択(下位)			
4474	117Ah	NET-IN13入力機能選択(上位)		7:-JOG	С
4475	117Bh	NET-IN13入力機能選択(下位)			
4476	117Ch	NET-IN14人力機能選択(上位)		1:FWD	С
4477	11/Dh	NET-IN14人力機能選択(下位)			
44/8	11/Eh	NET-IN15人力機能選択(上位)		2:RVS	С
4479	117Fh	NE1-IN15人力機能選択(下位)			

レジスタアドレス		夕批	シマ新田	知期店	医咖
Dec	Hex				汉峡
4480	1180h	NET-OUT0出力機能選択(上位)		48.WO B	C
4481	1181h	NET-OUT0出力機能選択(下位)		40.1110_1	
4482	1182h	NET-OUT1出力機能選択(上位)		49°M1 R	C
4483	1183h	NET-OUT1出力機能選択(下位)		49.MT_K	
4484	1184h	NET-OUT2出力機能選択(上位)		50°M2 R	C
4485	1185h	NET-OUT2出力機能選択(下位)			
4486	1186h	NET-OUT3出力機能選択(上位)		A'START R	C
4487	1187h	NET-OUT3出力機能選択(下位)		4.517.01_0	
4488	1188h	NET-OUT4出力機能選択(上位)			C
4489	1189h	NET-OUT4出力機能選択(下位)			
4490	118Ah	NET-OUT5出力機能選択(上位)		67.PEADY	C
4491	118Bh	NET-OUT5出力機能選択(下位)		07 INLADT	C
4492	118Ch	NET-OUT6出力機能選択(上位)		66.WNG	C
4493	118Dh	NET-OUT6出力機能選択(下位)		00.000	C
4494	118Eh	NET-OUT7出力機能選択(上位)	241ページの表をご覧ください。	65:0100	C
4495	118Fh	NET-OUT7出力機能選択(下位)		05.40	C
4496	1190h	NET-OUT8出力機能選択(上位)			C
4497	1191h	NET-OUT8出力機能選択(下位)		00.3-031	C
4498	1192h	NET-OUT9出力機能選択(上位)		72 · ADE A 1	C
4499	1193h	NET-OUT9出力機能選択(下位)		75.AKEAT	C
4500	1194h	NET-OUT10出力機能選択(上位)		74.40542	C
4501	1195h	NET-OUT10出力機能選択(下位)		74.AKEAZ	C
4502	1196h	NET-OUT11出力機能選択(上位)		75.40542	C
4503	1197h	NET-OUT11出力機能選択(下位)		75.AKEAS	C
4504	1198h	NET-OUT12出力機能選択(上位)			C
4505	1199h	NET-OUT12出力機能選択(下位)		72.11/1	C
4506	119Ah	NET-OUT13出力機能選択(上位)		68·MOVE	C
4507	119Bh	NET-OUT13出力機能選択(下位)		00.100 VE	
4508	119Ch	NET-OUT14出力機能選択(上位)			C
4509	119Dh	NET-OUT14出力機能選択(下位)		09.END	C
4510	119Eh	NET-OUT15出力機能選択(上位)			C
4511	119Fh	NET-OUT15出力機能選択(下位)		71.110	C
4608	1200h	通信タイムアウト(上位)	0:監視なし	0	Δ
4609	1201h	通信タイムアウト(下位)	1~10,000 ms	0	A
4610	1202h	通信異常アラーム(上位)	1100	2	Δ
4611	1203h	通信異常アラーム(下位)		5	A

※ 「加減速単位」パラメータで、加減速レート (ms/kHz) か加減速時間 (s) を選択できます (初期値:加減速レート)。

● IN入力機能選択の設定範囲

0:未使用	7:-JOG	16:FREE	32:R0	39:R7	46:R14
1:FWD	8:MS0	17:C-ON	33:R1	40:R8	47:R15
2:RVS	9:MS1	18:STOP	34:R2	41:R9	48:M0
3:HOME	10:MS2	24:ALM-RST	35:R3	42:R10	49:M1
4:START	11:MS3	25:P-PRESET	36:R4	43:R11	50:M2
5:SSTART	12:MS4	26:P-CLR	37:R5	44:R12	51:M3
6:+JOG	13:MS5	27:HMI	38:R6	45:R13	52:M4
					53:M5

• OUT出力機能選択の設定範囲

0:未使用	10:MS2_R	35:R3	45:R13	61:-LS_R	72:TIM
1:FWD_R	11:MS3_R	36:R4	46:R14	62:HOMES_R	73:AREA1
2:RVS_R	12:MS4_R	37:R5	47:R15	63:SLIT_R	74:AREA2
3:HOME_R	13:MS5_R	38:R6	48:M0_R	65:ALM	75:AREA3
4:START_R	16:FREE_R	39:R7	49:M1_R	66:WNG	80:S-BSY
5:SSTART_R	17:C-ON_R	40:R8	50:M2_R	67:READY	82:MPS%
6:+JOG_R	18:STOP_R	41:R9	51:M3_R	68:MOVE	
7:-JOG_R	32:R0	42:R10	52:M4_R	69:END	
8:MS0_R	33:R1	43:R11	53:M5_R	70:HOME-P	
9:MS1_R	34:R2	44:R12	60:+LS_R	71:TLC	

● NET-IN入力機能選択の設定範囲

0:未使用	7:-JOG	16:FREE	32:R0	39:R7	46:R14
1:FWD	8:MS0	17:C-ON	33:R1	40:R8	47:R15
2:RVS	9:MS1	18:STOP	34:R2	41:R9	48:M0
3:HOME	10:MS2	24:ALM-RST ※	35:R3	42:R10	49:M1
4:START	11:MS3	25:P-PRESET **	36:R4	43:R11	50:M2
5:SSTART	12:MS4	26:P-CLR※	37:R5	44:R12	51:M3
6:+JOG	13:MS5	27:HMI	38:R6	45:R13	52:M4
					53:M5

※ 仕様変更前のドライバでは設定できません。詳細は8ページをご覧ください。

● NET-OUT出力機能選択の設定範囲

0:未使用	10:MS2_R	35:R3	45:R13	61:-LS_R	72:TIM
1:FWD_R	11:MS3_R	36:R4	46:R14	62:HOMES_R	73:AREA1
2:RVS_R	12:MS4_R	37:R5	47:R15	63:SLIT_R	74:AREA2
3:HOME_R	13:MS5_R	38:R6	48:M0_R	65:ALM	75:AREA3
4:START_R	16:FREE_R	39:R7	49:M1_R	66:WNG	80:S-BSY
5:SSTART_R	17:C-ON_R	40:R8	50:M2_R	67:READY	82:MPS*
6:+JOG_R	18:STOP_R	41:R9	51:M3_R	68:MOVE	
7:-JOG_R	32:R0	42:R10	52:M4_R	69:END	
8:MS0_R	33:R1	43:R11	53:M5_R	70:HOME-P	
9:MS1_R	34:R2	44:R12	60:+LS_R	71:TLC	
					-

※ AC電源ドライバのみ

※ AC電源ドライバのみ

9 グループ送信

複数のスレーブでグループを組み、そのグループに対してクエリを一斉に送信します。

■ グループの構成

グループは親スレーブ1台と子スレーブで構成され、親スレー ブだけがレスポンスを返します。

● グループのアドレス

グループ送信を行なうときは、グループのアドレスをグループ の対象となる子スレーブに対して設定します。 グループのアドレスを設定した子スレーブは、親スレーブに送 信されたクエリを受け取ることができます。

● 親スレーブ

親スレーブには、グループ送信のための設定は必要ありません。親スレーブのアドレスが、グループのアドレスになります。 マスタからクエリが親スレーブに送信されると、親スレーブは要求された処理を実行してレスポンスを返します(ユニキャ ストモードと同じ)。

子スレーブ

「グループ」コマンドでグループのアドレスを子スレーブに設定します。グループの変更はユニキャストモードで行なって ください。グループを設定するときの読み出しと書き込みは、上位と下位を同時に行なってください。

レジスタアドレス		夕称	内容	READ/	記字範囲	
Dec	Hex	白你	内谷	WRITE	「文化単化出	
48	0030h	グループ (上位)	グループのアドレス		-1:個別(グループを指定しません。)	
49	0031h	グループ(下位)	を設定します。	r./ VV	の号機番号)	

memo

MO [NVメモリー括書き込み]を実行しても、グループ設定はNVメモリに保存されないため、ドライバの電源を遮断するとグループ設定は初期化されます。

■ グループ送信で実行できるファンクションコード

マスタ→スレーブ	アドレス1 位置決め運転開始		アドレス2 位置決め運転開始	
スレーブ→マスタ		アドレス1 返信		アドレス2 返信
アドレス1 (親スレーブ) のモーター動作 -				
アドレス2(子スレーブ) のモーター動作 -				
アドレス3(子スレーブ) のモーター動作 -				

10 運転の設定例

10-1 位置決め運転

例として、次の位置決め運転を実行する方法を説明します。位置決め運転の詳細は170ページをご覧ください。 ここでは、データの書き込みにはファンクションコード「10h」、リモートI/Oの書き込みにはファンクションコード「06h」 を使用して説明しています。

設定例

- スレーブアドレス:1
- 位置(移動量):1,000 step
- 運転速度:5,000 Hz

● 操作手順

1. 次のクエリを送信して、運転データNo.0の位置(移動量)を1,000 stepに設定します。

クエリ

フィールド名称		データ	内容
スレーブアドレス		01h	スレーブアドレス1
ファンクシ	>コンコード	10h	複数の保持レジスタへの書き込み
	レジスタアドレス (上位)	04h	書き込みを行なうレジスタアドレス
	レジスタアドレス(下位)	00h	=位置No.0(0400h)
	レジスタ数(上位)	00h	し、ジフタフドレフに書き込む物
	レジスタ数(下位)	02h	レシスタアドレスに書き込む奴
データ	バイト数	04h	クエリのレジスタ数の2倍の値
	レジスタアドレスのライト値(上位)	00h	
	レジスタアドレスのライト値(下位)	00h	レジスタアドレスに書き込む値
	レジスタアドレス+1のライト値(上位)	03h	=1,000 step(0000 03E8h)
	レジスタアドレス+1のライト値(下位)	E8h	
エラーチェック(下位)		C1h	CPC 16の計筒結甲
エラーチェ	:ック(上位)	D1h	

レスポンス

フィールド名称		データ	内容	
スレーブアドレス		01h		
ファンクションコード		10h		
データ	レジスタアドレス (上位)	04h	・ クエリと同じ値	
	レジスタアドレス (下位)	00h		
	レジスタ数(上位)	00h		
	レジスタ数(下位)	02h		
エラーチェック(下位)		40h	CPC 16の計管結甲	
エラーチェック(上位)		F8h	したし-10051 昇和未	

2. 次のクエリを送信して、運転データNo.0の運転速度を5,000 Hzに設定します。

クエリ

フィールド名称		データ	内容
スレーブアドレス		01h	スレーブアドレス1
ファンクシ	>コード	10h	複数の保持レジスタへの書き込み
	レジスタアドレス (上位)	04h	書き込みを行なうレジスタアドレス
	レジスタアドレス(下位)	80h	=運転速度No.0(0480h)
	レジスタ数(上位)	00h	し、ジフタフドレフに書も込む物
	レジスタ数(下位)	02h	レシスタアドレスに書き込む数
データ	バイト数	04h	クエリのレジスタ数の2倍の値
	レジスタアドレスのライト値(上位)	00h	
	レジスタアドレスのライト値(下位)	00h	レジスタアドレスに書き込む値
	レジスタアドレス+1のライト値(上位)	13h	=5,000 Hz(0000 1388h)
	レジスタアドレス+1のライト値(下位)	88h	
エラーチェック(下位)		C4h	CPC 16の計算は用
エラーチェ	:ック(上位)	59h	

レスポンス

フィールド名称		データ	内容	
スレーブアドレス		01h		
ファンクションコード		10h		
データ	レジスタアドレス (上位)	04h		
	レジスタアドレス (下位)	80h	クエリと回し値	
	レジスタ数(上位)	00h		
	レジスタ数(下位)	02h		
エラーチェック(下位)		41h	CPC 16の計質結甲	
エラーチェック(上位)		10h	CKC-1000司昇和未	

次のクエリを送信して、STARTをONにします。 位置決め運転が始まります。

クエリ

フィールド名称		データ	内容
スレーブアドレス		01h	スレーブアドレス1
ファンクションコード		06h	保持レジスタへの書き込み
データ	レジスタアドレス (上位)	00h	書き込みを行なうレジスタアドレス
	レジスタアドレス (下位)	7Dh	=ドライバ入力指令(007Dh)
	ライト値(上位)	00h	レジスタアドレスに書き込む値
	ライト値(下位)	08h	=START ON (0008h)
エラーチェック(下位)		18h	CPC 16の計管結用
エラーチェック(上位)		14h	CKC-1001 异和未

レスポンス

フィールド名称		データ	内容
スレーブアドレス		01h	
ファンクションコード		06h	
	レジスタアドレス (上位)	00h	クエリと同じ値
="	レジスタアドレス (下位)	7Dh	ノエリと同し値
) —9	ライト値(上位)	00h	
	ライト値(下位)	08h	
エラーチェック(下位)		18h	CDC 16の計質対甲
エラーチェック (上位)		14h	

4. 位置決め運転が開始したら、次のクエリを送信して、STARTをOFFに戻します。

クエリ

	フィールド名称	データ	内容		
スレーブアドレス		01h	スレーブアドレス1		
ファンクションコード		06h	保持レジスタへの書き込み		
_" _	レジスタアドレス (上位)	00h	書き込みを行なうレジスタアドレス		
	レジスタアドレス (下位)	7Dh	=ドライバ入力指令(007Dh)		
テージ	ライト値(上位)	00h	レジスタアドレスに書き込む値		
	ライト値(下位)	00h	=START OFF (0000h)		
エラーチェック(下位)		19h	CPC 16の計管は用		
エラーチェック(上位)		D2h			

レスポンス

フィールド名称		データ	内容	
スレーブアドレス		01h		
ファンクションコード		06h		
	レジスタアドレス (上位)	00h	クエリと同じ値	
="	レジスタアドレス (下位)	7Dh	クエリと同じ喧	
) — 9	ライト値(上位)	00h		
	ライト値(下位)	00h		
エラーチェック(下位)		19h	CPC 16の計質対甲	
エラーチェック (上位)		D2h		

10-2 連続運転

例として、次の連続運転を実行する方法を説明します。連続運転の詳細は191ページをご覧ください。 ここでは、データの書き込みにはファンクションコード「10h」、リモートI/Oの書き込みにはファンクションコード「06h」 を使用して説明しています。

● 設定例

- スレーブアドレス:1
- 回転方向:正転(FWD)
- 運転速度:5,000 Hz

● 操作手順

1. 次のクエリを送信して、運転データNo.0の運転速度を5,000 Hzに設定します。

クエリ

フィールド名称		データ	内容
スレーブアドレス		01h	スレーブアドレス1
ファンクシ	>コンコード	10h	複数の保持レジスタへの書き込み
レジスタアドレス (上位)		04h	書き込みを行なうレジスタアドレス
	レジスタアドレス(下位)	80h	=運転速度No.0(0480h)
	レジスタ数(上位)	00h	し、ジフタフドレフに書き込む数
	レジスタ数(下位)	02h	レジスタアドレスに書き込む数
データ	バイト数	04h	クエリのレジスタ数の2倍の値
	レジスタアドレスのライト値(上位)	00h	
	レジスタアドレスのライト値(下位)	00h	レジスタアドレスに書き込む値
	レジスタアドレス+1のライト値(上位)	13h	=5,000 Hz(0000 1388h)
	レジスタアドレス+1のライト値(下位)	88h	
エラーチェック (下位)		C4h	CPC-16の計算結果
エラーチェック(上位)		59h	

レスポンス

	フィールド名称	データ	内容
スレーブアドレス		01h	
ファンクションコード		10h	
	レジスタアドレス (上位)	04h	クエリトロド店
-" 0	レジスタアドレス (下位)	80h	クエリと向し値
テーダ	レジスタ数(上位)	00h	
	レジスタ数(下位)	02h	
エラーチェック(下位)		41h	CDC 16の計管対田
エラーチェック(上位)		10h	CRC-100引昇和未

 次のクエリを送信して、FWDをONにします。 連続運転が始まります。

クエリ

フィールド名称		データ	内容
スレーブアドレス		01h	スレーブアドレス1
ファンクションコード		06h	保持レジスタへの書き込み
-" -	レジスタアドレス(上位)	00h	書き込みを行なうレジスタアドレス
	レジスタアドレス (下位)	7Dh	=ドライバ入力指令(007Dh)
) — 9	ライト値(上位)	40h	レジスタアドレスに書き込む値
	ライト値(下位)	00h	=FWD ON (4000h)
エラーチェック(下位)		28h	CPC 16の計管結用
エラーチェック (上位)		12h	

レスポンス

フィールド名称		データ	内容
スレーブアドレス		01h	
ファンクションコード		06h	
	レジスタアドレス (上位)	00h	クエリと同じ値
₹"	レジスタアドレス (下位)	7Dh	ノエリと同し値
)	ライト値(上位)	40h	
	ライト値(下位)	00h	
エラーチェック(下位)		28h	CDC 16の計管対甲
エラーチェック(上位)		12h	

3. 連続運転を停止するときは、次のクエリを送信して、FWDをOFFに戻します。 モーターが減速停止します。

クエリ

フィールド名称		データ	内容
スレーブアドレス		01h	スレーブアドレス1
ファンクションコード		06h	保持レジスタへの書き込み
-" -	レジスタアドレス (上位)	00h	書き込みを行なうレジスタアドレス
	レジスタアドレス (下位)	7Dh	=ドライバ入力指令(007Dh)
) — 9	ライト値(上位)	00h	レジスタアドレスに書き込む値
	ライト値(下位)	00h	=FWD OFF (0000h)
エラーチェック (下位)		19h	CPC 16の計算結用
エラーチェック(上位)		D2h	

レスポンス

フィールド名称		データ	内容
スレーブアドレス		01h	
ファンクションコード		06h	
-" -	レジスタアドレス(上位)	00h	
	レジスタアドレス(下位)	7Dh	ノエリと同じ値
テージ	ライト値(上位)	00h	
	ライト値(下位)	00h	
エラーチェック(下位)		19h	
エラーチェック(上位)		D2h	

10-3 原点復帰運転

例として、次の原点復帰運転を実行する方法を説明します。原点復帰運転の詳細は183ページをご覧ください。

● 設定例

- スレーブアドレス:1
- 運転条件:初期値

● 操作手順

次のクエリを送信して、HOMEをONにします。
 原点復帰運転が始まります。

クエリ

	フィールド名称	データ	内容
スレーブアドレス		01h	スレーブアドレス1
ファンクションコード		06h	保持レジスタへの書き込み
-" -	レジスタアドレス (上位)	00h	書き込みを行なうレジスタアドレス
	レジスタアドレス (下位)	7Dh	=ドライバ入力指令(007Dh)
) — 9	ライト値(上位)	00h	レジスタアドレスに書き込む値
	ライト値(下位)	10h	=HOME ON (0010h)
エラーチェック(下位)		18h	CPC 16の計筒結用
エラーチェック (上位)		1Eh	

レスポンス

フィールド名称		データ	内容
スレーブアドレス		01h	
ファンクションコード		06h	
	レジスタアドレス (上位)	00h	クエリトロド店
₹	レジスタアドレス (下位)	7Dh	クエリと回し値
)	ライト値(上位)	00h	
	ライト値(下位)	10h	
エラーチェック(下位)		18h	CPC 16の計管結甲
エラーチェ	- ック(上位)	1Eh	

2. 原点復帰運転が開始したら、次のクエリを送信して、HOMEをOFFに戻します。

クエリ

フィールド名称		データ	内容	
スレーブアドレス		01h	スレーブアドレス1	
ファンクションコード		06h	保持レジスタへの書き込み	
データ	レジスタアドレス (上位)	00h	書き込みを行なうレジスタアドレス =ドライバ入力指令 (007Dh)	
	レジスタアドレス (下位)	7Dh		
	ライト値(上位)	00h	レジスタアドレスに書き込む値 =HOME OFF (0000h)	
	ライト値(下位)	00h		
エラーチェック(下位)		19h	- CRC-16の計算結果	
エラーチェック(上位)		D2h		

レスポンス

フィールド名称		データ	内容
スレーブアドレス		01h	
ファンクションコード		06h	
データ	レジスタアドレス (上位)	00h	- クエリと同じ値 - -
	レジスタアドレス (下位)	7Dh	
	ライト値(上位)	00h	
	ライト値(下位)	00h	
エラーチェック(下位)		19h	- CRC-16の計算結果
エラーチェック(上位)		D2h	

11 通信異常の検出

RS-485通信に異常が発生したことを検出する機能で、通信エラー、アラーム、およびワーニングがあります。

11-1 通信エラー

通信エラーの履歴はRAMに保存されます。通信エラーは**MEXE02**またはRS-485通信の「通信エラー履歴」コマンドで確認で きます。

(memo) ドライバの電源を切ると、通信エラー履歴は消去されます。

通信エラーの種類	エラーコード	原因	
RS-485通信異常	84h	伝送異常が検出されました。 223ページ「無応答」をご覧ください。	
コマンド未定義	88h	例外応答(例外コード01h、02h)が検出されました。 224ページをご覧ください。	
ユーザーI/F通信中のため実行不可	89h	例外応答(例外コード04h)が検出されました。	
NVメモリ処理中のため実行不可	8Ah	224ページをご覧ください。	
設定範囲外	8Ch	例外応答(例外コード03h、04h)が検出されました。 224ページをご覧ください。	
コマンド実行不可	8Dh	例外応答(例外コード04h)が検出されました。 224ページをご覧ください。	

11-2 アラームとワーニング

アラームが発生するとALM出力がOFFになり、モーターが停止します。同時に、ALM LED (またはALARM LED)が点滅します。

ワーニングが発生すると、WNG出力がONになります。ただし、モーターの運転は継続します。ワーニングが発生した原因が取り除かれると、WNG出力は自動でOFFになります。

(memo) ドライバの電源を切ると、ワーニング履歴は消去されます。

■ 通信用スイッチ設定異常

通信速度設定スイッチ(SW2)を8~Fのどれかに設定すると、通信用スイッチ設定異常が発生します。

■ RS-485通信異常(84h)

RS-485通信異常が発生した際の、アラームとワーニングの関係は表のようになります。

異常の内容	内容
ワーニング	RS-485通信異常 (84h) が1回検出されるとワーニングになります。 ワーニングが発生している途中で受信が正常に行なわれると、ワーニングは自動で解除されます。
アラーム	RS-485通信異常(84h)が、「通信異常アラーム」パラメータに設定した回数だけ連続して検出される とアラームになります。

RS-485通信タイムアウト(85h)

[通信タイムアウト]パラメータで設定した時間を経過してもマスタとの通信が行なわれなかったときは、アラームが発生します。

12 タイミングチャート

■ 通信開始

※ Tb2(送信待ち時間)+C3.5(サイレントインターバル)

■ 運転開始

※1 RS-485通信による運転開始を含むメッセージ

※2 Tb2(送信待ち時間)+C3.5(サイレントインターバル)

※3 C3.5(サイレントインターバル)+4 ms以下

運転停止、変速

※1 RS-485通信による運転停止と変速を含むメッセージ

※2 Tb2(送信待ち時間)+C3.5(サイレントインターバル)

- ※3 指令速度によって異なります。
- ※4 「STOP停止方法」パラメータの設定によって異なります。

▮ 汎用信号

※3 C3.5(サイレントインターバル)+4 ms以下

Configuration

※1 RS-485通信によるConfigurationを含むメッセージ

※2 Tb2(送信待ち時間)+C3.5(サイレントインターバル)

※3 C3.5(サイレントインターバル)+4 ms以下

※4 内部処理時間+1 s以下

※5 ドライバの内部処理が終了してからクエリを実行してください。
7 FAネットワーク制御

当社のネットワークコンバータを使用して、FAネットワークで制御する方法について説明しています。

◆もくじ

1 スイ	′ッチの設定	254
1-1	AC電源ドライバの設定	254
1-2	DC電源ドライバの設定	256
2 CC-	Link通信で制御する場合	258
2-1	ガイダンス	258
2-2	命令選択方式の操作例	263
2-3	命令固定方式の操作例	270
3 Eth	erCAT通信で制御する場合	276
3-1	ガイダンス	276
3-2	基本的な操作手順	282
4 ME	CHATROLINK通信で制御する場合	285
4-1	ガイダンス	285
4-2	基本的な操作手順	290

4-3	NETC01-M2のフィールドマップ	293
4-4	NETC01-M3のフィールドマップ	294
4-5	通信フォーマット	295
5 U T	EートI/Oの詳細	297
5-1	ドライバへの入力	297
5-2	ドライバからの出力	298
6 命令	合コード一覧	299
6-1	グループ機能	299
6-2	メンテナンスコマンド	300
6-3	モニタコマンド	301
6-4	運転データ	303
6-5	ユーザーパラメータ	304

スイッチの設定

AC電源ドライバとDC電源ドライバではスイッチが異なります。正しく設定してください。

AC電源ドライバの設定 1-1

図は、出荷時設定の状態です。

ドライバ正面

スイッチを設定するときは、ドライバの主電源とDC24 V電源を切り、CHARGE LEDが消灯してから行 なってください。残留電圧によって感電するおそれがあります。

(memo 設定したスイッチはDC24 V電源の再投入後に有効になります。

プロトコル

機能設定スイッチ(SW4)のNo.2をOFFにします。ネットワークコンバータが選択されます。

出荷時設定 OFF

SW4-No.2	プロトコル		
ON	Modbus RTUモード		
OFF	ネットワークコンバータに接続		

┃ 号機番号(スレーブアドレス)

号機設定スイッチ(ID)と機能設定スイッチ(SW4)のNo.1を併用して、号機番号(スレーブアドレス)を設定します。号機番 号(スレーブアドレス)は重複しないように設定してください。 最大接続可能台数は16台です。

出荷時設定 ID:0、SW4-No.1:OFF(スレーブアドレス0)

スレーブアドレス	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
ID	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F
SW4-No.1		OFF														

通信速度

通信速度設定スイッチ(SW2)で、通信速度を625,000 bpsに設定してください。

出荷時設定 7(625,000 bps)

■ 終端抵抗

ネットワークコンバータから一番離れた位置 (終端) にあるドライバは、RS-485通信の終端抵抗 (120 Ω) を設定します。 終端抵抗設定スイッチ (TERM.) のNo.1とNo.2を両方ともONにしてください。

出荷時設定 No.1、No.2ともにOFF(終端抵抗なし)

TERMNo.1、No.2	終端抵抗(120 Ω)		
両方ともOFF	なし		
両方ともON	あり		

(memo) No.1、No.2の片方だけをONにすると、通信エラーが発生する場合があります。

例として、次のようなシステムの場合、終端抵抗を設定するドライバは2台になります。

1-2 DC電源ドライバの設定

図は、出荷時設定の状態です。

ても、有効になりません。 _____

■ プロトコル

機能設定スイッチ(SW3)のNo.2をOFFにします。ネットワークコンバータが選択されます。

出荷時設定 OFF

SW3-No.2	プロトコル
ON	Modbus RTUモード
OFF	ネットワークコンバータに接続

■ 号機番号(スレーブアドレス)

号機設定スイッチ (SW1) と機能設定スイッチ (SW3) のNo.1を併用して、号機番号 (スレーブアドレス) を設定します。 号機 番号 (スレーブアドレス) は重複しないように設定してください。 最大接続可能台数は16台です。

出荷時設定 SW1:0、SW3-No.1:OFF(スレーブアドレス0)

スレーブアドレス	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
SW1	0	1	2	3	4	5	6	7	8	9	А	В	С	D	Е	F
SW3-No.1								O	FF							

通信速度

通信速度設定スイッチ(SW2)で、通信速度を625,000 bpsに設定してください。

出荷時設定 7(625,000 bps)

■ 終端抵抗

ネットワークコンバータから一番離れた位置 (終端) にあるドライバは、RS-485通信の終端抵抗 (120 Ω) を設定します。 機能設定スイッチ (SW3) のNo.4をONにしてください。

出荷時設定 OFF(終端抵抗なし)

SW3-No.4	終端抵抗(120 Ω)
OFF	なし
ON	あり

例として、次のようなシステムの場合、終端抵抗を設定するドライバは2台になります。

2 CC-Link通信で制御する場合

2-1 ガイダンス

はじめてお使いになるときはここをご覧になり、運転方法のながれについてご理解ください。

■ 設定条件

● RS-485通信対応製品の設定

号機番号0	AC電源ドライバ
号機番号1	DC電源ドライバ
プロトコル	ネットワークコンバータ
RS-485通信 通信速度	625,000 bps

● NETC02-CCの設定

RS-485通信対応製品の接続台数	2台
CC-Link伝送ボーレート	10 Mbps
STATION No.	No.1
レジスタ配置モード	4ワード配置

● マスタの設定

ネットワークパラメータの設定

リモート入力(RX)	RX1000
リモート出力(RY)	RY1000
リモートレジスタ(RWr)	WO
リモートレジスタ(RWw)	W100
拡張サイクリック設定	2倍
リモートデバイス局	4局占有

CC-Linkマスタの設定

CC-Link伝送ボーレート	10 Mbps
STATION No.	No.0

) モーターを動かすときは周囲の状況を確認し、安全を確保してから運転してください。

(memo) NETC02-CCは、RS-485通信用の終端抵抗を内蔵しています。設定の必要はなく、そのままお使いいただ けます。

※1 当社でご用意しています。別途お買い求めください。

- ※2 当社でご用意しています。モーターケーブルの長さが足りないときに、別途お買い求めください。
- ※3 終端抵抗は付属していません。(110 Ω、1/2 W)

| 7 FAネットワーク制御

STEP 2 NETC02-CCのスイッチを設定します

NETC02-CCの上面にあるスイッチを、次のように設定してください。設定すると、図のようになります。

設定内容	スイッチ	出荷時設定
RS-485通信接続台数:2	N-AXISを[2]	1
CC-Link伝送ボーレート:10 Mbps	B-RATEを「4」	0
CC-Link局番:1	STATION No.の×1を[1]、×10を[0]	1(×1:1、×10:0)
	No.1~No.4をすべて[OFF]	すべてOFF

STEP 3 ドライバのスイッチを設定します

ドライバのスイッチを、次のように設定してください。設定すると、図のようになります。

設定内容	AC電源ドライバ	DC電源ドライバ
プロトコル:ネットワークコンバータ	SW4のNo.2を「OFF」	SW3のNo.2を[OFF]
号機番号:AC電源ドライバは[0]、 DC電源ドライバは[1]	SW4のNo.1を「OFF」、IDを「0」	SW3のNo.1を[OFF]、SW1を[1]
終端抵抗:AC電源ドライバは「OFF」、 DC電源ドライバは「ON」	TERM.のNo.1とNo.2を[OFF]	SW3のNo.4を[ON]
通信速度:625,000 bps	SW2を[7]	SW2を[7]

AC電源ドライバ

ドライバ正面

ドライバ正面

●ドライバ上面

機能設定スイッチ(SW3) No.1:号機番号を設定 No.2:プロトコルを設定 No.3:使用しません No.4:終端抵抗(120 Ω)を設定

		No.1:OFF
Ļ		No.2:OFF
Ż		No.3:OFF
	1234	No.4:ON

2-2 命令選択方式の操作例

ここでは、命令選択方式で次の操作を行なう方法について説明します。

STEP1	動作確認	RVS方向の連続運転を実行し、動作するか確認します。
	¥	-
STEP2	位置決め運転の実行	位置データをセットし、動作するか確認します。
	•	-
STEP3	検出位置のモニタ	STEP2の位置決め運転が正しく実行されたか確認します。
	↓	-
STEP4	NVメモリ書き込み	位置データをNVメモリに書き込みます。

● モニタコマンド

要求信号の使い方

操作例では、リモートレジスタにセットする内容によって、要求信号を使い分けています。

● 運転データ、メンテナンスコマンド

西北信旦	リモートレジスタ		
安水旧与	書き込み	読み出し	
	RWw100	RWr0	
D-REQ0	RWw101	RWr1	
	RWw102	RWr2	
	RWw103	RWr3	
D-REQ1	RWw104	RWr4	
	RWw105	RWr5	
	RWw106	RWr6	
	RWw107	RWr7	

西北信旦	リモートレジスタ		
安水临ち	書き込み	読み出し	
	RWw108	RWr8	
D-REQ2	RWw109	RWr9	
	RWw10A	RWrA	
	RWw10B	RWrB	
D-REQ3	RWw10C	RWrC	
	RWw10D	RWrD	
	RWw10E	RWrE	
	RWw10F	RWrF	

STEP 1 リモートI/OでRVS方向へ連続運転を実行し、動作するか確認します

1. RVS方向へ連続運転を開始します。 RVSをONにしてください。

マスタ \rightarrow NETC02-CC

号機番号	リモートI/O	アドレス	入力値	説明
0	RVS	RY100F	1	海結滞転の空行
1		RY101F	1	建就連転の美1]

2. 連続運転を停止します。

RVSをOFFにしてください。

マスタ \rightarrow NETC02-CC

号機番号	リモートI/O	アドレス	入力値	説明
0	RVS	RY100F	0	海結滞転の停止
1		RY101F	0	建成連転の停止

(memo) 動作しないときは、スイッチの設定、リモートI/O、およびリモートレジスタの割り付けを確認してくだ さい。

STEP 2 位置決め運転を実行します

1. 位置決め運転を行なったときに、正常に動作したことを確認しやすくするため、位置情報を「0」にします。

1) メンテナンスコマンド[P-PRESET実行(30C5h)]をリモートレジスタにセットします。

号機番号 アドレス 入力値 説明 RWw100 30C5h 命令コード (P-PRESET実行) RWw101 0h 号機番号 0 RWw102 1 データ(下位) RWw103 0 データ(上位) RWw104 30C5h 命令コード(P-PRESET実行) RWw105 1h 号機番号 1 RWw106 1 データ(下位) RWw107 0 データ(上位)

マスタ \rightarrow NETC02-CC

(memo` データ領域に[1]をセットしないと、コマンドが実行されません。

2) D-REQをONにして、データをドライバに書き込みます。

マスタ \rightarrow NETC02-CC

号機番号	リモート1/0	アドレス	入力値	説明
0	D-REQ0	RY1080	1	またいってい
1	D-REQ1	RY1082	1	音さ込の天1」

3) 正常に処理されると、D-ENDのレスポンスが自動で「1」に変わります。

NETC02-CC \rightarrow マスタ

号機番号	リモート1/0	アドレス	レスポンス	説明
0	D-END0	RX1080	1	またいっつフ
1	D-END1	RX1082	1	書き込み 完了

D-ENDのレスポンスが「1」になると、ドライバに書き込まれた値が表示されます。
 手順1)でセットした値と一致していることを確認してください。

$\textbf{NETC02-CC} \rightarrow \textbf{\nabla} \textbf{X} \textbf{\mathcal{P}}$

号機番号	アドレス	レスポンス	説明	
	RWr0	30C5h	命令コード応答(P-PRESET実行)	
0	RWr1	0h	号機番号応答	
0	RWr2	1	データ (下位)	
	RWr3	0	データ(上位)	
	RWr4	30C5h	命令コード応答(P-PRESET実行)	
1	RWr5	1h	号機番号応答	
	RWr6	1	データ(下位)	
	RWr7	0	データ(上位)	

5) 正常に書き込まれていることを確認したら、D-REQをOFFにします。

$\textbf{\nabla} \textbf{X} \textbf{\mathcal{P}} \rightarrow \textbf{NETC02-CC}$

号機番号	リモート1/0	アドレス	入力値	説明
0	D-REQ0	RY1080	0	またいいめフ
1	D-REQ1	RY1082	0	音さ込の於」

- 2. メンテナンスコマンドの「P-PRESET実行」によって、位置情報が「O」になったことを確認します。
 - 1) モニタコマンド「検出位置(2066h)」をリモートレジスタにセットします。

$\textbf{\nabla} \textbf{X} \textbf{\mathcal{P}} \rightarrow \textbf{NETC02-CC}$

号機番号	アドレス	入力値	説明		
	RWw108	2066h	命令コード(検出位置)		
0	RWw109	0h	号機番号		
0	RWw10A	0	データ (下位)		
	RWw10B	0	データ (上位)		
	RWw10C	2066h	命令コード(検出位置)		
1	RWw10D	1h	号機番号		
I	RVVw10E	0	データ (下位)		
	RVVw10F	0	データ (上位)		

2) D-REQをONにして、データをドライバに書き込みます。

マスタ \rightarrow NETC02-CC

号機番号	リモート1/0	アドレス	入力値	説明
0	D-REQ2	RY1084	1	エーク問始
1	D-REQ3	RY1086	1	モニク開始

3) 正常に処理されると、D-ENDのレスポンスが自動で「1」に変わります。

$\textbf{NETC02-CC} \rightarrow \textbf{\nabla} \textbf{X} \textbf{\mathcal{P}}$

号機番号	リモート1/0	アドレス	レスポンス	説明
0	D-END2	RX1084	1	エーター
1	D-END3	RX1086	1	七二9中

 D-ENDのレスポンスが「1」になると、ドライバに書き込まれた値が表示されます。 データ領域が「0」になっていることを確認してください。

$\textbf{NETC02-CC} \rightarrow \textbf{RZP}$

号機番号	アドレス	レスポンス	説明		
	RWr8	2066h	命令コード応答(検出位置)		
0	RWr9	0h			
0	RWrA	0	データ (下位)		
	RWrB	0	データ (上位)		
	RWrC	2066h	命令コード応答(検出位置)		
1	RWrD	1h	号機番号応答		
1	RWrE	0	データ (下位)		
	RWrF	0	データ (上位)		

5) 正常に書き込まれていることを確認したら、D-REQをOFFにします。

マスタ \rightarrow NETC02-CC

号機番号	リモート1/0	アドレス	入力値	説明
0	D-REQ2	RY1084	0	エーの炊了
1	D-REQ3	RY1086	0	モニンだ」

位置決め運転の運転データをセットします。
 位置No.0、位置データ「5000(1388h)」をリモートレジスタにセットしてください。

マスタ \rightarrow NETC02-CC

号機番号	アドレス	入力値	説明
	RWw100	1200h	命令コード(位置No.0)
0	RWw101	0h	号機番号
0	RWw102	5000	データ (下位)
	RWw103	(1388h)	データ (上位)
	RWw104	1200h	命令コード(位置No.0)
1	RWw105	1h	号機番号
I	RWw106	5000	データ (下位)
	RWw107	(1388h)	データ (上位)

- 4. 手順3でセットしたデータをドライバに書き込み、レスポンスを確認します。
 - 1) D-REQをONにします。

マスタ \rightarrow NETC02-CC

号機番号	リモート1/0	アドレス	入力値	説明
0	D-REQ0	RY1080	1	またいってい
1	D-REQ1	RY1082	1	音さ込の天1」

2) 正常に処理されると、D-ENDのレスポンスが自動で「1」に変わります。

$\textbf{NETC02-CC} \rightarrow \textbf{\nabla} \textbf{X} \textbf{\mathcal{P}}$

号機番号	リモート1/0	アドレス	レスポンス	説明
0	D-END0	RX1080	1	またいシウフ
1	D-END1	RX1082	1	「音で込み元」

D-ENDのレスポンスが「1」になると、ドライバに書き込まれた値が表示されます。
 手順3でセットした値と一致していることを確認してください。

$\textbf{NETC02-CC} \rightarrow \textbf{\nabla} \textbf{Z} \textbf{\mathcal{P}}$

号機番号	アドレス	レスポンス	説明
	RWr0	1200h	命令コード応答(位置No.0)
0	RWr1	0h	
0	RWr2	5000	データ (下位)
	RWr3	(1388h)	データ (上位)
	RWr4	1200h	命令コード応答(位置No.0)
1	RWr5	1h	号機番号応答
I	RWr6	5000	データ (下位)
	RWr7	(1388h)	データ (上位)

5. 正常に書き込まれていることを確認したら、D-REQをOFFにします。

号機番号	リモート1/0	アドレス	入力値	説明
0	D-REQ0	RY1080	0	またいしめフ
1	D-REQ1	RY1082	0	者さ込の終」

6. 位置決め運転を開始します。

STARTをONにしてください。

号機番号	リモート1/0	アドレス	入力値	説明
0	START	RY1003	1	位置される正言を
1		RY1013	1	恒原大の連邦用加

7. 位置決め運転が起動したら、STARTをOFFにします。 STARTをOFFにしても、指令位置まで動き続けます。

$\textbf{NETC02-CC} \rightarrow \textbf{\nabla} \textbf{Z} \textbf{\mathcal{P}}$

号機番号	リモート1/0	アドレス	入力値	説明
0	START	RY1003	0	
1		RY1013	0	STARTZOFF

STEP 3 検出位置をモニタします

1. モニタコマンド「検出位置(2066h)」をリモートレジスタにセットします。

マスタ \rightarrow NETC02-CC

号機番号	アドレス	入力値	説明
0	RWw108	2066h	命令コード(検出位置)
	RWw109	0h	号機番号
0	RWw10A	0	データ (下位)
	RWw10B	0	データ(上位)
	RWw10C	2066h	命令コード(検出位置)
1	RWw10D	1h	号機番号
I	RWw10E	0	データ(下位)
	RWw10F	0	データ(上位)

- 2. 手順1でセットしたデータをドライバに書き込み、レスポンスを確認します。
 - 1) D-REQをONにします。

$\textbf{\nabla} \textbf{X} \textbf{\mathcal{P}} \rightarrow \textbf{NETC02-CC}$

号機番号	リモート1/0	アドレス	入力値	説明
0	D-REQ2	RY1084	1	エーク問い
1	D-REQ3	RY1086	1	モニア開始

2) 正常に処理されると、D-ENDのレスポンスが自動で「1」に変わります。

$\textbf{NETC02-CC} \rightarrow \textbf{\nabla} \textbf{Z} \textbf{\mathcal{P}}$

号機番号	リモート1/0	アドレス	レスポンス	説明
0	D-END2	RX1084	1	エーター
1	D-END3	RX1086	1	τ_94

D-ENDのレスポンスが「1」になると、検出位置のモニタが始まります。
 D-REQがONの間、モニタを継続します。

$\textbf{NETC02-CC} \rightarrow \textbf{\nabla} \textbf{Z} \textbf{\mathcal{P}}$

号機番号	アドレス	レスポンス	説明
	RWr8	2066h	命令コード応答(検出位置)
0	RWr9	0h	号機番号応答
0	RWrA	5000	データ(下位)
	RWrB	(1388h)	データ(上位)
	RWrC	2066h	命令コード応答(検出位置)
1	RWrD	1h	号機番号応答
1	RWrE	5000	データ(下位)
	RWrF	(1388h)	データ (上位)
			-

3. モニタを終了します。

D-REQをOFFにしてください。

マスタ \rightarrow NETC02-CC

号機番号	リモート1/0	アドレス	入力値	説明
0	D-REQ2	RY1084	0	エーの炊了
1	D-REQ3	RY1086	0	モニン於」

STEP 4

位置情報をNVメモリに書き込みます

(memo) NVメモリの書き込み可能回数は、約10万回です。

1. メンテナンスコマンド「NVメモリー括書き込み(30C9h)」をリモートレジスタにセットします。

マスタ \rightarrow NETC02-CC

号機番号	アドレス	入力値	説明
	RWw100	30C9h	命令コード(NVメモリー括書き込み)
0	RWw101	0h	号機番号
0	RWw102	1	データ(下位)
	RWw103	0	データ (上位)
	RWw104	30C9h	命令コード(NVメモリー括書き込み)
1	RWw105	1h	号機番号
1	RWw106	1	データ(下位)
	RWw107	0	データ (上位)

- 2. 手順1でセットしたデータをドライバに書き込み、レスポンスを確認します。
 - 1) D-REQをONにします。

号機番号	リモート1/0	アドレス	入力値	説明
0	D-REQ0	RY1080	1	またいい中に
1	D-REQ1	RY1082	1	者さ込の夫仃

2) 正常に処理されると、D-ENDのレスポンスが自動で「1」に変わります。

$\textbf{NETC02-CC} \rightarrow \textbf{\nabla} \textbf{X} \textbf{\mathcal{P}}$

号機番号	リモート1/0	アドレス	レスポンス	説明
0	D-END0	RX1080	1	またいいウフ
1	D-END1	RX1082	1	音ご込の元」

D-ENDのレスポンスが「1」になると、ドライバに書き込まれた値が表示されます。
 手順1でセットした値と一致していることを確認してください。

$\textbf{NETC02-CC} \rightarrow \textbf{\nabla} \textbf{Z} \textbf{\mathcal{P}}$

号機番号	アドレス	レスポンス	説明
	RWr0	30C9h	命令コード応答(NVメモリー括書き込み)
0	RWr1	0h	号機番号応答
0	RWr2	1	データ (下位)
	RWr3	0	データ (上位)
	RWr4	30C9h	命令コード応答(NVメモリー括書き込み)
1	RWr5	1h	号機番号応答
I	RWr6	1	データ (下位)
	RWr7	0	データ (上位)

3. 正常に書き込まれていることを確認したら、D-REQをOFFにします。

マスタ \rightarrow NETC02-CC

号機番号	リモート1/0	アドレス	入力値	説明
0	D-REQ0	RY1080	0	まキジュタフ
1	D-REQ1	RY1082	0	音ご込の終」

(memo) CC-Link通信で設定したデータはRAMに保存されるため、電源を切ると消去されます。「NVメモリー括書 き込み」を行なうと、データはNVメモリに保存されるため、電源を切っても保持されます。

2-3 命令固定方式の操作例

ここでは、命令固定方式で次の操作を行なう方法について説明します。

レジスタ配置の内容(4ワード配置の場合)

● 書き込みの配置

号機番号	リモートレジスタ	内容	要求信号
	RWw100	未使用	
0	RWw101	未使用	
0	RWw102	位置No.0(下位)	
	RWw103	位置No.0(上位)	
1	RWw104	未使用	VVK-KEQU
	RWw105	未使用	
	RWw106	位置No.0(下位)	
	RWw107	位置No.0(上位)	

● 読み出し、モニタの配置

号機番号	リモートレジスタ	内容	要求信号
	RWr0	検出位置(下位)	
0	RWr1	検出位置(上位)	
0	RWr2	位置No.0(下位)	
	RWr3	位置No.0(上位)	
1	RWr4	検出位置(下位)	KD-KEQU
	RWr5	検出位置(上位)	
	RWr6	位置No.0(下位)	
	RWr7	位置No.0(上位)	

STEP 1 リモートI/OでRVS方向へ連続運転を実行し、動作するか確認します

1. RVS方向へ連続運転を開始します。 RVSをONにしてください。

マスタ \rightarrow NETC02-CC

号機番号	リモートI/O	アドレス	入力値	説明
0	RVS	RY100F	1	海結滞転の空行
1		RY101F	1	建就連転の美1」

2. 連続運転を停止します。

RVSをOFFにしてください。

マスタ \rightarrow NETC02-CC

号機番号	リモート1/0	アドレス	入力値	説明
0	RVS	RY100F	0	海結滞転の停止
1		RY101F	0	建杭連転の停止

(memo) 動作しないときは、スイッチの設定、リモートI/O、およびリモートレジスタの割り付けを確認してくだ さい。

STEP 2 P-PRESET (メンテナンスコマンド)を実行します

1. メンテナンスコマンド「P-PRESET実行」で、現在位置を「0」にします。

メンテナンスコマンドは命令選択方式で行ないます。 要

1) メンテナンスコマンド[P-PRESET実行(30C5h)]をリモートレジスタにセットします。

マスタ \rightarrow NETC02-CC

号機番号	アドレス	入力値	説明
	RWw100	30C5h	命令コード (P-PRESET実行)
0	RWw101	0h	号機番号
0	RWw102	1	データ (下位)
	RWw103	0	データ (上位)
	RWw104	30C5h	命令コード (P-PRESET実行)
1	RWw105	1h	号機番号
	RWw106	1	データ (下位)
	RWw107	0	データ (上位)

(**memo)** データ領域に[1]をセットしないと、コマンドが実行されません。

2) D-REQをONにして、データをドライバに書き込みます。

マスタ \rightarrow NETC02-CC

号機番号	リモート1/0	アドレス	入力値	説明
0	D-REQ0	RY1080	1	またいってに
1	D-REQ1	RY1082	1	音さ込の夫仃

3) 正常に処理されると、D-ENDのレスポンスが自動で「1」に変わります。

$\textbf{NETC02-CC} \rightarrow \textbf{\nabla} \textbf{Z} \textbf{\mathcal{P}}$

号機番号	リモートI/O	アドレス	レスポンス	説明
0	D-END0	RX1080	1	またいっつフ
1	D-END1	RX1082	1	

D-ENDのレスポンスが「1」になると、ドライバに書き込まれた値が表示されます。
 手順1)でセットした値と一致していることを確認してください。

$\textbf{NETC02-CC} \rightarrow \textbf{\nabla} \textbf{Z} \textbf{\mathcal{P}}$

号機番号	アドレス	レスポンス	説明
	RWr0	30C5h	命令コード応答(P-PRESET実行)
0	RWr1	0h	号機番号応答
	RWr2	1	データ (下位)
	RWr3	0	データ (上位)
	RWr4	30C5h	命令コード応答(P-PRESET実行)
1	RWr5	1h	号機番号応答
I	RWr6	1	データ(下位)
	RWr7	0	データ (上位)

5) 正常に書き込まれていることを確認したら、D-REQをOFFにします。

$\textbf{\nabla} \textbf{X} \textbf{\mathcal{P}} \rightarrow \textbf{NETC02-CC}$

号機番号	リモートI/O	アドレス	入力値	説明
0	D-REQ0	RY1080	0	またいいめフ
1	D-REQ1	RY1082	0	音ご込の於」

STEP 3 ドライバの値をモニタします

レジスタ配置モードが4ワード配置なので、検出位置のモニタと、位置No.0の値を読み出します。

1. RD-REQをONにします。

マスタ \rightarrow NETC02-CC

号機番号	リモートI/O	アドレス	入力値	説明
0		PV1002	1	ミュルト・エーク問始
1		KT1092	I I	記の山して二ツ開始

2. モニタが始まると、RD-DATのレスポンスが自動で[1]に変わります。

$\textbf{NETC02-CC} \rightarrow \textbf{\nabla} \textbf{X} \textbf{\mathcal{P}}$

号機番号	リモートI/O	アドレス	レスポンス	説明
0		PV1002	1	言っ山し。エータ中
1	KD-DATU	KA1092	1	記の山し・ヒーノ中

3. RD-DATのレスポンスが「1」になると、検出位置のモニタと、位置No.0の値の読み出しが始まります。 RD-REQがONの間、モニタを継続します。

$\textbf{NETC02-CC} \rightarrow \textbf{\nabla} \textbf{X} \textbf{\mathcal{P}}$

号機番号	アドレス	レスポンス	説明
	RWr0	0	検出位置(下位)
0	RWr1	0	検出位置(上位)
0	RWr2	0%	位置No.0(下位)
	RWr3	0%	位置No.0(上位)
	RWr4	0	検出位置(下位)
1	RWr5	0	検出位置(上位)
I	RWr6	0%	位置No.0(下位)
	RWr7	0%	位置No.0(上位)

※ 初期値は[0]です。

引き続き検出位置のモニタと、位置No.0のデータの読み出しを行なうので、RD-REQをONのままにしておいてください。

STEP 4 位置決め運転を実行します

位置決め運転の運転データをセットします。
 位置No.0の位置データ[5000 (1388h)]をリモートレジスタにセットしてください。

マスタ \rightarrow NETC02-CC

号機番号	アドレス	入力値	説明
	RVVw100	0	未使用
0	RVVw101	0	未使用
0	RWw102	5000	位置No.0(下位)
	RWw103	(1388h)	位置No.0(上位)
	RVVw104	0	未使用
1 .	RWw105	0	未使用
I	RWw106	5000	位置No.0(下位)
	RWw107	(1388h)	位置No.0(上位)

- 2. 手順1でセットしたデータをドライバに書き込み、レスポンスを確認します。
 - 1) WR-REQをONにします。

号機番号	リモート1/0	アドレス	入力値	説明
0		BV1000	1	またいでは
1	VVR-REQU	K11090	1	音さ込の開始

2) 正常に処理されると、WR-DATのレスポンスが自動で「1」に変わります。

$\textbf{NETC02-CC} \rightarrow \textbf{\nabla} \textbf{Z} \textbf{\mathcal{P}}$

号機番号	リモート1/0	アドレス	レスポンス	説明
0		PV1000	1	まきひょう
1	VVR-DATU	KX1090	' '	音さ込め中

3) STEP3でRD-REQをONのままにしているので、位置No.0のデータをセットすると同時に、書き込んだ値が表示されます。

位置No.0のデータがセットした値と一致していることを確認してください。

$\textbf{NETC02-CC} \rightarrow \textbf{\nabla} \textbf{X} \textbf{\mathcal{P}}$

号機番号	アドレス	レスポンス	説明
	RWr0	0	検出位置(下位)
0	RWr1	0	検出位置(上位)
U	RWr2	5000	位置No.0(下位)
	RWr3	(1388h)	位置No.0(上位)
	RWr4	0	検出位置(下位)
1	RWr5	0	検出位置(上位)
I	RWr6	5000	位置No.0(下位)
	RWr7	(1388h)	位置No.0(上位)

3. 位置決め運転を開始します。

STARTをONにしてください。

マスタ \rightarrow NETC02-CC

号機番号	リモートI/O	アドレス	入力値	説明
0	CTADT	RY1003	1	位罢沈め運転問始
1	START	RY1013	1	凹直次の連邦開始

⁽memo) STEP3でRD-REQをONのままにしているので、位置決め運転開始と同時に、検出位置のモニタが始まります。

$\textbf{NETC02-CC} \rightarrow \textbf{\nabla} \textbf{Z} \textbf{\mathcal{P}}$

号機番号	リモート1/0	アドレス	入力値	説明
0	START	RY1003	0	
1		RY1013	0	START/20FF

5. 位置決め運転が終了したら、検出位置が「5000(1388h)」になっていることを確認します。

$\textbf{NETC02-CC} \rightarrow \textbf{RZP}$

号機番号	アドレス	レスポンス	説明
	RWr0	5000	検出位置(下位)
0	RWr1	(1388h)	検出位置(上位)
0	RWr2	5000	位置No.0(下位)
	RWr3	(1388h)	位置No.0(上位)
	RWr4	5000	検出位置(下位)
1	RWr5	(1388h)	検出位置(上位)
	RWr6	5000	位置No.0(下位)
	RWr7	(1388h)	位置No.0(上位)

引き続き位置No.0のデータを書き込むので、WR-REQをONのままにしておいてください。

位置決め運転が起動したら、STARTをOFFにします。
 STARTをOFFにしても、指令位置まで動き続けます。

STEP 5 運転データNo.0の位置データを変更します

位置No.0の位置データ「3000 (BB8h)」をリモートレジスタにセットしてください。
 STEP4でWR-REQをONのままにしているので、位置No.0のデータをセットすると同時に、データがドライバに書き込まれます。

マスタ \rightarrow NETC02-CC

号機番号	アドレス	入力値	説明
0	RVVw100	0	未使用
	RVVw101	0	未使用
	RWw102	3000	位置No.0(下位)
	RWw103	(BB8h)	位置No.0(上位)
1	RWw104	0	未使用
	RWw105	0	未使用
	RWw106	3000	位置No.0(下位)
	RWw107	(BB8h)	位置No.0(上位)

また、STEP3でRD-REQをONのままにしているので、位置No.0のデータをセットすると同時に、書き込んだ値が読み 出されます。

手順1でセットした値と一致していることを確認してください。

$\textbf{NETC02-CC} \rightarrow \textbf{ZZP}$

号機番号	アドレス	レスポンス	説明
	RWr0	5000	検出位置(下位)
0	RWr1	(1388h)	検出位置(上位)
0	RWr2	3000 (BB8h)	位置No.0(下位)
	RWr3		位置No.0(上位)
1	RWr4	5000	検出位置(下位)
	RWr5	(1388h)	検出位置(上位)
	RWr6	3000	位置No.0(下位)
	RWr7	(BB8h)	位置No.0(上位)

2. WR-REQとRD-REQをOFFにします。

$\forall \mathcal{A} \mathcal{P} \rightarrow \mathsf{NETC02-CC}$

号機番号	リモート1/0	アドレス	入力値	説明
0		RY1090	0	書き込み終了
1	VVK-KEQU			
0		BV1002	0	きュート・エークタフ
1	KD-KEQU	KT1092	0) 読み出し・モータ終了

3 EtherCAT通信で制御する場合

3-1 ガイダンス

はじめてお使いになるときはここをご覧になり、運転方法のながれについてご理解ください。

※ 当社でご用意しています。別途お買い求めください。

※1 当社でご用意しています。モーターケーブルの長さが足りないときに、別途お買い求めください。

※2 当社でご用意しています。別途お買い求めください。

7 FAネットワーク制御

STEP 2 NETC01-ECTのパラメータとスイッチを設定します

NETC01-ECTのパラメータとスイッチを設定してください。

- NETC01-ECTの電源を投入します。
 この時点ではパラメータとスイッチの設定を行なっていないため、ALARM LEDが点滅します。
 次の手順に進み、パラメータとスイッチの設定を行なってください。
- MEXE02を起動し、パラメータを設定します。
 INETC EtherCAT対応Jを選択してください。

製品選択		×
႔ 電動アクチュエータは取り付	けられているモーターのシリーズを選択してください。	
シリーズ名一覧 AR ARL AZ BLE BX2	品名(モード)一覧 NETE CENECAT対応 NETE MecAT対応 NETC MECHATROLINKII対応 NETC MECHATROLINKII対応	
PKA RK2	ユーザー単位系設定 支援ウィザード モーター・アクチュエータ	
	**>\t2\l	
	根種検索	

MEXE02で、NETC01-ECTに接続したドライバの「接続(号機番号)」パラメータを「有効」に設定します。
 「接続(号機番号0)」パラメータは初期値が「有効」になっています。接続するドライバが1台でドライバの号機番号が「0」のときは、「接続(号機番号)」パラメータの設定は不要です。

MEXE02 ツリー表示	パラメータ名	内容	初期値
	接続(号機番号0)	NETC01-ECTに接続したドライバの号機番号を	有効
システム	接続(号機番号1) ~ 接続(号機番号15)	有効にします。 【設定範囲】 無効 有効	無効

NETC01-ECTのスイッチを設定します。
 次の内容を設定してください。設定すると、図のようになります。

設定内容	スイッチ	出荷時設定
RS-485通信速度:625 kbps	SW1を[7]	7
EtherCATノードアドレス:1	ECAT IDの×10を[0]、×1を[1]	1(×10:0、×1:1)

5. **NETC01-ECT**の電源を切ります。

・ 複数のドライバを接続したときは、ドライバの数だけ「接続(号機番号)」パラメータを設定してください。
 ・ 変更した「接続(号機番号)」パラメータの反映には、電源の再投入が必要です。

• SW1は常時[7]に設定してください。[8]以上の目盛りを設定すると、電源投入時に通信用スイッチ設 定異常のアラームが発生します。また、[0] ~[6]は使用できませんので、設定しないでください。(ア ラームは発生しません。)

STEP 3 ドライバのスイッチを設定します

ドライバのスイッチで、次の内容を設定してください。プロトコルは「OFF」(ネットワークコンバータ)を選択してください。 設定すると、図のようになります。

	AC電源ドライバ	DC電源ドライバ
プロトコル:ネットワークコンバータ	SW4のNo.2を「OFF」	SW3のNo.2を[OFF]
号機番号:0	SW4のNo.1を「OFF」、IDを「0」	SW3のNo.1を[OFF]、SW1を[0]
終端抵抗:ON	TERM.のNo.1とNo.2を「ON」	SW3のNo.4を[ON]
通信速度:625,000 bps	SW2を[7]	SW2を[7]

(memo) 号機番号は、NETC01-ECTの「接続(号機番号)」パラメータが「有効」になっているものを設定してください。

● ドライバ正面

● ドライバ底面

DC電源ドライバ

- ドライバ正面
- | 7 FAネットワーク制御

● ドライバ上面

LSW3	CN6 CN7	

		No.1:OFF	
ιh		No.2:OFF	
ž		No.3:OFF	
OL	1234	No.4:ON	

- ドライバのC-DAT/C-ERR(赤)が点灯、またはNETC01-ECTのC-ERR(赤)が点灯しているとき:RS-485通信の通信速度や 号機番号を確認してください。
- NETC01-ECTのERR(赤)が点滅しているとき:EtherCAT通信エラーが発生しています。エラーの内容を確認してください。

STEP 5 EtherCAT通信のリモートI/Oで連続運転を実行します

EtherCAT通信のリモートI/Oで、号機番号0のFWDをONにします。運転データNo.0の初期速度1,000 Hzで連続運転が始まります。

表に、リモートI/Oの初期値を示します。

● マスタ→NETC01-ECT

CoE Index	Sub- index	名称	型	アクセス				内容				
	0	-	U8	R				Sub-inde	ex数:2			
					Bit[7]	Bit[6]	Bit[5]	Bit[4]	Bit[3]	Bit[2]	Bit[1]	Bit[0]
	1	I/O Command (lower)	U8	RVV	NET- IN7	NET- IN6	NET- IN5	NET- IN4	NET- IN3	NET- IN2	NET- IN1	NET- IN0
2600h		(lower)			未使用	FREE	STOP	HOME	START	M2	M1	MO
		I/O Command	U8	RW	Bit[7]	Bit[6]	Bit[5]	Bit[4]	Bit[3]	Bit[2]	Bit[1]	Bit[0]
	2				NET- IN15	NET- IN14	NET- IN13	NET- IN12	NET- IN11	NET- IN10	NET- IN9	NET- IN8
		(RVS	FWD	-JOG	+JOG	SSTART	MS2	MS1	MS0

STEP 6 運転できましたか?

いかがでしたか。うまく運転できたでしょうか。運転できないときは、次の点を確認してください。

- ドライバまたはNETC01-ECTにアラームが発生していませんか?
- 電源、モーター、RS-485通信ケーブルは確実に接続されていますか?
- プロトコル、号機番号、通信速度、および終端抵抗は正しく設定されていますか?
- NETC01-ECTの「接続」パラメータは正しく設定されていますか?
- NETC01-ECTのC-DAT LEDが消灯していませんか?またはC-ERR LEDが赤色に点灯していませんか? (RS-485通信エラーが発生しています。)
- NETC01-ECTのERR LEDが赤色に点滅していませんか?(EtherCAT通信エラーが発生しています。)
- NETC01-ECTのL/A LEDが消灯、または緑色に点滅していませんか?(EtherCAT通信エラーが発生しています。)
- モーターは励磁していますか、または励磁方法の設定は合っていますか?
- ドライバのパラメータは正しく設定されていますか?
- ドライバに運転停止入力が入力されていませんか?

3-2 基本的な操作手順

```
基本的な操作の手順として、位置決め運転とモニタ機能の方法を説明します。
ここでは例として、NETC01-ECTを使ってEtherCAT通信で制御する手順を紹介します。
```

■ 位置決め運転

● 設定例

- ドライバの号機番号(スレーブアドレス):0
- 運転データNo.1
- 位置(移動量):5,000 step

● 操作手順

次のリモートレジスタを送信して、運転データNo.1の位置(移動量)を5,000 stepに設定します。
 TRIGをONにすると、リモートレジスタに設定したデータが書き込まれます。

【NETC01-ECTのリモートレジスタコマンド】

CoE Index	Sub- Index	名称	型	アクセス				内	容			
	0	-	U8	R				Sub-inc	lex数:4			
	1	Axis	U8	RW				予約(オ	F使用)			
2800h	2	Command	U16	RW		命令コード:1201h(運転データNo.1の位置)						
(0号機)	3	Data	INT32	RW			データ	:5000(移動	動量:5,000) step)		
	1	TDIC	110	DIA	Bit[7]	Bit[6]	Bit[5]	Bit[4]	Bit[3]	Bit[2]	Bit[1]	Bit[0]
	4		00	r.vv	-	-	-	-	_	-	-	TRIG

2. 書き込みが正常に終了すると、TRIG_RがONになります。このときSTATUSはOFFのままです。 書き込み後はTRIGをOFFに戻してください。

【NETC01-ECTのリモートレジスタレスポンス】

CoE Index	Sub- index	名称	型	アクセス					内容									
	0	-	U8	R				Sub-i	ndex数:4									
	1	Axis	U8	R				予約	(未使用)									
2000	2	Command	U16	R				命令コー	ド応答:1201h									
2900h (0号機)	3	Data	INT32	R		データ応答:5000												
		Data					11132	111152	111152		Bit[7]	Bit[6]	Bit[5]	Bit[4]	Bit[3]	Bit[2]	Bit[1]	Bit[0]
	4	Status	U8	R	_	_	_	_	Command Error	Axis Error	STATUS	TRIG_R						

(memo) • TRIGをONにしたら、必ずOFFに戻してください。

TRIGでデータを書き込むと、RAMに保存されます。データをNVメモリに保存する場合は、メンテナンスコマンドの「NVメモリー括書き込み(3E85h)」を実行してください。

3. 次のリモートI/Oを送信して、M0とSTARTをON(9h)にします。

位置決め運転が始まります。モーターが5,000 step回転すれば、位置決め運転は成功です。

【NETC01-ECTのリモートI/O】

CoE Index	Sub- Index	名称	型	アクセス				内	容			
	0	-	U8	R				Sub-inc	lex数:2	-		
		I/O			Bit[7]	Bit[6]	Bit[5]	Bit[4]	Bit[3]	Bit[2]	Bit[1]	Bit[0]
2600h (0号機)	1	Command (lower)	U8	RW	NET- IN7	NET- IN6	NET- IN5	NET- IN4	NET- IN3	NET- IN2	NET- IN1	NET- IN0
		2 I/O Command U8 (upper)	I/O		Bit[7]	Bit[6]	Bit[5]	Bit[4]	Bit[3]	Bit[2]	Bit[1]	Bit[0]
	2		RW	NET- IN15	NET- IN14	NET- IN13	NET- IN12	NET- IN11	NET- IN10	NET- IN9	NET- IN8	

【ARシリーズのNET-IN(初期値)】

CoE Index	Sub- Index	名称	型	アクセス				内	容			
	0	-	U8	R				Sub-inc	dex数:2			
2600h (0=櫟)	1	I/O Command (lower)	U8	RW	NET- IN7 未使用	NET- IN6 FREE	NET- IN5 STOP	NET- IN4 HOME	NET- IN3 START	NET- IN2 M2	NET- IN1 M1	NET- INO MO
(0'5'1%)	2	I/O Command (upper)	U8	RW	NET- IN15 RVS	NET- IN14 FWD	NET- IN13 -JOG	NET- IN12 +JOG	NET- IN11 SSTART	NET- IN10 MS2	NET- IN9 MS1	NET- IN8 MS0

■ モニタ機能

● 設定例

- ドライバの号機番号(スレーブアドレス):0
- 運転データNo.0(速度を1,000[Hz]に設定済み)
- モニタ項目:検出速度[r/min]
- 接続ドライバ:ARシリーズ

● 操作手順

次のリモートモニタコマンドを送信して、TRIGをONにします。
 号機番号0の検出速度[r/min]のモニタが始まります。

【NETC01-ECTのリモートモニタコマンド】

CoE Index	Sub- Index	名称	型	アクセス				内	容			
	0	-	U8	R				Sub-inc	lex数:4			
	1	Axis	U8	RW				号機翻	昏号:0			
2A00h	2	Command	U16	RW		命	令コード:	2067h(検ヒ	出速度[r/m	iin]のモニタ	פ)	
(0号機)	3	Data	INT32	RW				予約(ヲ	卡使用)			
	1	TRIC	119	D\4/	Bit[7]	Bit[6]	Bit[5]	Bit[4]	Bit[3]	Bit[2]	Bit[1]	Bit[0]
	4	TRIG	08	KVV.	-	-	-	-	-	-	-	TRIG

次のリモートI/Oを送信して、号機番号0のFWD(40h)をONにします。 FWD方向の連続運転が始まります。

[NETC01-ECTのリモートI/O]

CoE Index	Sub- Index	名称	型	アクセス				内	容			
	0	-	U8	R				Sub-inc	lex数:2			
		I/O			Bit[7]	Bit[6]	Bit[5]	Bit[4]	Bit[3]	Bit[2]	Bit[1]	Bit[0]
2600h (0号機) _	1	Command (lower)	U8	RW	NET- IN7	NET- IN6	NET- IN5	NET- IN4	NET- IN3	NET- IN2	NET- IN1	NET- IN0
		I/O	/O nmand U8 oper)	RW	Bit[7]	Bit[6]	Bit[5]	Bit[4]	Bit[3]	Bit[2]	Bit[1]	Bit[0]
	2	Command (upper)			NET- IN15	NET- IN14	NET- IN13	NET- IN12	NET- IN11	NET- IN10	NET- IN9	NET- IN8

【ARシリーズのNET-IN(初期値)】

CoE Index	Sub- Index	名称	型	アクセス				内	容			
	0	-	U8	R				Sub-inc	dex数:2			
2600h	1	I/O Command	U8	RW	NET- IN7	NET- IN6	NET- IN5	NET- IN4	NET- IN3	NET- IN2	NET- IN1	NET- IN0
2600h (0号機)		(lower)			未使用	FREE	STOP	HOME	START	M2	M1	MO
		l/O 2 Command) nand U8		NET-							
	2			RW	IN15	IN14	IN13	IN12	IN11	IN10	IN9	IN8
		(upper)			RVS	FWD	-JOG	+JOG	SSTART	MS2	MS1	MS0

リモートモニタレスポンスで号機番号0のデータがモニタできていれば、通信成功です。
 正常にモニタしているときはTRIG_RがONになります。このとき、STATUSはOFFのままです。

(memo)リモートモニタコマンドのTRIGをONにしている間は、モニタを更新し続けます。

【NETC01-ECTのリモートモニタレスポンス】

CoE Index	Sub- Index	名称	型	アクセス					内容																
	0	-	U8	R				Sub-i	ndex数:4																
	1	Axis	U8	R				号機都	昏后忘答:0																
2000	2	Command	U16	R				命令コー	ド応答:2067h																
2B00h (0号櫟)	3	Data	INT32	R		モニタデータ:1000																			
		Data	111132		111152		111152	111132	111132	111132	1141.52	111132	111132	111132	111132	111132		Bit[7]	Bit[6]	Bit[5]	Bit[4]	Bit[3]	Bit[2]	Bit[1]	Bit[0]
	4	Status	U8	R	-	_	-	-	Command Error	Axis Error	STATUS	TRIG_R													

4. モニタを終了するときはTRIGをOFFに戻します。

4 MECHATROLINK通信で制御する場合

4-1 ガイダンス

はじめてお使いになるときはここをご覧になり、運転方法のながれについてご理解ください。

ここでは、ネットワークコンバータ**NETC01-M2**と組み合わせて、MECHATROLINK-II通信で制御する方法について説明します。

モーターを動かすときは周囲の状況を確認し、安全を確保してから運転してください。

- ※1 当社でご用意しています。別途お買い求めください。
- ※2 当社でご用意しています。モーターケーブルの長さが足りないときに、別途お買い求めください。

STEP 2 NETC01-M2のパラメータとスイッチを設定します

NETC01-M2のパラメータとスイッチを設定してください。

- 1. NETC01-M2の電源を投入します。
- MEXE02を起動し、パラメータを設定します。
 [NETC MECHATROLINK-II対応]を選択してください。

ĺ	製品選択		83
	႔ 電動アクチュエータは取り付	けられているモーターのシリーズを選択してください。	
	シリーズ名一覧 AR ARL	品名(モード)一覧 NETC CL-Unk対応 NETC BherCAT対応	
	AZ BLE BX2 CRK PHL2 NETC	NETC MECHATROLINK-I的な NETC MECHATROLINK-I的な コーザー単位系設定 支援ウィザード	
	NIX PKA RK2	モーター・アクチュエータ キャンセル	
		機種検索	

3. MEXE02で、NETC01-M2に接続したドライバの「通信(号機番号)」パラメータを「有効」に設定します。

愛 MEXE02 - [新規2*]					
👻 ファイル(F) 編集(E) 移動(M) 表示(V) 通信(C) ツール(T) ウィンドウ(W) /				
🚹 📂 🔚 😓 🖻 🖉 । 🤊 🥐 🔛 💥 🖏 🖓 🖓 🖓 🖓					
□- NETC MECHATROLINK-II対応	୬ステム				
	通信(号機番号0) 有効				
□ アフリケーション	通信(号機番号1) 無効				
	通信(号機番号2) 無効				
	通信(号機番号3) 無効				
	通信(号機番号4) 無効				
	通信(号機番号5) 無効				
	通信(号機番号6) 無効				

MEXE02ッリー表示	パラメータ名	内容	初期値
システム	通信(号機番号0) ~ 通信(号機番号15)	ネットワークコンバータに接続したドライバの号機 番号を有効にします。 【設定範囲】 無効 有効	無効

・ネットワークコンバータのパラメータはMECHATROLINK通信では設定できないため、MEXE02で設定してください。

- 複数のドライバを接続したときは、ドライバの数だけ通信パラメータを設定してください。
- 「通信(号機番号)」パラメータは、電源の再投入後に有効になります。
- 4. NETC01-M2のスイッチを設定します。
 - 設定方法は、NETC01-M2ユーザーズマニュアルをご覧ください。
 - ・MECHATROLINK-II局アドレス
 - ・RS-485通信速度
 - ・リモートI/O占有サイズ
 - ・伝送バイト数
- 5. NETC01-M2の電源を切ります。

7 FAネットワーク制御

STEP 3 ドライバのスイッチを設定します

ドライバのスイッチで、次の内容を設定してください。プロトコルは「OFF」(ネットワークコンバータ)を選択してください。 設定すると、図のようになります。

設定内容	AC電源ドライバ	DC電源ドライバ
プロトコル:ネットワークコンバータ	SW4のNo.2を「OFF」	SW3のNo.2を[OFF]
号機番号:0	SW4のNo.1を「OFF」、IDを「0」	SW1を[0]、SW3のNo.1を[OFF]
終端抵抗:ON	TERMのNo.1とNo.2を[ON]	SW3のNo.4を「ON」
通信速度:625,000 bps	SW2を[7]	SW2を[7]

●ドライバ正面

● ドライバ底面

DC電源ドライバ

● ドライバ正面

ドライハのC-DAT/C-ERR LED(赤)またはNETC01-M2のC-ERR(赤)が点灯しているとき RS-485通信の通信速度や号機番号を確認してください。
 NETC01-M2のERR(赤)が点灯しているとき:

MECHATROLINK通信エラーが発生しています。エラーの内容を確認してください。

STEP 5 MECHATROLINK通信のリモートI/Oで連続運転を実行します

MECHATROLINK通信のI/Oコマンドで、号機番号0のFWDをONにします。連続運転が始まります。 表に、I/Oコマンドの初期値を示します。

Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
NET-IN15	NET-IN14	NET-IN13	NET-IN12	NET-IN11	NET-IN10	NET-IN9	NET-IN8
[RVS]	[FWD]	[-JOG]	[+JOG]	[SSTART]	[MS2]	[MS1]	[MS0]
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
NET-IN7	NET-IN6	NET-IN5	NET-IN4	NET-IN3	NET-IN2	NET-IN1	NET-INO
[未使用]	[FREE]	[STOP]	[HOME]	[START]	[M2]	[M1]	[M0]

STEP 6 運転できましたか?

いかがでしたか。うまく運転できたでしょうか。運転できないときは、次の点を確認してください。

- ドライバまたはNETC01-M2にアラームが発生していませんか?
- 電源、モーター、RS-485通信ケーブルは確実に接続されていますか?
- プロトコル、号機番号、終端抵抗は正しく設定されていますか?
- NETC01-M2の「通信(号機番号)」パラメータは正しく設定されていますか?
- NETC01-M2のC-DAT/C-ERR LEDが消灯していませんか?または赤色に点灯していませんか?(通信エラーが発生しています。)
- 運転データは正しく設定されていますか?
- モーターは励磁していますか、または励磁方法の設定は合っていますか?
- ドライバのパラメータは正しく設定されていますか?
- ドライバに運転停止入力が入力されていませんか?

4-2 基本的な操作手順

基本的な操作の手順として、位置決め運転とモニタ機能の方法を説明します。 ここでは例として、NETC01-M2を使ってMECHATROLINK-II通信で制御する手順を紹介します。

位置決め運転

例として、次の位置決め運転を実行する方法を説明します。

設定例

- 号機番号(スレーブアドレス):0
- 運転データNo.1
- 位置(移動量):5,000 step

操作手順

 次のリモートレジスタを送信して、運転データNo.1の位置(移動量)を5,000 steplc設定します。 リモートレジスタに設定したデータが書き込まれます。 書き込みが終了すると、TRIG_RがONになります。

Byte	パート分類	種別	コマンド		入力例	内容
23			しいジフタ早継来早		0	
24					0	与版田与し
25					1201h + 4000h=	運転データNo.1の位置
26	二"一万立"	リモート	2011-1-רבים	\rightarrow	5201h ※	に書き込む値+TRIG
27		レジスタ				
28					1200h	位罢(按劫导) E 000 ctop
29			DATA		150011	位置(沙動重) 5,000 5166
30						

NETC01-M2のリモートレジスタ

※ 303ページ[6-4 運転データ]の一覧表から、「位置No.1」の命令コード (WRITE) は1201hであることが分かります。MECHATROLINKでは、命令コードとコマンド実行要求 (TRIG) を同一のコマンドで書き込むため、TRIGのコード (4000h) を加えた [5201h]を書き込んでください。

2. TRIG_RがONになったことを確認してから、次のリモートレジスタを送信して、TRIGをOFFに戻します。

NETC01-M2のリモートレジスタ

Byte	パート分類	種別	コマンド	入力例	内容
25	二" 石河	リモート		0	エローたへににする
26	リータ部	レジスタ	2017 בבתים	0	TRIG&OFFIC 9 8

(memo) • TRIGをONにしたら、必ずOFFに戻してください。

• コマンド実行要求TRIGでデータを書き込むと、RAMに保存されます。データをNVメモリに保存する 場合は、メンテナンスコマンドの「NVメモリー括書き込み」を実行してください。

3. 次のリモートI/Oを送信して、号機番号0のM0とSTARTをONにします。 位置決め運転が始まります。モーターが5,000 step回転すれば、通信は成功です。

NETC01-M2のリモートI/O

Byte	パート分類	種別	コマンド	入力例	内容
7	二" 刁亚		号機番号[0]	Oh	MOとSTARTをON
8	ノータ部	94-FI/0	リモートI/O入力	9n	にする

リモートI/O入力の通信フォーマット(初期値)

Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
NET-IN15 [RVS]	NET-IN14 [FWD]	NET-IN13 [-JOG]	NET-IN12 [+JOG]	NET-IN11 [SSTART]	NET-IN10 [MS2]	NET-IN9 [MS1]	NET-IN8 [MS0]
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
NET-IN7	NET-IN6	NET-IN5	NET-IN4	NET-IN3	NET-IN2	NET-IN1	NET-IN0
[未使用]	[FREE]	[STOP]	[HOME]	[START]	[M2]	[M1]	[M0]

■ モニタ機能

● 設定例

- 号機番号(スレーブアドレス):0
- モニタ項目:検出速度[r/min]

● 操作手順

次のリモートレジスタを送信して、号機番号0の検出速度をモニタします。
 号機番号0の検出速度のモニタが始まります。

NETC01-M2のリモートレジスタ

Byte	パート分類	種別	コマンド	入力例	内容
23			しいック早継来早	0	陸米 - 0
24					与版田与U
25				2067h + 4000h=	検出速度のモニタ+
26	一"一口"	リモート		6067h ※	TRIG
27		レジスタ			
28					
29			DATA		
30					

- ※ 301ページ[6-3 モニタコマンド]の一覧表から、「検出速度モニタ」の命令コード (WRITE) は2067hであることが分かります。MECHATROLINKでは、命令コードとコマンド実行要求 (TRIG) を同一のコマンドで書き込むため、TRIGのコード (4000h) を加えた [6067h] を書き込んでください。
- 次のリモートI/Oを送信して、号機番号0のFWDをONにします。
 FWD方向の連続運転が始まります。

NETC01-M2のリモートI/O

Byte	パート分類	種別	コマンド	入力例	内容
7	二" 石河		号機番号[0]	4000h	ロルロなついにする
8	ノータ部	92-100	リモートI/O入力	400011	FVU CONC 9 O

リモートI/O入力の通信フォーマット(初期値)

Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
NET-IN15	NET-IN14	NET-IN13	NET-IN12	NET-IN11	NET-IN10	NET-IN9	NET-IN8
[RVS]	[FWD]	[-JOG]	[+JOG]	[SSTART]	[MS2]	[MS1]	[MS0]
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
NET-IN7	NET-IN6	NET-IN5	NET-IN4	NET-IN3	NET-IN2	NET-IN1	NET-INO
[未使用]	[FREE]	[STOP]	[HOME]	[START]	[M2]	[M1]	[M0]

TRIGがONの間、検出速度のモニタを続けます。

リモートレジスタのレスポンス領域には、読み出された値が反映されます。

Byte	パート分類	種別	コマンド		入力例	内容
23			レジスタ号機番号		0	日極来日0
24			応答		0	与成曲与0
25			命令コード応答+		(0(7h	
26	デーク部	リモート	TRIG応答+STATUS	\rightarrow	606711	快出迷度のモニタ
27		レジスタ				
28					003Ch	言み出した値(例:60 r/min)
29			DATA応合		003CII	読み出した値(1例・601/11111)
30						

NETC01-M2のリモートレジスタ

3. モニタを終了するときは、次のリモートレジスタを送信して、TRIGをOFFに戻します。

NETC01-M2のリモートレジスタ

Byte	パート分類	種別	コマンド	入力例	内容
25	二" 石河	リモート		0	
26	リータ部	レジスタ	2011-1-רבים	0	TRIG&OFFIC 9 8

MECHATROLINK-II通信においては、ネットワークコンバータの性能上、1台のドライバに対して1種類のデータしかモニタできません。複数軸のドライバをモニタするときは、号機番号を変更してからモニタを実行してください。

4-3 NETC01-M2のフィールドマップ

「DATA_RWA] コマンド(50h) で、リモートI/Oデータの更新(非同期)を行ないます。 リモートI/O占有サイズが16ビットモード、伝送バイト数が32バイト(出荷時設定)の場合、I/Oフィールドマップは表のよ うになります。その他のI/Oフィールドマップは、**NETC01-M2**ユーザーズマニュアルをご覧ください。

Byte	パート分類	種別	コマンド	レスポンス
1		-	DATA_RWA (50h)	DATA_RWA (50h)
2		-		ALARM
3		-	OPTION	
4		-		STATOS
5		-	予約	佐結フテータフ
6			השגר	ゴ女小にヘノーノス
7				2機番号[0]リモート1/0出力
8				
9	_		=	
10				
11			号機番号[2]リモート1/0入力	号機番号[2]リモート /〇出力
12			3#2E 31232 1 07 03	5 mail 5 1 2 3 2 4 m o E 5 5
13			号機番号[3]リモート /〇入力	 号機番号[3]リモートI/O出力
14		リモート1/0		
15			号機番号「4」リモートI/O入力	 号機番号[4]リモートI/O出力
16				
17			号機番号[5]リモートI/O入力	号機番号[5]リモートI/O出力
18	データ部			
19			号機番号[6]リモートI/O入力	号機番号[6]リモートI/O出力
20				
21			号機番号[7]リモートI/O入力	号機番号[7]リモートI/O出力
22				
23			レジスタ号機番号	レジスタ号機番号応答
24	-			
25			命令コード+TRIG	前令コート心合+1RIG心合 +STATUS
20		リモートレジスタ		
28				
29			DATA	DATA応答
30				
31		-	予約	予約

4-4 NETC01-M3のフィールドマップ

[DATA_RWA] コマンド (20h) で、リモートI/Oデータの更新 (非同期) を行ないます。 リモートI/O占有サイズが16ビットモード、伝送バイト数が32バイト (出荷時設定) の場合、I/Oフィールドマップは表のよ うになります。その他のI/Oフィールドマップは、**NETC01-M3**ユーザーズマニュアルをご覧ください。

Byte	種別	コマンド	レスポンス	
0	-	DATA_RWA(20h)	DATA_RWA (20h)	
1	-	WDT	RWDT	
2	-		CMD STAT	
3	_			
4	-	予約	接続ステータス	
5	-			
6 7		号機番号[0]リモートI/O入力	号機番号[0]リモートI/O出力	
8				
9			ラ機番号 1]リモートI/O出力	
10		号機番号[2]リモートI/O入力	号機番号[2]リモートI/O出力	
11				
12		号機番号[3]リモートI/O入力	号機番号[3]リモートI/O出力	
14	リモート1/0			
15		号機番号 4]リモートI/O入力	号機番号14」リモート1/〇出力	
16			号機番号[5]リモートI/O出力	
17				
18 19		号機番号[6]リモートI/O入力	号機番号[6]リモートI/O出力	
20				
21		号機番号[7]リモートI/O入力	号機番号[7]リモートI/O出力	
22		しジスタ是櫟番号	レジスタ号機番号応答	
23				
24		命令コード+TRIG	命令コード応答+TRIG応答+STATUS	
25	リモートレジスタ			
26				
2/		DATA	DATA応答	
28				
30	_			
31	_	予約	予約	
0.				

4-5 通信フォーマット

ドライバとNETC01-M2(NETC01-M3)との通信フォーマットを示します。

■ リモートI/O入力

リモートI/Oの詳細**♪**297ページ

● 8軸接続モードの場合[16 bitモード]

[]内は初期値です。

Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
NET-IN15	NET-IN14	NET-IN13	NET-IN12	NET-IN11	NET-IN10	NET-IN9	NET-IN8
[RVS]	[FWD]	[-JOG]	[+JOG]	[SSTART]	[MS2]	[MS1]	[MS0]
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O
NET-IN7	NET-IN6	NET-IN5	NET-IN4	NET-IN3	NET-IN2	NET-IN1	NET-INO
[未使用]	[FREE]	[STOP]	[HOME]	[START]	[M2]	[M1]	[M0]

● 16軸接続モードの場合[8 bitモード]

[]内は初期値です。

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
NET-IN7 [大 使田]	NET-IN6	NET-IN5	NET-IN4	NET-IN3 [start]	NET-IN2	NET-IN1	NET-IN0
						[////]	[[11]0]

リモートI/O出力

リモートI/Oの詳細🗘 297ページ

● 8軸接続モードの場合[16 bitモード]

[]内は初期値です。

Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
NET-OUT15	NET-OUT14	NET-OUT13	NET-OUT12	NET-OUT11	NET-OUT10	NET-OUT9	NET-OUT8
[TLC]	[END]	[MOVE]	[TIM]	[AREA3]	[AREA2]	[AREA1]	[S-BSY]
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
NET-OUT7	NET-OUT6	NET-OUT5	NET-OUT4	NET-OUT3	NET-OUT2	NET-OUT1	NET-OUT0
[ALM]	[WNG]	[READY]	[HOME-P]	[START_R]	[M2_R]	[M1_R]	[M0_R]

● 16軸接続モードの場合[8 bitモード]

[]内は初期値です。

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
NET-OUT7	NET-OUT6	NET-OUT5	NET-OUT4	NET-OUT3	NET-OUT2	NET-OUT1	NET-OUTO
	[WNG]	[READY]	[HOME-P]	[START_R]	[<i>I</i> M2_R]		[/MO_R]

● コマンド[NETC01-M2(NETC01-M3)→ドライバ]

Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8		
-	TRIG			命令]	コード				
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
			命令]	コード					
	DATA								

説明

名称	内容	設定範囲
TRIG	命令コードを実行するハンドシェイク用トリガです。 TRIGが0から1になると、命令コードとDATAが実行されます。	0:動作なし 1:実行
命令コード	パラメータの読み出しと書き込み、モニタ、およびメンテナンスの命 令コードを指定します。	_
DATA	ドライバに書き込むデータです(リトルエンディアン)。	-

■ リモートレジスタ出力

● レスポンス[ドライバ→NETC01-M2(NETC01-M3)]

Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	
STATUS	TRIG_R		命令コード					
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
			命令]	コード				

DATA	_R

● 説明

名称	内容	設定範囲
STATUS	命令コードを実行した結果を示します。	0:正常 1:異常
TRIG_R	命令コードの実行完了を表わすハンドシェイク用トリガです。 命令コードの実行が完了すると、TRIG_Rが0から1になります。	0:未処理 1:実行完了
命令コード	コマンドの命令コードを返信します。	-
DATA_R	ドライバから読み出されたデータです(リトルエンディアン)。	-

5 リモートI/Oの詳細

すべてのネットワークコンバータに共通です。

5-1 ドライバへの入力

パラメータで、次の入力信号をリモートI/OのNET-IN0~NET-IN15に割り付けることができます。 NET-IN0~NET-IN15の配置については、次表をご覧ください。[]内は初期値です。 パラメータについては、304ページ[6-5 ユーザーパラメータ]をご覧ください。

Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
NET-IN15	NET-IN14	NET-IN13	NET-IN12	NET-IN11	NET-IN10	NET-IN9	NET-IN8
[RVS]	[FWD]	[-JOG]	[+JOG]	[SSTART]	[MS2]	[MS1]	[MS0]
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
NET-IN7	NET-IN6	NET-IN5	NET-IN4	NET-IN3	NET-IN2	NET-IN1	NET-IN0
[未使用]	[FREE]	[STOP]	[HOME]	[START]	[M2]	[M1]	[M0]

信号名	機能	設定範囲
未使用	入力端子を使用しないときに設定します。	-
FWD	+方向の連続運転を実行します。	0:減速停止
RVS	- 方向の連続運転を実行します。	1:運転
HOME	原点復帰運転を実行します。	
START	位置決め運転を実行します。	
SSTART	順送り位置決め運転を実行します。	
+JOG	+方向のJOG運転を実行します。	1:動作開始
–JOG	- 方向のJOG運転を実行します。	
MS0~MS5	I/Oパラメータで設定した運転データNo.のダイレクト位置決め運転を実行します。	
FREE	モーターを無励磁にして、電磁ブレーキを解放します。	0:動作なし 1:モーター無励磁、電磁ブレーキ解放
C-ON	モーターの励磁/無励磁を切り替えます。	0:モーター無励磁 1:モーター励磁
STOP	モーターを停止させます。	0:動作なし 1:モーター停止
ALM-RST ※	現在発生しているアラームをリセットします。	0:動作なし 1:アラームリセット
P-PRESET ※	位置プリセットを実行します。	0:動作なし 1:プリセット実行
P-CLR*	絶対位置異常アラームをリセットします。	0:動作なし 1:アラームリセット
HMI	MEXE02やOPX-2Aの機能制限を解除します。	0:機能制限 1:機能制限解除
R0~R15	汎用信号 RS-485通信で制御するときに使用します。	0:OFF 1:ON
M0~M5	6つのビットのON/OFFを組み合わせて、運転データ No.を選択します。組み合わせの詳細は95ページ をご覧ください。	0:OFF 1:ON (運転データNo.は0~63まで選択可能)

※ 仕様変更前のドライバでは設定できません。詳細は8ページをご覧ください。

• 同じ入力信号を複数の入力端子に割り当てないでください。複数の入力端子に割り当てたときは、どれか入力があれば機能が実行されます。

- ALM-RST入力とP-CLR入力は、ON(1)からOFF(0)になったときに機能が実行されます。P-PREST入力は、 OFF(0)からON(1)になったときに機能が実行されます。
- C-ON入力とHMI入力は、入力端子に割り当てられなかったときは常時ON(1)になります。また、ダイレクトI/OとリモートI/Oの両方に割り当てたときは、両方ともON(1)にならないと機能しません。

5-2 ドライバからの出力

パラメータで、次の出力信号をリモートI/OのNET-OUT0~NET-OUT15に割り付けることができます。 NET-OUT0~NET-OUT15の配置については、次表をご覧ください。[]内は初期値です。 パラメータについては、304ページ[6-5 ユーザーパラメータ]をご覧ください。

Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
NET-OUT15	NET-OUT14	NET-OUT13	NET-OUT12	NET-OUT11	NET-OUT10	NET-OUT9	NET-OUT8
[TLC]	[END]	[MOVE]	[TIM]	[AREA3]	[AREA2]	[AREA1]	[S-BSY]
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
NET-OUT7	NET-OUT6	NET-OUT5	NET-OUT4	NET-OUT3	NET-OUT2	NET-OUT1	NET-OUT0
[ALM]	[WNG]	[READY]	[HOME-P]	[START_R]	[M2_R]	[M1_R]	[M0_R]

信号名	機能	読み出し内容
未使用	出力端子を使用しないときに設定します。	-
FWD_R	FWD入力に対する応答を出力します。	
RVS_R	RVS入力に対する応答を出力します。	
HOME_R	HOME入力に対する応答を出力します。	
START_R	START入力に対する応答を出力します。	
SSTART_R	SSTART入力に対する応答を出力します。	
+JOG_R	+JOG入力に対する応答を出力します。	
-JOG_R	-JOG入力に対する応答を出力します。	
MS0_R~MS5_R	MS0~MS5入力に対する応答を出力します。	
FREE_R	FREE入力に対する応答を出力します。	
C-ON_R	C-ON入力に対する応答を出力します。	
STOP_R	STOP入力に対する応答を出力します。	
R0~R15	汎用信号R0~R15の状態を出力します。	
M0_R~M5_R	M0~M5入力に対する応答を出力します。	
+LS_R	+LS入力に対する応答を出力します。	
-LS_R	-LS入力に対する応答を出力します。	
HOMES_R	HOMES入力に対する応答を出力します。	
SLIT_R	SLIT入力に対する応答を出力します。	_
ALM	アラーム発生時に出力されます。(A接点)	0:アラームなし 1:アラーム発生中
WNG	ワーニング発生時に出力されます。	0:ワーニングなし 1:ワーニング発生中
READY	ドライバの運転準備が完了すると出力されます。	0:運転不可 1:運転準備完了
MOVE	モーター運転中に出力されます。	0:モーター停止 1:モーター動作中
END	位置決め運転が完了すると出力されます。	0:モーター動作中 1:モーター動作完了
HOME-P	モーター位置が原点にあるときに出力されます。	0:原点以外 1:原点
TLC	負荷がモーターのトルク仕様の範囲外のときに出力されます。	0:トルク範囲内 1:トルク範囲外
TIM	モーター出力軸が7.2°回転するたびに出力されます。	0:OFF 1:ON
AREA1~AREA3	モーターがエリアの範囲内にあるときに出力されます。	0:エリア範囲外 1:エリア範囲内
S-BSY	ドライバが内部処理状態のときに出力されます。	0:OFF 1:ON
MPS %	ドライバの主電源を投入しているときに出力されます。	0:OFF 1:ON

※ AC電源ドライバのみ

6 命令コード一覧

すべてのネットワークコンバータに共通です。

6-1 グループ機能

ドライバにはグループ機能があります。グループ機能とは、複数のスレーブでグループを組み、そのグループに対して運転 指令を一斉に送信することです。

■ グループの構成

グループは親スレーブ1台と子スレーブで構成されます。

グループのアドレス

グループ送信を行なうときは、グループのアドレスをグループの対象となる子スレーブに対して設定します。 グループのアドレスを設定した子スレーブは、親スレーブに送信された指令を受け取ることができます。 親スレーブに運転指令を送信することで、同一グループの子スレーブにも指令が送信されます。

● 親スレーブ

親スレーブには、グループ送信のための設定は必要ありません。親スレーブの号機番号が、グループのアドレスになります。

● 子スレーブ

「グループ」(1018h)でグループのアドレスを子スレーブに設定します。

(memo) グループ機能で実行できるのはリモートI/O入力だけです。コマンドやパラメータの読み出し、書き込み は実行できません。

■ グループ設定

グループ設定は、メンテナンスコマンド「NVメモリー括書き込み」を実行してもNVメモリに保存されません。

命令コード		夕 秋	=Hod	如期店
読み出し	書き込み	「」「白小」	武明	●
24 (0018h)	4120 (1018h)	グループ	グループのアドレスを設定します。 【設定範囲】 –1:個別(グループを指定しません。) 0~15:グループのアドレス(親スレーブの号機番号)※	-1

※ NETC01-CCを使用するときは0~11、その他のネットワークコンバータを使用するときは0~15の範囲で設定してく ださい。

グループ機能の設定例

号機番号0のドライバを親スレーブ、号機番号1と2のドライバを子スレーブにしてグループを組むときは、次のように設定 してください。

グループを構成するドライバのNET-IN3(リモートI/O)にSTARTを割り付けたときのタイミングチャートです。

(memo) 親スレーブにリモートI/Oを入力すると、子スレーブも動作します。子スレーブにリモートI/Oを入力しても動作しません。

6-2 メンテナンスコマンド

アラームやワーニング履歴をクリアしたり、NVメモリの一括処理に使用するコマンドです。

	命令コード	内容	説明	設定範囲
	12480 (30C0h)	アラームのリセット	発生中のアラームを解除します。アラームの種類によっ ては解除できないものがあります。	
	12481 (30C1h)	絶対位置異常アラームの リセット	絶対位置異常のアラームを解除します。 このコマンドは 絶対位置異常アラーム専用です。 他のアラームは解除で きません。	
	12482 (30C2h)	アラーム履歴のクリア	アラーム履歴をクリアします。	
	12483 (30C3h)	ワーニング履歴のクリア	ワーニング履歴をクリアします。	
	12484 (30C4h)	通信エラーコード履歴クリア	通信エラー履歴をクリアします。	
-	12485 (30C5h)	P-PRESET実行	指令位置を「プリセット位置」パラメータの値に更新しま す。	1:実行する
	12486 (30C6h)	Configuration	パラメータの再計算とセットアップを実行します。	
	12487 (30C7h)	全データ初期化	NVメモリに保存されている運転データとパラメータを 初期値に戻します。ただし通信パリティ、通信ストップ ビット、および送信待ち時間は初期化されません。	
	12488 (30C8h)	NVメモリー括読出し	NVメモリに保存されている運転データとパラメータを RAMに読み出します。RAMに保存されていた運転デー タとパラメータはすべて上書きされます。	
	12489 (30C9h)	NVメモリー括書込み	RAMに保存されている運転データとパラメータをNVメ モリに書き込みます。	

(memo) NVメモリの書き換え可能回数は、約10万回です。

6-3 モニタコマンド

ドライバの状態をモニタするコマンドです。

命令コード	内容	説明
8256 (2040h)	現在アラーム	発生中のアラームコードを示します。
8257 (2041h)	アラーム履歴1	
8258 (2042h)	アラーム履歴2	
8259 (2043h)	アラーム履歴3	
8260 (2044h)	アラーム履歴4	
8261 (2045h)	アラーム履歴5	アラーム履歴1~10を示します。
8262 (2046h)	アラーム履歴6	
8263 (2047h)	アラーム履歴7	
8264 (2048h)	アラーム履歴8	
8265 (2049h)	アラーム履歴9	
8266 (204Ah)	アラーム履歴10	
8267 (204Bh)	現在ワーニング	発生中のワーニングコードを示します。
8268 (204Ch)	ワーニング履歴1	
8269 (204Dh)	ワーニング履歴2	
8270 (204Eh)	ワーニング履歴3	
8271 (204Fh)	ワーニング履歴4	
8272 (2050h)	ワーニング履歴5	ローニング房庭1。10をテレキオ
8273 (2051h)	ワーニング履歴6	
8274 (2052h)	ワーニング履歴7	
8275 (2053h)	ワーニング履歴8	
8276 (2054h)	ワーニング履歴9	
8277 (2055h)	ワーニング履歴10	

命令コード一覧	

命令コード	内容	説明		
8279 (2057h)	通信エラーコード履歴1			
8280 (2058h)	通信エラーコード履歴2			
8281 (2059h)	通信エラーコード履歴3	これまでに発生した通信エラーコード履歴1~6を示します		
8282 (205Ah)	通信エラーコード履歴4			
8283 (205Bh)	通信エラーコード履歴5			
8284 (205Ch)	通信エラーコード履歴6			
8285 (205Dh)	通信エラーコード履歴7			
8286 (205Eh)	通信エラーコード履歴8	これまでに発生した通信エラーコード履歴7~10を示します		
8287 (205Fh)	通信エラーコード履歴9			
8288 (2060h)	通信エラーコード履歴10			
8289 (2061h)	現在の選択データNo.	選択されている運転データNo.を示します。		
8290 (2062h)	現在の運転データNo.	位置決め運転中の運転データNo.を示します。連結運転と順送り 位置決め運転で使用できます。停止中は、最後に運転したデータ No.が示されます。		
8291 (2063h)	指令位置	指令位置を示します。		
8292 (2064h)	指令速度	指令速度を示します。 (r/min)		
8294 (2066h)	検出位置	検出位置を示します。		
8295 (2067h)	検出速度	現在の検出速度を示します。 (r/min)		
8297 (2069h)	ドウェルの残り時間	連結運転2で使用するドウェル時間の残りを示します。		
8298 (206Ah)	ダイレクトI/O、電磁ブレーキの 状態	ダイレクトI/Oと電磁ブレーキの状態を示します。詳細は次表を ご覧ください。		

■ ダイレクトI/O、電磁ブレーキの状態[8298(206Ah)]

Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0	IN1	IN0	-	-	SLIT	HOMES	–LS	+LS
1	-	-	IN7	IN6	IN5	IN4	IN3	IN2
2	-	-	OUT5	OUT4	OUT3	OUT2	OUT1	OUT0
3	-	-	_	-	_	-	_	MB

6-4 運転データ

設定できる運転データ数は64個です(データNo.0~63)。 運転データを変更すると、運転停止後に再計算とセットアップが行なわれ、変更した値が反映されます。

命令コード		内容	この中部田	初期值	
読み出し	書き込み			们积旧	
512 (0200h) ~	4608 (1200h) ~	位置No.0	-8,388,608~8,388,607 step	0	
575 (023Fh)	4671 (123Fh)	位置No.63			
576 (0240h) ~	4672 (1240h) ~	運転速度No.0 ~	0∼1,000,000 Hz	1,000	
639 (027Fh)	4735 (127Fh)	運転速度No.63			
640 (0280h) ~	4736 (1280h) ~	運転方式No.0 ~	0:インクリメンタル 1:マゴンリュート	0	
703 (02BFh)	4799 (12BFh)	運転方式No.63			
704 (02C0h) ~	4800 (12C0h) ~	運転機能No.0 ~	0:単独 1:連結	0	
767 (02FFh)	4863 (12FFh)	運転機能No.63	2:連結2 3:押し当て		
768 (0300h) ~ 831 (033Fh)	4864 (1300h) ~ 4927 (133Fh)	加速No.0 ~ 加速No.63	1~1,000,000(1=0.001 ms/kHz または1=0.001 s)※1※2	1,000	
832 (0340h) ~ 895 (037Fh)	4928 (1340h) ~ 4991 (137Fh)	減速No.0 ~ 減速No.63	1~1,000,000(1=0.001 ms/kHz または1=0.001 s)※1※2	1,000	
896 (0380h) ~ 959 (03BFh)	4992 (1380h) ~ 5055 (13BFh)	押し当て電流No.0 ~ 押し当て電流No.63	0~1,000(1=0.1 %) %3	200	
960 (03C0h) ~ 1023 (03FFh)	5056 (13C0h) ~ 5119 (13FFh)	順送り位置決めNo.0 ~ 順送り位置決めNo.63	0:無効 1:有効	0	
1024 (0400h) ~ 1087 (043Eh)	5120 (1400h) ~ 5183 (143Fh)	ドウェル時間No.0 ~ ドウェル時間No.63	0∼50,000(1=0.001 s)	0	

※1 「加減速選択」パラメータが「独立」のときに有効です。「共通」のときは、「共通加速」「共通減速」パラメータの設定値 が使用されます(初期値:独立)。

※2 「加減速単位」パラメータで、加減速レート (ms/kHz) か加減速時間 (s) を選択できます (初期値:加減速レート)。

※3 仕様変更前のドライバでは、設定範囲が0~500(1=0.1%)になります。詳細は8ページをご覧ください。

6-5 ユーザーパラメータ

パラメータはRAMまたはNVメモリに保存されます。RAMのパラメータはDC電源を遮断すると消去されますが、NVメモリのパラメータはDC電源を遮断しても保存されています。

ドライバにDC電源を投入すると、NVメモリのパラメータがRAMに転送され、RAM上でパラメータの再計算やセットアップが行なわれます。

FAネットワークでパラメータを設定したときは、RAMに保存されます。RAMに保存されたパラメータをNVメモリに保存 するには、メンテナンスコマンドの「NVメモリー括書き込み」を行なってください。

MEXE02で設定したパラメータは、「データの書き込み」を行なうとNVメモリに保存されます。

パラメータを変更したときに、変更した値が反映されるタイミングはパラメータによって異なり、次の3種類があります。

反映タイミング		内容
А	即時	パラメータを書き込むと、すぐに再計算とセットアップが行なわれます。
В	運転停止後	運転を停止すると、再計算とセットアップが行なわれます。
С	Configurationの実行後 または電源の再投入後	Configurationの実行後またはDC電源の再投入後に、再計算とセットアップ が行なわれます。

本編では、それぞれの反映タイミングをA~Cで表わしています。

FAネットワークで設定したパラメータはRAMに保存されます。電源の再投入が必要なパラメータを変更したときは、電源を切る前に必ずNVメモリへ保存してください。

• NVメモリへの書き込み可能回数は、約10万回です。

I/Oパラメータ

命令日	コード	内容	記字範囲	勿期病	辰叻
読み出し	書き込み		設た単田田	初知恒	汉昳
256 (0100h)	4352 (1100h)	STOP入力停止方法	0:即停止 1:減速停止 2:即停止+カレントオフ 3:減速停止+カレントオフ	1	A
257 (0101h)	4353 (1101h)	ハードウェアオーバートラベル	0:無効 1:有効	1	А
258 (0102h)	4354 (1102h)	オーバートラベル動作	0:即停止 1:減速停止	0	А
259 (0103h)	4355 (1103h)	位置決め完了出力幅	0~180(1=0.1°)	18	А
260 (0104h)	4356 (1104h)	位置決め完了出力オフセット	-18~18(1=0.1°)	0	А
261 (0105h)	4357 (1105h)	AREA1+方向位置	立置		А
262 (0106h)	4358 (1106h)	AREA1-方向位置			А
263 (0107h)	4359 (1107h)	AREA2+方向位置	9 299 609 - 9 299 607 stop	0	А
264 (0108h)	4360 (1108h)	AREA2-方向位置	-0,200,000~0,200,007 step	0	А
265 (0109h)	4361 (1109h)	AREA3+方向位置			А
266 (010Ah)	4362 (110Ah)	AREA3-方向位置			А
267 (010Bh)	4363 (110Bh)	MOVE出力最小時間	0~255 ms	0	А
268 (010Ch)	4364 (110Ch)	LS接点設定	0:A接点(N.O.) 1:B接点(N.C.)	0	С

命令コード		内容	設定筋囲	初期病	反中
読み出し	書き込み			的粉屉	
269 (010Dh)	4365 (110Dh)	HOMES接点設定	0:A接点(N.O.) 1:B接点(N.C.)	0	С
270 (010Eh)	4366 (110Eh)	SLIT接点設定	0:A接点(N.O.) 1:B接点(N.C.)	0	С
2048 (0800h)	6144 (1800h)	MS0運転No.選択		0	
2049 (0801h)	6145 (1801h)	MS1運転No.選択		1	
2050 (0802h)	6146 (1802h)	MS2運転No.選択	0- 62	2	D
2051 (0803h)	6147 (1803h)	MS3運転No.選択	0~03	3	D
2052 (0804h)	6148 (1804h)	MS4運転No.選択		4	
2053 (0805h)	6149 (1805h)	MS5運転No.選択		5	
2054 (0806h)	6150 (1806h)	HOME-P出力機能選択	0:原点出力 1:原点復帰完了出力	0	А

■ モーターパラメータ

命令コード		内容	シーン	勿期/店	后叻
読み出し	書き込み		□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□	们别胆	汉呋
288 (0120h)	4384 (1120h)	RUN電流	0~1,000(1=0.1 %)	1,000	А
289 (0121h)	4385 (1121h)	STOP電流	0~500(1=0.1 %)	500	А
290 (0122h)	4386 (1122h)	位置ループゲイン	1~50	10	А
291 (0123h)	4387 (1123h)	速度ループゲイン	10~200	180	А
292 (0124h)	4388 (1124h)	速度ループ積分時定数	100~2,000 (1=0.1 ms)	1,000	А
293 (0125h)	4389 (1125h)	速度フィルタ	0~200 ms	1	В
294 (0126h)	4390 (1126h)	移動平均時間	1~200 ms	1	В
2064 (0810h)	6160 (1810h)	フィルタ選択	0:速度フィルタ 1:移動平均フィルタ	0	С
2065 (0811h)	6161 (1811h)	速度差ゲイン1	0~500	45	А
2066 (0812h)	6162 (1812h)	速度差ゲイン2	0~500	45	А
2067 (0813h)	6163 (1813h)	制御モード	0:ノーマルモード 1:電流制御モード	0	С
2068 (0814h)	6164 (1814h)	スムースドライブ	0:無効 1:有効	1	С

■ 運転パラメータ

命令二	コード	内容	シーン	勿抑病	医咖
読み出し	書き込み		□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□	初期恒	反映
320 (0140h)	4416 (1140h)	共通加速	1~1,000,000(1=0.001 ms/kHz または1=0.001 s) ※	1,000	В
321 (0141h)	4417 (1141h)	共通減速	1~1,000,000(1=0.001 ms/kHz または1=0.001 s) ※	1,000	В
322 (0142h)	4418 (1142h)	起動速度	0~1,000,000 Hz	500	В
323 (0143h)	4419 (1143h)	JOG運転速度	1~1,000,000 Hz	1,000	В
324 (0144h)	4420 (1144h)	JOG加減速	1~1,000,000(1=0.001 ms/kHz または1=0.001 s) ※	1,000	В
325 (0145h)	4421 (1145h)	JOG起動速度	0∼1,000,000 Hz	500	В
326 (0146h)	4422 (1146h)	加減速選択	0:共通 1:独立	1	В
327 (0147h)	4423 (1147h)	加減速単位	0:ms/kHz 1:s	0	С
2080 (0820h)	6176 (1820h)	自動復帰動作	0:無効 1:有効	0	С
2081 (0821h)	6177 (1821h)	自動復帰運転速度	1~1,000,000 Hz	1,000	В
2082 (0822h)	6178 (1822h)	自動復帰加減速	1~1,000,000(1=0.001 ms/kHz または1=0.001 s) ※	1,000	В
2083 (0823h)	6179 (1823h)	自動復帰起動速度	0∼1,000,000 Hz	500	В
2084 (0824h)	6180 (1824h)	JOG移動量	1~8,388,607 step	1	В

※ 「加減速単位」パラメータで、加減速レート (ms/kHz) か加減速時間 (s) を選択できます (初期値:加減速レート)。

■ 原点復帰パラメータ

命令コード		内容	設定筋囲	初期病	反中
読み出し	書き込み		設定範囲	的知道	汉峡
352 (0160h)	4448 (1160h)	原点復帰方法	0:2センサ方式 1:3センサ方式 2:押し当て方式	1	В
353 (0161h)	4449 (1161h)	原点復帰運転速度	1∼1,000,000 Hz	1,000	В
354 (0162h)	4450 (1162h)	原点復帰加減速	1~1,000,000(1=0.001 ms/kHz または1=0.001 s) ※	1,000	В
355 (0163h)	4451 (1163h)	原点復帰起動速度	1∼1,000,000 Hz	500	В
356 (0164h)	4452 (1164h)	原点復帰オフセット	-8,388,608~8,388,607 step	0	В
357 (0165h)	4453 (1165h)	原点復帰開始方向	0:一側 1:+側	1	В
358 (0166h)	4454 (1166h)	原点復帰SLITセンサ検出	0:無効 1:有効	0	В
359 (0167h)	4455 (1167h)	原点復帰TIM信号検出	0:無効 1:有効	0	В
360 (0168h)	4456 (1168h)	押し当て原点復帰運転電流	0~1,000(1=0.1 %)	1,000	В

※ 「加減速単位」パラメータで、加減速レート (ms/kHz) か加減速時間 (s) を選択できます (初期値:加減速レート)。

■ アラームパラメータ

命令コード		内容	いっち	勿抑病	反明
読み出し	書き込み			例舟喧	汉吠
384 (0180h)	4480 (1180h)	過負荷アラーム	1~300(1=0.1 s)	50	А
385 (0181h)	4481 (1181h)	カレントオン時位置偏差過大アラーム	1~30,000(1=0.01 rev)	300	А
388 (0184h)	4484 (1184h)	原点復帰未完了アラーム	0:無効 1:有効	0	С
2112 (0840h)	6208 (1840h)	カレントオフ時位置偏差過大アラーム	1~30,000(1=0.01 rev)	10,000	А

■ ワーニングパラメータ

命令二	コード	内容	いっちの	切扣店	后吻
読み出し	書き込み		同文化工作的社会	初舟喧	及吠
416 (01A0h)	4512 (11A0h)	過熱ワーニング	40~85 ℃	85	А
417 (01A1h)	4513 (11A1h)	過負荷ワーニング	1~300(1=0.1 s)	50	А
418 (01A2h)	4514 (11A2h)	過速度ワーニング	1~5,000 r/min	4,500	А
419 (01A3h)	4515 (11A3h)	過電圧ワーニング	AC電源ドライバ:120~450 V DC電源ドライバ:150~630 (1=0.1 V)	AC電源ドライバ:435 DC電源ドライバ:630	A
420 (01A4h)	4516 (11A4h)	不足電圧ワーニング	AC電源ドライバ:120~280 V DC電源ドライバ:150~630 (1=0.1 V)	AC電源ドライバ:120 DC電源ドライバ:180	A
421 (01A5h)	4517 (11A5h)	カレントオン時位置 偏差過大ワーニング	1~30,000(1=0.01 rev)	300	А

■ 座標パラメータ

命令日	コード	内容	設定筋囲	勿抑伤	反中
読み出し	書き込み		設た地団	初知间	汉峡
448 (01C0h)	4544 (11C0h)	電子ギヤA	1~65,535	1	С
449 (01C1h)	4545 (11C1h)	電子ギヤB	1~65,535	1	С
450 (01C2h)	4546 (11C2h)	モーター回転方向	0:+側=CCW 1:+側=CW	1	С
451 (01C3h)	4547 (11C3h)	ソフトウェアオーバートラベル	0:無効 1:有効	1	А
452 (01C4h)	4548 (11C4h)	+ソフトウェアリミット	-8,388,608~8,388,607 step	8,388,607	А
453 (01C5h)	4549 (11C5h)	ーソフトウェアリミット	-8,388,608~8,388,607 step	-8,388,608	А
454 (01C6h)	4550 (11C6h)	プリセット位置	-8,388,608~8,388,607 step	0	А
455 (01C7h)	4551 (11C7h)	ラウンド設定	0:無効 1:有効	0	С
456 (01C8h)	4552 (11C8h)	ラウンド設定範囲	1~8,388,607 step	1,000	С

■ 共通パラメータ

命令コード		内容	こう作用	勿 胡 / 古	反映
読み出し	書き込み		設た肥田	们舟喧	汉吠
480 (01E0h)	4576 (11E0h)	データ設定器速度表示	0:符号あり 1:絶対値	0	А
481 (01E1h)	4577 (11E1h)	データ設定器編集	0:無効 1:有効	1	А
482 (01E2h)	4578 (11E2h)	アブソリュートバックアップシステム	0:無効 1:有効	0	С

Ⅱ/O機能[入力]パラメータ

命令コード		内容	いつ約日	切扣/古	医咖	
読み出し	書き込み		した。 記入上単じ世 し	初舟喧	汉吠	
2176 (0880h)	6272 (1880h)	IN0入力機能選択		3:HOME	3:HOME	
2177 (0881h)	6273 (1881h)	IN1入力機能選択		4:START		
2178 (0882h)	6274 (1882h)	IN2入力機能選択		48:M0		
2179 (0883h)	6275 (1883h)	IN3入力機能選択	海またご覧くだけい	49:M1	C	
2180 (0884h)	6276 (1884h)	IN4入力機能選択	一次衣をこ見てたさい。	50:M2	C	
2181 (0885h)	6277 (1885h)	IN5入力機能選択		16:FREE		
2182 (0886h)	6278 (1886h)	IN6入力機能選択		18:STOP		
2183 (0887h)	6279 (1887h)	IN7入力機能選択		24:ALM-RST		
2192 (0890h)	6288 (1890h)	IN0入力接点設定				
2193 (0891h)	6289 (1891h)	IN1入力接点設定				
2194 (0892h)	6290 (1892h)	IN2入力接点設定				
2195 (0893h)	6291 (1893h)	IN3入力接点設定	0:A接点(N.O.)	0	C	
2196 (0894h)	6292 (1894h)	IN4入力接点設定	1:B接点(N.C.)	0	C	
2197 (0895h)	6293 (1895h)	IN5入力接点設定				
2198 (0896h)	6294 (1896h)	IN6入力接点設定				
2199 (0897h)	6295 (1897h)	IN7入力接点設定				

IN入力機能選択の設定範囲

0:未使用	8:MS0	18:STOP	35:R3	43:R11	51:M3
1:FWD	9:MS1	24:ALM-RST	36:R4	44:R12	52:M4
2:RVS	10:MS2	25:P-PRESET	37:R5	45:R13	53:M5
3:HOME	11:MS3	26:P-CLR	38:R6	46:R14	
4:START	12:MS4	27:HMI	39:R7	47:R15	
5:SSTART	13:MS5	32:R0	40:R8	48:M0	
6:+JOG	16:FREE	33:R1	41:R9	49:M1	
7:-JOG	17:C-ON	34:R2	42:R10	50:M2	

■ I/O機能[出力]パラメータ

命令コード		内容	設守筋囲	勿胡病	反中
読み出し	書き込み			的舟间	
2208 (08A0h)	6304 (18A0h)	OUT0出力機能選択		70:HOME-P	
2209 (08A1h)	6305 (18A1h)	OUT1出力機能選択		69:END	
2210 (08A2h)	6306 (18A2h)	OUT2出力機能選択	海またご覧ください	73:AREA1	C
2211 (08A3h)	6307 (18A3h)	OUT3出力機能選択	人衣をと見てたとい。	67:READY	C
2212 (08A4h)	6308 (18A4h)	OUT4出力機能選択		66:WNG	
2213 (08A5h)	6309 (18A5h)	OUT5出力機能選択		65:ALM	

OUT出力機能選択の設定範囲

0:未使用	10:MS2_R	35:R3	45:R13	61:-LS_R	72:TIM
1:FWD_R	11:MS3_R	36:R4	46:R14	62:HOMES_R	73:AREA1
2:RVS_R	12:MS4_R	37:R5	47:R15	63:SLIT_R	74:AREA2
3:HOME_R	13:MS5_R	38:R6	48:M0_R	65:ALM	75:AREA3
4:START_R	16:FREE_R	39:R7	49:M1_R	66:WNG	80:S-BSY
5:SSTART_R	17:C-ON_R	40:R8	50:M2_R	67:READY	82:MPS*
6:+JOG_R	18:STOP_R	41:R9	51:M3_R	68:MOVE	
7:-JOG_R	32:R0	42:R10	52:M4_R	69:END	
8:MS0_R	33:R1	43:R11	53:M5_R	70:HOME-P	
9:MS1_R	34:R2	44:R12	60:+LS_R	71:TLC	

※ AC電源ドライバのみ

■ I/O機能[RS-485]パラメータ

命令コード		内容	いっち	初期値	反叻
読み出し	書き込み		家た単い世	10月11日	汉昳
2224 (08B0h)	6320 (18B0h)	NET-IN0入力機能選択		48:M0	
2225 (08B1h)	6321 (18B1h)	NET-IN1入力機能選択		49:M1	
2226 (08B2h)	6322 (18B2h)	NET-IN2入力機能選択		50:M2	
2227 (08B3h)	6323 (18B3h)	NET-IN3入力機能選択		4:START	
2228 (08B4h)	6324 (18B4h)	NET-IN4入力機能選択	 310ページをご覧くださ	3:HOME	
2229 (08B5h)	6325 (18B5h)	NET-IN5入力機能選択		18:STOP	C
2230 (08B6h)	6326 (18B6h)	NET-IN6入力機能選択	່ ເນ.	16:FREE	
2231 (08B7h)	6327 (18B7h)	NET-IN7入力機能選択		0:未使用	
2232 (08B8h)	6328 (18B8h)	NET-IN8入力機能選択		8:MS0	
2233 (08B9h)	6329 (18B9h)	NET-IN9入力機能選択	_	9:MS1	
2234 (08BAh)	6330 (18BAh)	NET-IN10入力機能選択		10:MS2	
2235 (08BBh)	6331 (18BBh)	NET-IN11入力機能選択		5:SSTART	

命令日	コード	内容	設定筋囲	切扣佔	反映
読み出し	書き込み	TTT TTT			
2236 (08BCh)	6332 (18BCh)	NET-IN12入力機能選択		6:+JOG	
2237 (08BDh)	6333 (18BDh)	NET-IN13入力機能選択	なまた ご 感く だ たい	7:-JOG	C
2238 (08BEh)	6334 (18BEh)	NET-IN14入力機能選択	伏衣をこ見てたさい。	1:FWD	
2239 (08BFh)	6335 (18BFh)	NET-IN15入力機能選択		2:RVS	
2240 (08C0h)	6336 (18C0h)	NET-OUT0出力機能選択		48:M0_R	
2241 (08C1h)	6337 (18C1h)	NET-OUT1出力機能選択		49:M1_R	
2242 (08C2h)	6338 (18C2h)	NET-OUT2出力機能選択		50:M2_R	
2243 (08C3h)	6339 (18C3h)	NET-OUT3出力機能選択		4:START_R	
2244 (08C4h)	6340 (18C4h)	NET-OUT4出力機能選択		70:HOME-P	
2245 (08C5h)	6341 (18C5h)	NET-OUT5出力機能選択		67:READY	
2246 (08C6h)	6342 (18C6h)	NET-OUT6出力機能選択		66:WNG	
2247 (08C7h)	6343 (18C7h)	NET-OUT7出力機能選択	311ページをご覧くださ	65:ALM	C
2248 (08C8h)	6344 (18C8h)	NET-OUT8出力機能選択	່ທຸ	80:S-BSY	C
2249 (08C9h)	6345 (18C9h)	NET-OUT9出力機能選択		73:AREA1	
2250 (08CAh)	6346 (18CAh)	NET-OUT10出力機能選択		74:AREA2	
2251 (08CBh)	6347 (18CBh)	NET-OUT11出力機能選択		75:AREA3	
2252 (08CCh)	6348 (18CCh)	NET-OUT12出力機能選択		72:TIM	
2253 (08CDh)	6349 (18CDh)	NET-OUT13出力機能選択		68:MOVE	
2254 (08CEh)	6350 (18CEh)	NET-OUT14出力機能選択		69:END	
2255 (08CFh)	6351 (18CFh)	NET-OUT15出力機能選択		71:TLC	

● NET-IN入力機能選択の選択範囲

0:未使用	8:MS0	18:STOP	35:R3	43:R11	51:M3
1:FWD	9:MS1	24:ALM-RST%	36:R4	44:R12	52:M4
2:RVS	10:MS2	25:P-PRESET ※	37:R5	45:R13	53:M5
3:HOME	11:MS3	26:P-CLR*	38:R6	46:R14	
4:START	12:MS4	27:HMI	39:R7	47:R15	
5:SSTART	13:MS5	32:R0	40:R8	48:M0	
6:+JOG	16:FREE	33:R1	41:R9	49:M1	
7:-JOG	17:C-ON	34:R2	42:R10	50:M2	

※ 仕様変更前のドライバでは設定できません。詳細は8ページをご覧ください。

● NET-OUT出力機能選択の選択範囲

0:未使用	10:MS2_R	35:R3	45:R13	61:-LS_R	72:TIM
1:FWD_R	11:MS3_R	36:R4	46:R14	62:HOMES_R	73:AREA1
2:RVS_R	12:MS4_R	37:R5	47:R15	63:SLIT_R	74:AREA2
3:HOME_R	13:MS5_R	38:R6	48:M0_R	65:ALM	75:AREA3
4:START_R	16:FREE_R	39:R7	49:M1_R	66:WNG	80:S-BSY
5:SSTART_R	17:C-ON_R	40:R8	50:M2_R	67:READY	82:MPS*
6:+JOG_R	18:STOP_R	41:R9	51:M3_R	68:MOVE	
7:-JOG_R	32:R0	42:R10	52:M4_R	69:END	
8:MS0_R	33:R1	43:R11	53:M5_R	70:HOME-P	
9:MS1_R	34:R2	44:R12	60:+LS_R	71:TLC	

※ AC電源ドライバのみ

■ 通信パラメータ

命令コード		内容	シーン	勿抑病	医咖
読み出し	書き込み	的谷	設た肥田	初舟恒	汉吠
2304 (0900h)	6400 (1900h)	通信タイムアウト	0:監視なし 1~10,000 ms	0	А
2305 (0901h)	6401 (1901h)	通信異常アラーム	1~10回	3	А

8 資料

◆もくじ

1	タイ	ミングチャート	.314
2	仕様		.326
3	一般	士様	.327
3-	1 A	AC電源ドライバ	.327
3-2	2 [つC電源ドライバ	.328
4	法令·	·規格	.329
4-	1 l	儿規格	. 329
4-2	2 (CEマーキング (AC電源ドライバ)	. 329
4-3	3 (CEマーキング (DC電源ドライバ)	.330
4-4	4 尊	韓国電波法	.330
4-	5 F	RoHS指令	.330

1 タイミングチャート

電源投入(AC電源ドライバ)

※ C-ON入力を割り付けなかったとき、またはC-ON入力をB接点で割り付けたとき。

※ C-ON入力を割り付けなかったとき、またはC-ON入力をB接点で割り付けたとき。

※ 負荷、運転速度、速度フィルタなどによって異なります。

8 資料

● 「STOP入力停止方法」パラメータが「減速停止」の場合

※ 負荷、運転速度、速度フィルタなどによって異なります。

● 「STOP入力停止方法」パラメータが「即停止+カレントオフ」の場合

● 「STOP入力停止方法」パラメータが「減速停止+カレントオフ」の場合

※ 負荷、運転速度、速度フィルタなどによって異なります。

FREE入力

ALM-RST入力

● モーターが無励磁にならないアラームが発生した場合

※ ALM出力はB接点です。通常はON、アラームが発生するとOFFになります。

※ ALM出力はB接点です。通常はON、アラームが発生するとOFFになります。

HMI入力

P-CLR入力

※ ALM出力はB接点です。通常はON、アラームが発生するとOFFになります。

P-PRESET入力

■ 単独運転(位置決め運転)

※ 負荷、運転速度、速度フィルタなどによって異なります。

| 連結運転(位置決め運転)

■ 連結運転2(位置決め運転)

※1 負荷、運転速度、速度フィルタなどによって異なります。

※2 運転データNo.1で設定したドウェル時間の値となります。

■ 押し当て運転

押し当て状態になる前に位置決め運転が完了した場合

● 押し当て状態から位置決め運転を起動した場合

■ ダイレクト位置決め運転

※ 負荷、運転速度、速度フィルタなどによって異なります。

8 資料

■ 順送り位置決め運転

※ 負荷、運転速度、速度フィルタなどによって異なります。

▋ 連続運転

※ 負荷、運転速度、速度フィルタなどによって異なります。

JOG運転

原点復帰運転

自動復帰運転

● 主電源を投入して自動復帰する場合(AC電源ドライバ)

● C-ON入力で自動復帰する場合

※ 負荷、運転速度、速度フィルタなどによって異なります。

STOP入力で動作を終了した場合

● 自動復帰動作中にC-ON入力をOFFにした場合

※ 負荷、運転速度、速度フィルタなどによって異なります。

2 仕様

製品の仕様については、当社のWEBサイトでご確認ください。

3-1 AC電源ドライバ

3

		モーター	ドライバ	
保護等級		IP65※1 (両軸タイプはIP20)	IP10	
使用環境	周囲温度	-10~+50 ℃※2(凍結しないこと) ハーモニックギヤードタイプは0~+40 ℃※2 (凍結しないこと)	0~+55 °C※3(凍結しないこと)	
	湿度	85 %以下(結露しないこと)		
	高度	海抜1,000 m以下		
	雰囲気	腐食性ガス、塵埃がないこと。水、油が直接かからないこと。		
	周囲温度	-20~+60 ℃(凍結しないこと)	–25~+70 ℃(凍結しないこと)	
促方理培	湿度	85 %以下(結露しないこと)		
1不1于垛坞	高度	海抜3,000 m以下		
	雰囲気	腐食性ガス、塵埃がないこと。水、油が直接かからないこと。		
	周囲温度	_20~+60 ℃(凍結しないこと)	_25~+70 ℃(凍結しないこと)	
熱 注 理 培	湿度	85 %以下(結露しないこと)		
制込垛境	高度	海抜3,000 m以下		
	雰囲気	腐食性ガス、塵埃がないこと。水、油が直接かからないこと。		
絶縁抵抗		次の箇所をDC500 Vメガーで測定した値が 100 MΩ以上あります。 • ケース-モーター・センサ巻線間 • ケース-電磁ブレーキ巻線間	次の箇所をDC500 Vメガーで測定した値が 100 MΩ以上あります。 • 保護接地端子-電源端子間 • 信号入出力端子-電源端子間	
絶縁耐圧		次の箇所に以下のとおり1分間印加しても異常を 認めません。 • ケース-モーター・センサ巻線間 AC1.5 kV 50/60 Hz • ケース-電磁ブレーキ巻線間 AC1.5 kV 50/60 Hz	次の箇所に以下のとおり1分間印加しても異 常を認めません。 漏れ電流13 mA以下 ・保護接地端子-電源端子間 AC1.8 kV 50/60 Hz ・信号入出力端子-電源端子間 AC1.9 kV 50/60 Hz	

※1 取付面とコネクタ部を除く。

※2 アルミ板(250×250×6 mm相当以上)の放熱板に取り付けた場合。

※3 アルミ板(200×200×2 mm相当以上)の放熱板に取り付けた場合。

3-2 DC電源ドライバ

		モーター	ドライバ
保護等級		IP20	IP10
	周囲温度	-10~+50 ℃(凍結しないこと) ※1 ハーモニックギヤードタイプは0~+40 ℃※1 (凍結しないこと)	0~+50 ℃(凍結しないこと)
使用環境	湿度	85 %以下(結露しないこと)	
	高度	海抜1,000 m以下	
	雰囲気	腐食性ガス、塵埃がないこと。水、油が直接かからないこと。	
	周囲温度	-20~+60 ℃(凍結しないこと)	-25~+70 ℃(凍結しないこと)
/P方理 连	湿度	85 %以下(結露しないこと)	
休仔圾児	高度	海抜3,000 m以下	
	雰囲気	腐食性ガス、塵埃がないこと。水、油が直接かからないこと。	
	周囲温度	_20~+60 ℃(凍結しないこと)	-25~+70 ℃(凍結しないこと)
态:光理] 连	湿度	85 %以下(結露しないこと)	
制还瑔垷	高度	海抜3,000 m以下	
	雰囲気		
絶縁抵抗		次の箇所をDC500 Vメガーで測定した値が 100 MΩ以上あります。 • ケース-モーター・センサ巻線間 • ケース-電磁ブレーキ巻線間	次の箇所をDC500 Vメガーで測定した値が 100 MΩ以上あります。 •FG端子-電源端子間
絶縁耐圧		次の箇所に以下のとおり1分間印加しても異常を 認めません。 • ケース-モーター・センサ巻線間 AC1.0 kV 50/60 Hz ※2 • ケース-電磁ブレーキ巻線間 AC1.0 kV 50/60 Hz ※2	次の箇所に以下のとおり1分間印加しても異常を認めません。 • FG端子-電源端子間 AC500 V 50/60 Hz

※1 アルミ板(100×100×6 mm相当以上)の放熱板に取り付けた場合。

%2 ARM14、ARM15、ARM24、ARM26
lt0.5 kV $_{\circ}$

4 法令・規格

4-1 UL規格

この製品は、UL規格の認証を取得しています。 ドライバには、UL規格で規定されるモーター過負荷保護とモーター過熱保護は備わっていません。

4-2 CEマーキング(AC電源ドライバ)

この製品は、次の指令にもとづいてマーキングを実施しています。

■ 低電圧指令

設置条件

項目	モーター	ドライバ
過電圧カテゴリー	П	Π
汚損度	3(両軸タイプは2)	2
保護等級	IP65(取付面とコネクタ部を除く)	IP10
感電保護	クラス I	クラス I

- IT配電系統では使用できません。
- モーターケーブルや電源ケーブルなどの動力系ケーブルと、信号系のケーブルは、二重絶縁で分離してください。
- ・駆動条件によっては、ドライバの放熱板が90 ℃を超えることがあります。次のことを守ってください。
 ・必ず試運転を行ない、ドライバの温度を確認してください。
 ・可燃物のそばでドライバを使用しないでください。
 ・ドライバに触れないでください。
- 配線用遮断器は、ENまたはIEC規格適合品を使用してください。
- ドライバには、EN規格で規定されるモーター過負荷保護とモーター過熱保護は備わっていません。
- ドライバには、地絡保護回路は備わっていません。配線するときは、「地絡保護を考慮した電源への配線例」に従ってくだ さい。また、次のことを考慮してください。
- ・漏電遮断器:定格感度電流30 mA ・過電圧カテゴリーⅢの電源に接続する場合は絶縁トランスを使用し、絶縁トランスの二次側(単相はN)を接地する。 ・故障ループインピーダンス:表の値以下

ドライバの電源仕様	故障ループインピーダンス
単相100-120 V	500 Ω
单相200-240 V	1,000 Ω

地絡保護を考慮した電源への配線例

TN配電系統のとき

8 資料 TT配電系統のとき

EMC指令

適合についての詳細は、48ページ「4-10 EMC指令への適合」をご覧ください。

4-3 CEマーキング(DC電源ドライバ)

この製品は、次の指令にもとづいてマーキングを実施しています。

EMC指令

適合についての詳細は、78ページ「4-9 EMC指令への適合」をご覧ください。

4-4 韓国電波法

この製品は韓国電波法にもとづいてKCマークを貼付しています。

4-5 RoHS指令

この製品は規制値を超える物質は含有していません。

版数	改訂内容	
初版	新規作成	
	•1編「使用上のお願い」から生産中止品を削除	
2版	 用語の見直し 	
	・軽微な誤記修正	
2 版	• 型番追加に関する内容を追加	
J NX	●軽微な誤記修正	
4 16	● 2 編 [5-1 モーターケーブルセット] にケーブル品名を追加	
4 hX	● 3 編 [5-1 モーターケーブルセット] にケーブル品名を追加	
	• コネクタ品番を追加	
5版	 用語の見直し 	
	 軽微な誤記修正 	
	•2編「2-1 製品の確認」を一部見直し	
6 년	•3編[2-1 製品の確認]を一部見直し	
O NX	 7編「4 MECHATROLINK通信で制御する場合」を追加 	
	 ・ ・ 軽微な誤記修正 	
フ版	•8 編 [4 法令·規格] を一部見直し	
	 ・ ・ ・	
8版	•8編[4-1 UL規格]を一部見直し	

- このマニュアルの一部または全部を無断で転載、複製することは、禁止されています。 損傷や紛失などにより、マニュアルが必要なときは、最寄りの支店または営業所に請求してください。
- マニュアルに記載されている情報、回路、機器、および装置の利用に関して産業財産権上の問題が生じても、当社は一切の責任を負いません。
- 製品の性能、仕様および外観は改良のため予告なく変更することがありますのでご了承ください。
- マニュアルには正確な情報を記載するよう努めていますが、万一ご不審な点や誤り、記載もれなどにお気づきの点がありましたら、 最寄りのお客様ご相談センターまでご連絡ください。
- Orientalmotor、Q(STEP、および (JEEX)は、日本その他の国におけるオリエンタルモーター株式会社の登録商標または商標です。 Modbusは Schneider Automation Inc.の登録商標です。 CC-Linkは CC-Link協会の登録商標です。
 EtherCAT®は、Beckhoff Automation GmbH(ドイツ)よりライセンスを受けた特許取得済み技術であり登録商標です。
 MECHATROLINKは MECHATROLINK協会の登録商標です。
 その他の製品名、会社名は各社の登録商標または商標です。このマニュアルに記載の他社製品名は推奨を目的としたもので、それらの製品の性能を保証するものではありません。オリエンタルモーター株式会社は、他社製品の性能につきましては一切の責任を負い

ません。

© Copyright ORIENTAL MOTOR CO., LTD. 2016

2024年3月制作

オリエンタルモーター株式会社	
	-

お問い合わせ窓口		
製品に関する技術的なお問い合わせ、 購入についてのご相談はこちらまで。 お客様ご相談センター	CC-Link、MECHATROLINKなどのFAネットワークや Modbus RTUIに関する技術的なお問い合わせ窓口 ネットワーク対応製品専用ダイヤル TEL 0120-914-271受付時間 平日/9:00~17:30	
TEL 0120-925-410 FAX 0120-925-601 	_{検査修理の総合窓□} アフターサービスセンター	
E-mail webts@orientalmotor.co.jp	TEL 0120-911-271 FAX 0120-984-815 受付時間 平日/9:00 ~ 17:30	

WEBサイトでもお問い合わせやご注文を受け付けています。https://www.orientalmotor.co.jp/ja